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Abstract. Knowledge distillation is an effective method to transfer the
knowledge from the cumbersome teacher model to the lightweight stu-
dent model. Online knowledge distillation uses the ensemble prediction
results of multiple student models as soft targets to train each student
model. However, the homogenization problem will lead to difficulty in fur-
ther improving model performance. In this work, we propose a new distil-
lation method to enhance the diversity among multiple student models.
We introduce Feature Fusion Module (FFM), which improves the per-
formance of the attention mechanism in the network by integrating rich
semantic information contained in the last block of multiple student mod-
els. Furthermore, we use the Classifier Diversification(CD) loss function
to strengthen the differences between the student models and deliver a
better ensemble result. Extensive experiments proved that our method
significantly enhances the diversity among student models and brings
better distillation performance. We evaluate our method on three image
classification datasets: CIFAR-10/100 and CINIC-10. The results show
that our method achieves state-of-the-art performance on these datasets.

1 Introduction

Knowledge distillation[1], as one of the key methods in model compression, the
distillation process usually starts by training a high-capacity teacher model. A
student model will actively learn the soft label or feature representation[11] gen-
erated by teacher model. The purpose of distillation is to train a more compact
and accurate student model through the knowledge transferred from the teacher
network. In recent years, the convolutional neural network has made very im-
pressive achievements in many vision tasks[2–6]. But it requires high cost of
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computation and memory in inference, making the deployment of CNN difficult
in resource-limited mobile devices. Knowledge distillation was proposed to solve
these problems. In the meantime, other types of model compression techniques
such as network pruning[7–9] and network quantization[10–12] have also been
proposed.

Traditional knowledge distillation[13–15] is a two-stage process. We should
first train a teacher model, then get a student model by distilling the teacher
model. Although this approach can obtain a higher quality student model by
aligning the predictions of the teacher model, it is still a complex approach
that requires more computational resources. Online knowledge distillation[16]
successfully simplifies the training process by reducing the need for pretrained
teacher model. Existing online knowledge distillation methods[17–19] learns not
only from the ground truth labels but also from the ensemble results of multiple
branches. We refer to each branch as a separate student model. This method can
improve the performance of models with arbitrary capacity and obtain better
generalization ability.

Averaging the predictions of each branch is a very simple way to get the
ensemble results. This approach tend to cause branches to quickly homoge-
nize, hurting the distillation performance[20, 21]. However, [17, 19] found that
the accuracy of the final result improves if different weights were applied to
each peer. In OKDDip[19], this paper introduces the concept of two-level distil-
lation method, builds diverse peers by applying a self-attention mechanism[22].
Self-attention in OKDDip needs two fully connected layers separately as trans-
formation matrices to obtain importance scores, which increases the complexity
of time and space. In ONE[17], the gate module uses features from the second
block of its backbone network as input to generate the importance score of the
corresponding branch. However, this feature contains little semantic information
which leads to limited improvement in image classification tasks.

In this work, we propose a new distillation strategy to enhance the diver-
sity among branches which can significantly improve the effectiveness of online
knowledge distillation. By introducing Feature Fusion Module(FFM) to fuse the
features of the last layer of multiple branches, we make full use of the diversity
of semantic information contained in multiple branches to improve the attention
performance[23]. Since a large diversity of branches can help ensemble-based on-
line KD methods achieve better results, inspired by [24], we propose the CD loss
to prevent homogeneity between branches by explicitly forcing their features to
be learned orthogonally. This loss function serves as a regularization term to
prevent group performance degradation caused by homogenization. Unlike other
methods in which all branches converge into similar one. By using our method,
each branch keeps their uniqueness. Based on [19], a two-level knowledge dis-
tillation framework is adopted. We build a network with m branches, including
m-1 auxiliary branches and a group leader. The knowledge generated by these
diverse peers will be distilled into the group leader, and the remaining peers will
be discarded. In order to reduce the consumption of computing resources, we
only keep the group leader as the final deployment model.
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Our contributions of this work can be summarized as follows:

– We propose Feature Fusion Module(FFM) which can better fuse diverse
semantic information from multiple branches and improves the performance
of the attention mechanism.

– We introduce the Classifier Diversification(CD) loss function. As a regu-
larization term, it effectively reduces the homogenization among branches,
improves the accuracy of ensemble results and leads to a better student
model.

– The extensive experiments and analysis verify that our proposed method
can effectively enhance branch diversity and train better student models on
different image classification datasets: CIFAR-10/100[25] and CINIC-10[26].

2 Related Work

2.1 Knowledge Distillation

Knowledge distillation[1] has been widely used in many scenarios involving deep
learning algorithms, such as virtual experiments in VR, autonomous driving and
so on. It provides an useful method that allows the complex teacher model to be
compressed to a more lightweight student model by aligning the student model
with the teacher model. When training the target model, this method takes
advantage of the extra supervisory signal provided by the soft output of the
teacher model. there are also many works[13–15, 27] made explorations based
on this idea. In FitNets[13], the student model attempts to mimic the interme-
diate representation directly from the teacher network. Attention Transfer[14]
transfers an attention map of a teacher model into a student and [28] proposes
a similar method using mean weights. In flow-based knowledge distillation[15],
the student is encouraged to mimic the teacher’s flow matrices, which are de-
rived from the inner product between feature maps in two layers. [29] saves the
computation by using singular value decomposition to compress feature maps.

There are also innovative works exploring alternatives to the usual student-
teacher training paradigm. Generative Adversarial Learning[30] is proposed to
generate realistic-looking images from random noise using neural networks. The
ideas in the adversarial network are applied to knowledge distillation[31–33].
In MEAL[31], the generators were employed to synthesize student features and
the discriminator was used to discriminate between teacher and student outputs
for the same image. In [33], this work adopts adversarial method to discover
adversarial samples supporting decision boundary. With the supervision of dis-
criminator, student can better mimic the behavior of teacher model. In addtion,
many works[34–37] have also explored the relationship between the samples. [34]
propose that similar input pairs in the teacher network tends to produce similar
activations in the student network. A few recent papers[37–39] have shown that
models of the same architecture can also be distilled. Snapshot distillation[39]
uses the cyclic learning rate policy, in which the last snapshot of each cycle is
used as the teacher for all iterations in the next cycle, and the teacher is used
to provide supervision signal.
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2.2 Online Knowledge Distillation

Traditional knowledge distillation methods have two stages that require a pre-
trained teacher model to provide soft output for distillation. Different from above
complex training methods, several works adopts collaboratively training strategy.
Simultaneously training a group of student models based on each other’s predic-
tions is an effective single-stage distillation method, which can be a good substi-
tute for pretrained teacher models. Some methods[16, 18] solve this problem. The
online knowledge distillation was completed through mutual instruction between
two peers[16]. However, the lack of a high-capacity teacher model will decrease
the distillation efficiency. In [17, 40], each student model learns from the average
of the predictions generated by a group of students and obtains a better teacher
model effect. ONE found that simply averaging the results would reduce the
diversity among students, affecting the training of branch-based models. ONE
generates the importance score corresponding to each student through the gate
module. By assigning different importance score to each branch, a high-capacity
teacher model is constructed, which can leverage knowledge from training data
more effectively. OKDDip[19] proposed the concept of two-level distillation. The
ensemble results of auxiliary peer networks were distilled into the group leader.
The diversified peer network plays a key role in improving distillation perfor-
mance.

3 Online Knowledge Distillation via Multi-branch

Diversity Enhancement

The architecture of our proposed method is illustrated in Fig. 1. Our method
is based on a two-level distillation procedure. The network has m− 1 auxiliary
branches and one group leader. In the first level distillation, each branch learns
not only from the ground truth label but also from the weighted ensemble tar-
gets obtained through Feature Fusion Module. These results play the role of a
teacher model to teach each branch. In the second level distillation, the knowl-
edge learned by the group is further distilled into the group leader. To save
computing resources, we use the group leader for the final deployment.

3.1 Formulation

In knowledge distillation, the student uses the output of the teacher as an ad-
ditional supervisory signal for network training. Given a dataset of N training
samples D = {(xi, yi)}

N
i , where yi ∈ {1, 2, ..., C}. Here, xi is the ith training

sample, yi is the corresponding ground truth label and C is the total number of
image classes. Take the training sample as the input of the teacher network, we
will get the output logits ti = (t1i , ..., t

c
i ). The logits vector after softmax will get

the ith probability value qji ,

qji =
exp(ti/T )∑C

j=1
exp(tji/T )

(1)
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Fig. 1. The overall framework of our proposed method. Each branch and shared low-
level layers constitute an individual student model. This is a two-level distillation pro-
cess. For the first-level distillation, each auxiliary branch learns from their ensemble
targets. The second-level distillation transfers the knowledge learned by the group to
the group leader. Lcd denotes the proposed classifier diversification loss. Lkl denotes
the KL divergence loss. We omit the cross entropy loss Lce for simplicity. We will
introduce these loss functions in detail in the third section. Best viewed in color.

where T is the temperature parameter. An increase in the parameter T will
make the probability distribution smoother. When training teachers, T is set to
1. When distilling knowledge from the teacher model to the student model, T is
usually set to 3.

In order to train a multi-class image classification model, our goal is to min-
imize the cross entropy between the predicted class probabilities qi and the
corresponding ground truth label distribution yi,

Lce = H(yi, qi) (2)

where H(p, q) = −
∑

i pilogqi.

Knowledge transfer is achieved by aligning the probability distribution q
generated by the student with the target distribution t. The temperature pa-
rameter T should be the same for teacher and student networks. Specifically, we
use KL(Kullback-Leibler) Divergence as the loss function:

Lkl = KL(t, q) =
∑

i,j

tij log
tij
qij

(3)
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Fig. 2. We take the case of three auxiliary branches as an example. Feature maps si
from each branch will be concatenated together, and then fed into the center convolu-
tion block. The center block is made of several convolutional layers, batch normaliza-
tion and ReLU activation function. The last layer of this block is fully connected layer.
This block is designed to fuse the semantic representation from multiple branches.
Compared with other methods, more semantic information can effectively improve the
performance of the module. The final target is obtained by the weighted sum of logits
ti of all auxiliary branches.

3.2 Feature Fusion Module

An overview of the Feature Fusion Module is described in Fig. 2. Features from
a single layer contain less information than features from multiple layers. Many
approaches[41–44] try to take advantage of more diversed features to get better
model performance. We take the features of the last block from multiple branches
as the input of the Feature Fusion Module. Since deeper layers in the network
lead to richer semantic information, this approach can enrich features with high-
level semantic information. Our experiment proves that the weights generated
from this method can achieve better results.

te =

m−1∑

i=0

fi(s1, s2, ..., sm−1) · ti (4)

where f(·) denotes the function of center block in the FFM. This function will
output the corresponding importance score for each branch and also satisfy∑m

i=1
fi(s1, s2, ..., sm−1) = 1. sk denotes the feature map of the last block from

the (m− 1)th branch. tk denotes the logits from the mth branch. te denotes the
weighted ensemble target.

3.3 Classifier Diversification Loss

The diversity has an important influence on the accuracy of the final ensemble
results. For better results, we expect peer classifiers to classify samples based
on different viewpoints. So we restrict the weight of classifiers, force them to be
diversed. We use
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Algorithm 1 Online knowledge distillation via multi-branch diversity enhance-
ment
Input: Training dataset D ; Training Epoch Number ǫ ; Branch Number β

Output: Trained group leader model θ0 and auxiliary models {θi}mi=1

Initialize: e=1; Randomly initialize {θi}mi=0

1: while e ≤ ǫ do

2: Compute the predictions of all auxiliary branches {θi}mi=1 with Eq. (1);
3: Get each branch’s weight through FFM;
4: Compute the target logits with Eq. (4);
5: Compute the CD loss Lcd with Eq. (5);
6: Compute the distillation loss Lkl1 and Lkl2 with Eq. (3);
7: Compute the total loss function with Eq. (8);
8: Update the model parameters {θi}mi=0

9: e=e+1

10: end while

Model eployment: Use group leader θ0;

Lcd =

m−1∑

i=0

m∑

j=i+1

Li,j
cd =

m−1∑

i=0

m∑

j=i+1

|WT
i Wj | (5)

where Wi is the fully connected layers’ weights of peer classifiers. If the weights
of fully connected layers between peers get similar, it means there are more
homogenization among them. This loss function acts as a regularization term to
prevent homogenization. This will force each classifier to learn different features
under this limit. Experiments show that this loss function improves the diversity
of peer classifiers and improves the distillation efficiency. We will explain in detail
in the ablation study.

3.4 Loss function and algorithm

To get a better understanding of our method, we describe the process in Al-
gorithm 1. Our distillation method is a two-level procedure. For the first level
distillation, each auxiliary branch learns the knowledge distilled from the soft
targets te generated by FFM. The distillation loss of all auxiliary branches is

Lkl1 =

m−1∑

i=1

KL(te, qi) (6)

In the second-level distillation, the knowledge learned by the group will be
distilled to the group leader. Same as OKDDip, we average the predictions of
all branches to get tavg. The distillation of the group leader is

Lkl2 = KL(tavg, qgl) (7)

To sum up, the loss function of the whole neural network is:
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L =

m∑

i=1

Li
ce + αT 2Lkl1 + βT 2Lkl2 + γLcd (8)

where α, β and γ are the balance parameter to balance the loss term. The first
term is the sum of all branches’ cross entropy loss.

4 Experiment

In this section, we evaluate our method on five popular neural networks (ResNet-
50, ResNet-110[4], ResNext-50(32x4d)[45], Xception[46], ShuffleNet V2-1.0[47])
and three image classification benchmark dataset: CIFAR-10/100[25] and CINIC-
10[26]. We also compare our method with closely related works, including ONE
and OKDDip. In addition to the classification ability, we also conduct several
ablation studies on the feature fusion module and classifier diversification loss,
of which the result indicates that the proposed method has better generalization
performance compared with other methods. All the reported results are averaged
based on three runs.

4.1 Datasets and Settings

Datasets. There are three datasets in our experiments. CIFAR-10 and CIFAR-
100[25] both contains 50,000 training images and 10,000 test images, which come
from 10/100 classes. CINIC-10 consists of images from both CIFAR and Ima-
geNet[48]. It has 270,000 images and 10 classes. The size in CINIC-10 is the
same as in CIFAR. It contains 90,000 training images and 90,000 test images,
all at a resolution of 32 x 32. The top-1 classification error rate are reported.

Settings. We implement all the networks and training procedures in Py-
torch[49]. We conduct all experiments on an NVIDIA GeFore RTX 2080Ti GPU.
For all datasets, we follow the experimental setting of [19]. For data augmenta-
tion, we apply standard random crop and horizontal flip to all images. We use
SGD[50] as the optimizer with Nesterov momentum 0.9 and weight decay 5e− 4
during training. We set mini-batch size to 128. We use the standard learning
schedule. The learning rate starts from 0.1 and divided by 10 at 150 and 225
iterations, for a total of 300 iterations. We set m=4, means that there are three
auxiliary branches and a group leader. We separate the last two blocks of each
backbone network for CIFAR-10/100 and CINIC-10. We empirically set T=3 to
generate soft predictions. We set α=1, β=2 and γ=5e − 8 to balance the loss
term in Equation 6.

We compare our method with several online knowledge distillation meth-
ods. In OKDDip, it has two network settings: branch-based and network-based.
The branch-based approach refers to student models sharing multiple convolu-
tional layers, separated from each other after a specified layer. The network-
based method means that all student models do not share any convolutional
layers, and each student is an independent model. The principles of these two
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Table 1. Error Rate(Top-1, %) on CIFAR-10.

Models Baseline Our Method Gain

ResNet-32 6.38 ± 0.10 5.45 ± 0.07 0.93
ResNet-110 5.46 ± 0.02 4.47 ± 0.02 0.99
ResNext-50(32x4d) 5.05 ± 0.12 4.66 ± 0.05 0.39
Xception 5.70 ± 0.08 5.19 ± 0.05 0.51
ShuffleNetV2-1.0 9.21 ± 0.04 8.36 ± 0.03 0.85

Table 2. Error Rate(Top-1, %) on CIFAR-100.

Models Baseline ONE OKDDip Our Method

ResNet-32 28.39 ± 0.04 25.76 ± 0.04 25.45 ± 0.10 24.84 ± 0.06

ResNet-110 23.85 ± 0.17 21.94 ± 0.13 21.01 ± 0.16 20.52 ± 0.13

ResNext-50(32x4d) 20.43 ± 0.19 18.24 ± 0.03 17.90 ± 0.06 17.55 ± 0.06

Xception 21.71 ± 0.06 19.69 ± 0.06 19.66 ± 0.07 19.55 ± 0.11

ShuffleNetV2-1.0 28.76 ± 0.12 25.23 ± 0.11 25.28 ± 0.18 25.17 ± 0.10

approaches are close, so the branch-based method can well validate the effec-
tiveness of our method. In all the experiments, we use branch-based setting for
comparison. Baseline means the original model trained on the dataset without
any modification.

4.2 Results on CIFAR-10/100

Table 1 and Table 2 compares the top-1 classification error rate on CIFAR-10 and
CIFAR-100 based on five different backbone networks. The result generated by
ONE is the averaged accuracy of all branches. The results of OKDDip and ours
are the accuracy of the group leader. From these two tables, it clearly shows
that our method achieves a lower error rate on the same backbone network.
Specifically, our method improves the accuracy of various baseline network by
3% to 4% on CIFAR-100. The network with higher capacity generally benefits
more from our method. Our methods improves the state-of-the-art methods by
0.61%, 0.49% and 0.35% with ResNet-32, ResNet-110 and ResNext-50, respec-
tively. These results showing that our method is more effective than existing
methods. When the baseline model has lower capacity, our method can also
slightly improve the accuracy compared with other methods.

In Table 3, we compare our method with another two-level distillation method
OKDDip on three backbone networks. The results of compared methods are the
averaged ensemble results of three branches on three backbone networks in the
second-level distillation. Since the ensemble results act as a teacher to teach the
group leader, a more accurate result can train a better group leader. It is also
seen that our method improves the OKDDip method by 0.59%, 0.57% and 0.34%
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Table 3. Error Rate(Top-1, %) of ensemble results on CIFAR-100.

Models OKDDip Our Method Gain

ResNet-32 23.22 22.63 0.59
ResNet-110 19.42 18.85 0.57
ResNext-50(32x4d) 17.02 16.68 0.34

with ResNet-32, ResNet-110 and ResNext-50. Generally, our method successfully
enhanced the diversity among different branches and brings improvement to
distillation performance.

Diversity Measurement. We use the interrater agreement in [21] as the
metric to measure the branch diversity. This method is defined as:

s = 1−
1

T

∑m

k=1
ρ(xk)(T − ρ(xk))

m(T − 1)p̄(1− p̄)
(9)

where T is the total number of classifiers, ρ(xk) is the number of classifiers that
classify x correctly, p̄ is the average accuracy of individual classifiers and m is
the total number of test samples. OKDDip and our method obtained 0.633 and
0.549 respectively (CIFAR-100 & ResNet-32). The smaller the s measurement,
the larger the diversity. From this results, we can see that our method actually
increase the branch diversity.

4.3 Results on CINIC-10

CINIC-10 dataset is larger and more challenging than CIFAR-10 but not as
difficult as ImageNet. We adopt the same data preprocessing as those of CIFAR-
10/100 experiments.

Table 4. Error Rates(Top-1, %) on CINIC-10.

Models Baseline ONE OKDDip Our Method

ResNet-32 15.96 ± 0.13 14.60 ± 0.09 14.41 ± 0.10 14.28 ± 0.12

ResNet-110 13.99 ± 0.06 12.29 ± 0.09 12.21 ± 0.11 11.86 ± 0.08

ResNext-50(32x4d) 13.65 ± 0.12 12.19 ± 0.04 12.20 ± 0.06 12.02 ± 0.07

Table 4 compares the top-1 classification error rates based on three backbone
networks trained by different methods. From this table, we observed that our
method outperforms baseline by 1.68%, 2.13% and 1.63% on ResNet-32, ResNet-
110 and ResNext-50 respectively. Our method also improves the state-of-the-
art method by 0.13%, 0.35% and 0.18% on three backbone networks. We can
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Table 5. Error Rates(Top-1, %) of ensemble results on CINIC-10.

Models OKDDip Our Method Gain

ResNet-32 13.55 13.44 0.11
ResNet-110 11.35 10.98 0.37
ResNext-50(32x4d) 11.77 11.54 0.23

find that the improvement in generalization performance is very limited on this
dataset. High-capacity networks tend to perform better. But the accuracy of
ResNext-50 is slightly lower than ResNet-110 although its baseline performance
is better.

In Table 5, we compare our method with OKDDip. We can find that our
method outperforms OKDDip by 0.11%, 0.37% and 0.23% on ResNet-32, ResNet-
110 and ResNext-50. While it can be observed that all the methods seem not
to increase as much as that in CIFAR-100 experiments. We guess it is because
the homogenization problem becomes serious when we conduct experiments on
easier datasets. We still need to explore solutions to solve the homogenization
problem in the future.

4.4 Ablation Study

Table 6. Ablation Study: Error rates(Top-1, %) for ResNet-32 on CIFAR-100.

Gate SA FFM CD Top-1 error Top-5 error

X 25.40 6.19
X 25.45 6.33

X 25.76 6.39
X X 24.84 6.08

X X 25.18 6.10
X X 25.31 6.11

In this section, we conduct various ablation studies to validate the effective-
ness of our proposed FFM and CD loss. We use ResNet-32 on the CIFAR-100
dataset to show the benefit of our components. We also compare our FFM with
other knowledge distillation methods, including gate module in ONE and self-
attention(SA) mechanism in OKDDip.

In Table 6, we report the top-1 and top-5 error rates of different methods.
The remaining experimental settings are consistent with previous experiment.
We carefully conducted six experiments on the network components. We com-
pared the performance of three attention modules in the same experimental
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Fig. 3. Sensitivity to γ on CIFAR-100 for ResNet-32.

settings. When FFM is used only, the performance of our method has slightly
exceeded other methods. This shows that FFM makes the student network learns
more knowledge during the distillation. Compared with gate module in ONE,
our method improves the top-1 error rates by 0.36% and top-5 error rates by
0.2%. This result proves that our method effectively utilizes the rich semantic in-
formation of multiple branches. When we combine different attention mechanism
with classifier diversification loss, our results clearly show that our method sur-
passes other methods. The combination of FFM and CD loss has more obvious
improvement. Compared with the independent FFM, the combination improves
the top-1 error rates by 0.56% and the top-5 error rates by 0.08%. Our method
clearly enhances the diversity among branches and improves the generalization
ability of the student model. From this table, we observe that CD loss really
plays the most important role in the overall improvements.

Fig. 3 demonstrates how the performance of our method is affected by the
choice of hyperparameter γ of the CD loss. We plot the top-1 accuracy on the
CIFAR-100 for ResNet-32 group leader trained with γ ranging from 1e − 10 to
1e−4. In this figure, the dash line indicates the mean accuracy of other methods.
We can find that our method still has robust performance against varying γ
values. The green dot indicates the parameter we are using. We should note that
the choice of parameters will affect the optimization process. If the parameter is
too large, this will lead to too much diversity among the branches, and eventually
will not converge. If the parameter is too small, the CD loss function will be
difficult to play the role of regularization. In that case, the value of this loss
function will be very small, making the loss function ineffective. This figure



Online Knowledge Distillation via Multi-branch Diversity Enhancement 13

shows that CD loss has a significant effect on distillation performance within a
proper range.

5 Conclusion

In online knowledge distillation, diversity is always an important and challenging
issue. In this work, we proposed the Feature Fusion Module and Classifier Diver-
sification loss, which effectively enhances the diversity among multiple branches.
By increasing branch diversity and using more diversed semantic information,
we have significantly improved the performance of online knowledge distillation.
Experiments show that our method achieves the state-of-the-art performance
among several popular datasets without additional training and inference costs.
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