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Abstract. Audio-visual event localization requires one to identify the
event label across video frames by jointly observing visual and audio in-
formation. To address this task, we propose a deep learning framework
of cross-modality co-attention for video event localization. Our proposed
audiovisual transformer (AV-transformer) is able to exploit intra and
inter-frame visual information, with audio features jointly observed to
perform co-attention over the above three modalities. With visual, tem-
poral, and audio information observed across consecutive video frames,
our model achieves promising capability in extracting informative spa-
tial/temporal features for improved event localization. Moreover, our
model is able to produce instance-level attention, which would iden-
tify image regions at the instance level which are associated with the
sound/event of interest. Experiments on a benchmark dataset confirm
the effectiveness of our proposed framework, with ablation studies per-
formed to verify the design of our propose network model.

1 Introduction

In real-world activities, visual and audio signals are both perceived by humans for
perceptual understanding. In other words, both visual and audio data should be
jointly exploited for understanding the observed content or semantic information.
Recently, audio-visual event localization [1,2,3,4,5] attracts the attention from
computer vision and machine learning communities. As depicted in Fig. 1, this
task requires one to identify the content information (e.g., categorical labels) for
each frame or segment in an video, by observing both visual and audio features
across video frames. Audio-visual event localization can be viewed as a cross-
modality learning task, which deals with the challenging task that the feature
representations and distributions across visual and audio domains are very dif-
ferent. To explore audiovisual representation, joint learning of multi-modal deep
networks across these two domains have been studied, e.g., classification [6,7],
lip reading [8,9,10] and sound synthesis [11,12]. These works demonstrate that
such audio-visual based models can be applied to several downstream tasks.
However, these models rely on the simultaneous presence of both visual and
audio information. In other words, they cannot deal with scenarios with partial
modality information observed. On the other hand, methods for locating sound
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Fig. 1: Illustration of audio-visual event localization (recognizing video
event with matched visual and audio information). Note that the first column
shows our correct localization outputs with cross-modality co-attention, the 2nd
and 3rd columns show the video and audio inputs across five consecutive frames,
with ground truth visual/audio and event labels depicted in the last two columns.

source models [13,14,15,16] have also been proposed via exploiting mutual in-
formation between audio and visual data. However, these models cannot easily
attend proper regions of instances or distinguish sounding objects from silent
ones.

To this end, we propose a novel deep attention model which jointly performs
visual, temporal, and audio cross-modality co-attention to better associate au-
dio and visual information for video event localization. This is realized by our
proposed audiovisual transformer (AV-transformer) for jointly encoding intra-
frame and inter-frame patches, followed by exploitation of encoded intra-frame
and inter-frame visual and audio features. As a result, one important features of
our proposed attention model is that we not only improve the overall localization
(i.e., classification) performances, it further attends proper regions across video
frames (e.g., the corresponding object of interest in Fig. 1). More importantly,
we will show that our model is not limited to the use of fully supervised video
data (i.e., visual and audio labels annotated for each frame). Learning of our
model in a weakly supervised setting can be conducted, in which only an overall
soft label at the video level is observed during training.

The contributions of this work are highlight below:
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– We propose an audiovisual transformer (AV-transformer) for visual, tempo-
ral, and audio co-attention, with the goal of solving event localization tasks.

– Without attention supervision during training, our model is able to per-
form instance-level attention by jointly encoding intra and inter-frame image
patches and audio features.

– Experimental results demonstrate that our proposed model performs favor-
ably against state-of-the-art approaches in various settings, while instance-
level attention can be additionally achieved by our model.

2 Related Work

Video Classification. Methods based on deep neural networks have shown
promising performances on the task of video classification [17,18,19,20,21,22,23],
which takes visual and temporal information for predicting action or event cate-
gories for input videos. To explore the aforementioned spatial-temporal features
from videos, 3D convolutional networks are utilized, in which 3D architectures
with 3D kernels are considered [24,25,26]. On the other hand, long short term
memory (LSTM) networks [17] has also been employed to observe 2D CNN
features over time. Such recurrent neural networks (RNN) [17,27,28] are alter-
native ways to learn the temporal relation between frames. However, since uses
of RNNs might limit the length of the input video to be observed [27,28], some
works choose to sample frames from the entire video to learn robust reasoning
relational representation [23,20,21,29,30].
Relating Audio and Visual Features. While RNN-based models have been
widely applied to extract spatial-temporal features from videos, such methods
do not consider audio features when modeling temporal information. To ad-
dress this issue, cross-modality learning using audio and visual data are pro-
posed [31,32,33,12,34,35]. For example, Aytar et al. [32] learn the joint represen-
tation from audio-visual data, with the goal to identifying the content using data
in either modality. Arandjelovic and Zisserman [31] also exploit the variety of
audio-visual information for learning better representation in audio-visual cor-
respondence tasks. Furthermore, they [15] visualize sound localization in visual
scenes, which would serve as the bridge connecting between audio and visual
modality. Owens et al. [16] leverage ambient sounds when observing visual con-
tents to learn robust audio-visual representations. The resulting representation
is further utilized to perform video tasks of action recognition, visualization
of the sound sources, and on/off-screen source separation. These studies [16,15]
apparently show that sound source localization can be guided by semantic visual-
spatial information, and verify that these cross-modality features would be ben-
eficial in the aforementioned video-based applications.

Aside from learning audio-visual representation, works like [8,9,10] demon-
strate that such audio-visual based models can be applied to synthesize videos
with face images (e.g., with lip motion), corresponding to the input free-form
spoken audio. Concurrently, some audio-related tasks [16,13,36,34,37] also uti-
lize visual representation to solve speech separation [37,16], musical instruments
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[13,34,38,39,40] and objects [36]. Most of these methods maintain a “mix and
separate” training scenario where the training videos are first mixed and sepa-
rated afterward. For instance, MP-Net [39] initially separates sound with large
energy from mixtures which is composed of any arbitrary number of sounds. the
sound with small magnitude would keep emerging afterwards. Furthermore, by
detecting sounding objects to guide the learning process using unlabeled video
data, Gao et al. [40] propose a framework to bridge the localized object regions
in a video with the corresponding sounds to achieve instance-level audio-visual
source separation. Methods like [38,41] utilize visual motions or body gesture to
separate sound signals, and thus audio-visual source separation can be performed
for different instruments.

Nevertheless, while the aforementioned works show promising results in learn-
ing audio-visual representation, it is still challenging to address audio-visual
event localization, which requires one to identify the event with both visual and
audio modality properly presented, especially in a weakly supervised setting (i.e.,
no frame-level ground truth annotation).

Audio-visual Event Localization. Audio visual event localization aims
to detect events in videos, which requires both audio and visual activities and
events to be identified. Early works [1,42,3,4] are proposed to jointly learn audio-
visual information in each local segments of the input video. However, due to
potential inconsistency between information observed from audio and visual sig-
nals, the data from either modality with insignificant cues may interfere the
event prediction. Therefore, works [2,5] tackle with this issue by disregarding
information from audio/visual data with irrelevant categorical events. Neverthe-
less, the aforementioned methods only consider the correlation between audio
and visual in a video segment at the same time frame. To address this issue,
we further jointly exploit relationship between visual patches and audio signal
from video segments within the same or across time interval, which allows our
model to learn segment-wise events with the guidance of nearby audio and vi-
sual frames. In the next section, we will present and discuss the details of our
proposed co-attention model, which jointly exploits visual, temporal, and audio
data for improved localization and instance-level visualization.

3 Proposed Method

3.1 Notations and Problem Formulation

In this paper, we design a novel deep neural network model for audio-visual
event localization. In order to deal with cross-modality signals observed from
audio and video data with the ability to identify the event of interest, our model
exploits visual information within and across video frames. Together with the
audio tracks, the proposed model not only performs satisfactory localization
performances, it also exhibits promising capability in attending the objects in
the input video associated to that event.
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Fig. 2: Overview of our proposed audiovisual transformer (AV-
transformer) for instance-attended audio-visual event localization.
Note that ⊗ denotes matrix multiplication, and the softmax operation is per-
formed on each row in the AV-transfomer module.

For the sake of completeness, we first define the settings and notations which
will be used in this paper. Following [1], two training schemes for audio-visual
event localization are considered: supervised and weakly-supervised learning.
Given a video sequence with T seconds long, it is split audio a and video v tracks

separately into T non-overlapping segments {at, vt}
T

t=1
, where each segment is

1s long (since the event boundary is labeled at second-level). For the supervised

setting, segment-wised labels denote yt =
{

ytk|y
t
k ∈ {0, 1} ,

∑C+1

k=1
ytk = 1, t ∈ N

}

,

yt ∈ R
C+1, where t denotes the segment index and C denotes total event cate-

gories. We note that, considering the category of background, the total number
of event categories becomes C+1. In the supervised setting, every segment-wise
labels are observed during the training phase.

As for the scheme of weakly-supervised learning, we only access to the video-
level event labels Y ∈ R

C+1 during the training phase (e.g., event category for
a whole video). As for the background event, we take different event categories
from audio and visual contents as inputs (e.g., dog image and goat sound). Note
that predicted video-level event labels are processed by max pooling through

time the segment event labels m̂ = max {mt}
T

t=1
, where m, m̂ ∈ R

C+1 . mt

is the prediction from audio-visual event localization network. For this weakly
supervised setting, while it is less likely to be affected by noise from either
modality at the segment level during training, it also makes the learning of our
model more difficult.

Fig 2 depicts our proposed AV-transformer for audio-visual event local-
ization. It is worth noting that, cross-modality instance-level attention can be
performed by our proposed framework. We now discuss the details of our model
in the following subsections.
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3.2 Jointly Learning Intra and Inter-Frame Visual Representation

Visual attention has been widely utilized in recent VQA and audio-visual related
tasks [43,44,45,46,47,1,14,15]. Although convolution neural networks have been
successfully applied in the above works to identify spatial regions of interest with
impressive results, such attention is typically performed at the pixel level, based
on the information observed for the corresponding tasks (e.g., guidance at the
network outputs) [14,15,13,16,47].

For the task of audio-visual event localization, one needs to identify the video
segments with the event of interest. It would be preferable if one can attend
on the object of interest at the instance level during localization, which would
further improve the localization accuracy.

Previously, [48] considered local context information by feeding image patches
into a LSTM, which can facilitate understanding objects in image scenes for VQA
tasks. [49] introduced non local block for video understanding. These blocks are
used to learn visual context information from image patches through space,
time or spacetime by transformer encoder [50]. Thus, inspired by [48] and [49],
we present a unique audiovisual transformer (AV-transformer) as shown in Fig 3
to encode local context information into proper representation, so that object
instances corresponding to event of interest can be attended accordingly. To
achieve this goal, we input local image patches of successive video frames and au-
dio segments into our audiovisual transformer, which encodes the image patches
of that frame in a sequential yet temporal visual features.

More precisely, we divide a input video frame at time step t into R patches,
and extract the CNN feature for each patch. These visual representations of each
region are denoted as {vt

r, r = 1, 2..., R}, where vt
r ∈ R

1×K represents the visual
features of the rth patch. These visual features and audio features at are served
as the inputs to the audiovisual transformer, which is described below:

ṽt = Trans(vt−1,vt,vt+1,at), (1)

where Trans(.) denotes the audiovisual transformer, the attention block in our
unique audiovisual transformer can be further described as follows:

Attnt
r,i = (θ(vt

r) + at)

t+1
∑

k=t−1

φ(vk
i ) ∀i ∈ R,

ṽt
r =

∑

∀r,i∈R

Softmax(Attnt
r,i)(v

t
r)

(2)

where ṽt
r indicates intra/inter-frame visual representation of the rth image patch

at audio instant t. Attn shows the relation between patch i and j at time t. θ(.)
and φ(.) are multilayer perceptrons. We note that the Softmax(.) operation is
performed at each row. We gather R patches for co-attention visual representa-
tions of video frame at time t, that is, ṽt = {ṽt

1, ..., ṽ
t
R} ∈ R

R×K .
It can be seen that, by advancing our audiovisual transformer, visual repre-

sentation encoded would describe local spatial and temporal information within
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Fig. 3: Audiovisual transformer: visual feature ṽt is encoded by jointly ob-
serving audio at and vt visual context at time t, followed by visual context over
consecutive frames (vt−1, vt and vt+1).

successive video frames. By combing local, temporal and audio information
in this stages, this audiovisual transformer allows improved attention at the
instance-level as later verified.

3.3 Instance Attention for Event Localization

The visual encoders introduced in the previous subsections exploit local spatial
and short-term temporal information. As noted above, to perform frame-level
audio-visual event localization, it would be necessary to integrate the audio
features into consideration.

Some previous works [14,15,13,16] have presented to explore the relationship
between audio and visual scenes. They show that correlations between these two
modalities can be utilized to find image regions that are highly correlated to
the audio signal. However, these works only consider single image inputs and
its corresponding sound signals, which might result in incorrect association due
to overfitting to the visual content. Another concern is that, if more than one
instance visually correspond to the event of interest, how to identify the object
instance would not be a trivial task. Take an audio-visual event in which a person
is playing violin solo in a string quartet for example, it would be challenging to
identify which image region is related to the audio signal, if only a single frame
input is observed.
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Fig. 4: Instance Attention: Observing locally and temporally visual-attended
features ṽt and audio inputs at to output the final co-attention features vt

att

for audiovisual event localization. Note that we remove the subscript r (patch
index) of visual features for simplicity.

To address the above challenge, we propose to perform cross-modality co-
attention over visual, temporal, and audio features. By taking temporal infor-
mation into consideration, our intra and inter-frame visual features would be
associated with the audio features, which would make the localization of audio-
visual events more applicable. To achieve this goal, we advance the concept of
self-attention [50] for computing a soft confidence score map, indicating the cor-
relation between the attended visual and audio features. Different from existing
co-attention mechanisms like [1,14,15,13,48,51], our input visual features jointly
take spatial and temporal information via intra and inter-frame encoding, fol-
lowed by joint attention of audio features. Thus, our co-attention model would
be more robust due to the joint consideration of information observed from three
distinct yet relevant data modalities.

As depicted in Fig. 4, we obtain the r th local visual feature ṽt
r at time t,

where r = 1, ..., R, and our co-attention model aims to produce the weight to
depict how relevant vt

r and at is. The attention score M t
r can be interpreted as

the probability that location r is the right location related to the sound context.
Note that M t

r in our co-attention model is computed by:

M t
r = Softmax(ṽt

r · (a
t)

′

), (3)

where · indicates the dot product and ′ denotes transpose operation. Note that
visual and audio representation are in the same dimension, that is, ṽt

r,a
t ∈

R
1×D. With all local visual features are observed, we pool the associated outputs

by a weighted sum M to obtain the final visual attention representation of the



AV-Transformer 9

image at time t, i.e.,

vt
att =

R
∑

r=1

M t
rv

t
r. (4)

With this cross-modality co-attention mechanism, our visual attention fea-
ture vt

att would exclude local image regions which are irrelevant to the audio
signal, and better bridges between the visual content and the audio concept by
preserving the audio-related image regions. This is the reason why instance-level

visual attention can be performed. We note that, this attention feature vt
att can

be easily deployed in current event localization models (e.g., [1,42]). We will de-
tail this implementation and provide thorough comparisons in the experiment
section.

4 Experiments

4.1 Dataset

For the audio-visual event localization, we follow [1] and consider the Audio-

Visual Event (AVE) [1] dataset (a subset of Audioset [52]) for experiments (e.g.,
Church bell, Dog barking, Truck, Bus, Clock, Violin, etc.). This AVE dataset
includes 4143 videos with 28 categories, and audio-visual labels are annotated
at every second.

4.2 Implementation Details

In this section, we present the implementation details about the evaluation
frameworks. For visual embedding, we utilize the VGG-19 [53] pre-trained on
ImageNet [54] to extract 512-dimensional visual feature for each frame. The fea-
ture map of whole video frames with T seconds long is RT×7×7×512. We obtain
7× 7 channels and 512 dimension with each channel. Each channel is processed
by multilayer perceptrons (MLP) into 128 dimensions. Then, we reshape 7 × 7
channels into 49 channels corresponding to aforementioned total image regionsR.
As for audio embedding, we extract a 128-dimensional audio representation for
each 1-second audio segment via VGGish [55], which is pre-trained on YouTube-
8M [52]. Thus, we have audio features produced in a total of T seconds, i.e.,
R

T×128.
For both fully supervised and weakly-supervised audio-visual event localiza-

tion, we consider frame-wise accuracy as the evaluation metric. That is, we
compute the percentage of correct matchings over all test input frames as the
prediction accuracy. We note that, for fair comparisons, we apply VGG-19 as
the visual backbone and VGGish as audio embedding models.

4.3 Experiment results

Quantitative results. We compare the performance of supervised event local-
ization using baseline and recent models. [1] choose to concatenate audio and
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Table 1: Performance comparisons using baseline or state-of-the-art localization
methods in supervised (i.e., ground truth yt observed for each frame during
training) and weakly supervised (i.e., only ground truth Y observed for train-
ing). The numbers in bold indicate the best results (i.e., methods with our pro-
posed instance attention mechanism). ∗ indicates the reproduced performance
using the same pre-trained VGG-19 feature and the same weakly supervised
setting for a fair comparison.

Method
Accuracy (%)

Fully Supervised
Accuracy (%)

Weakly Supervised

Audio only+LSTM 59.5 53.4
Visual only+LSTM 55.3 52.9
AVEL [1] 71.4 63.7
AVSDN [42] 72.6 68.4
AVEL+Att [1] 72.7 66.7
DAM [2] 74.5 -
Xuan et al.∗[5] 75.1 67.8
Ramaswamy et al.[4] 74.8 68.9
AVIN [3] 75.2 69.4

AVSDN+Ours 75.8 70.2
AVEL+Ours 76.8 68.9

visual outputs from LSTMs and audio-guided visual attention. [42] apply an ad-
ditional LSTM to serve as the final prediction classifier. DAM [2] advance state-
of-the-art results in this task by jointly exploiting audiovisual relevant events.
Note that, DAM requires event labels at each segment for calculating the au-
diovisual segment relevance. Thus, DAM would not be evaluated in the weakly
supervised setting. In this work, we adapt our instance attention visual features
in AVEL and AVSDN. Table 1 summarizes the performances of our methods
and others in fully supervised on the AVE dataset. As for the weakly supervised
setting, we repeat the same experiments and list the performance comparisons
also in Table 1.

From tables presented, it is clear that use of our instance attention features
would increase the localization accuracy. In other words, either observing frame-
level or video-level labels, our proposed audiovisual transformer would properly
extract cross-modality features for improved audio-visual event localization.

Qualitative results. We now present example visualization results in fully su-
pervised settings using the AVEL classifier. The attention output produced by
ours and the method of [1] are shown in Fig. 5 and 6, respectively. We note
that, the current co-attention method [1] (Fig. 5) only considers the patch-
wise relationship between audio notion and visual feature extracted by CNN.
Thus, this mechanism only focuses on local regions but ignores relationship be-
tween neighboring patches. To address this issue, our AV-transformer jointly
exploits intra-frame and inter-frame visual patches and audio information. The
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Fig. 5: Example attention results using AVEL [1] with their attention
model of AVEL [1]: Each row shows a video input with visually attended
regions. Take row 2 and 3 for example, it can be seen that AVEL with their
attention model would incorrectly attend the regions of human voice which was
not actually associated with the sound of human voice.

Fig. 6: Example attention results using AVEL [1] with our instance
attention model: Each row shows a video input with visually attended regions.
It can be seen that our model produced satisfactory attention outputs with the
corresponding audio-visual events.
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encoded visual features derived from our AV-transformer preserve not only local
patches information but neighboring patches with the same semantics. Further-
more, the inter-frame representation can facilitate the smoothness of attended
regions across frames. We note that, in the second and third rows, there were
several non-interested people in the background. It would distracted the atten-
tion. Our method could attend on the proper regions under the similar object in
the scene. In the forth and fifth rows, there were people cooking and riding mo-
torcycle. Our model is able to not only attend on sounding objects but precisely
preserve edge of objects.

The above quantitative and qualitative result successfully verify the effec-
tiveness and robustness of our proposed cross-modality co-attention model. It
not only produces improved audio-visual event localization result; more impor-
tantly, it is able to attend visually informative local regions across frames, and
performs instance-level visual attention. This is also the reason why improved
event localization performances can be expected.
User studies. To evaluate the quality of qualitative results , we invite 20 peo-
ple to watch the video with different attention results from audio-guided [1],
audio-visual object localization [15,14], and ours. The participants voted the
best results of three samples for each instance. We observe 72.2% (Ours), 16.7%
([1]), and 11.1% ([15,14]). These results would also support our quantitative
comparisons in Table 1.

4.4 Ablation studies

In this section, we verify the design and contributions of our audiovisual trans-
former and different visual co-attention mechanisms [1,15,14]. This would sup-
port the learning and exploitation of intra and inter-frame visual representation
for audio-visual event localization.
Inter-frame visual representation. As to study the effects of learning inter-
frame visual representations for instance attention, we consider different methods
to model such inter-frame visual features. To model across frames visual repre-
sentation, we utilize 3D convolutional networks [24] (Conv3D) and LSTM [56]
network in our work. We note that, for standard Convolutional Neural Net-
work [57] and the recent I3D Network [26], both based on consecutive video
frames and optical flow, are also able to perform such modeling. In this ablation
study, for fair comparisons, we only consider Conv3D and LSTM which do not
require calculation of optical flow information. As for Conv3D, the inter-frame
visual features can be modeled by Conv3D directly. However, LSTM only re-
ceives 1D embedding over times. Thus, we use the same location at every video
frame as 1D embedding vector sequence, then the LSTM is applied to model
temporal feature until every location across frames are processed.

We note that, the visual features derived from multilayer perceptron (MLP),
Conv3D, LSTM and our AV-transformer are able to be utilized in current co-
attention [1,14,15] methods. There are two typical co-attention mechanisms:
audio-guided (AG) [1] and audio-visual object localization (AVOL) [15,14] co-
attention. To be more specific, AVOL measures the correlation between visual
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Table 2: Comparisons of recent audio-visual co-attention mechanisms [1,15,14]
with integrating different visual representation in fully supervised setting (i.e.,
all ground truth yt observed during training). The numbers in bold indicate the
best results (i.e., with our instance attention).

Visual
Representation

Classifier

MLP LSTM AVSDN AVEL

MLP+AG 64.0 69.0 73.1 72.7
MLP+AVOL 65.2 70.1 73.7 74.8
Conv3d+AG 64.9 71.0 73.8 75.2
Conv3d+AVOL 64.5 69.4 73.6 73.6
LSTM+AG 61.2 67.7 72.6 74.3
LSTM+AVOL 66.9 70.5 73.2 75.4
AV-Transformer+AG 65.9 67.2 74.0 74.1

Ours 67.6 71.4 75.8 76.8

patches and audio data based on cosine similarity, while AG determines the as-
sociated correlation via learning a neural net. Note that, we use AVOL in our
instance attention. Therefore, we not only present different methods to encode
inter-frame visual features but also test them on the two co-attention methods.
As shown in Table 2, our instance attention performs favorably against other
models with inter-frame visual encoding. In this table, the suffix of visual rep-
resentation is the co-attention method (e.g., AG and AVOL). It is also worth
noting that, our method also performed against different co-attention mecha-
nisms. Another advantage of our approach is that, since our inter-frame visual
features are calculated by intra-frames regardless the fixed kernel size, whose
computation cost is lower than the models using Conv3D and LSTM. Based on
the above results and observations, we can also confirm the jointly learning of
intra and inter-frame visual features would be preferable in our cross-modality
co-attention model, which would result in satisfactory event localization perfor-
mances.

Audiovisual representation of AV-transformer. As to study the effects of
jointly learning intra-frame and inter-frame visual representations in our audio-
visual transformer. Besides, we exploit the audio interaction between each visual
patch. As shown in Table 3, intra shows the only usage of time t frame in our
AV-transformer, which means only k = t in Eq. (2) without audio feature at.
Inter indicates three successive time step k = t− 1, t, t+1, and audio illustrates
audio feature at in Eq. (2). Table 3 verifies the effectiveness of jointly consid-
ering spatial, temporal visual information and audio signals for cross-modality
co-attention for audio visual event localization to better associate audio and
visual information for the task.
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Table 3: Comparisons of audiovisual representation in our AV-transformer. We
explore different interactions on across frames, single frames and audio in fully
supervised setting (i.e., all ground truth yt observed during training). The num-
bers in bold indicate the best results (i.e., our full model of instance attention).

Audiovisual
Representation

Classifier

MLP LSTM AVSDN AVEL

intra 65.8 66.9 72.3 75.0
intra+inter 66.3 70.4 72.2 75.4
intra+audio 67.2 69.3 73.9 74.8
inter+audio 66.1 66.8 72.1 74.3

Ours 67.6 70.7 75.8 76.8

5 Conclusion

We presented a deep learning framework of Audiovisual Transformer, with the
ability of cross-modality instance-level attention for audio-visual event local-
ization. Our model jointly exploits intra and inter-frame visual representation
while observing audio features, with the self-attention mechanism realized in
a transformer-like architecture in supervised or weakly-supervised settings. In
addition to promising performances on event localization, our model allows
instance-level attention, which is able to attend the proper image region (at the
instance level) associated with the sound/event of interest. From our experimen-
tal results and ablation studies, the use and design of our proposed framework
can be successfully verified.
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