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Abstract. This paper proposes a neural network to learn global pa-
rameters and extract local features for color enhancement. Firstly, the
global parameters extractor subnetwork with dilated convolution is used
to estimate a global color transformation matrix. The introduction of
the dilated convolution enhances the ability to aggregate spatial infor-
mation. Secondly, the local features extractor subnetwork with a light
dense block structure is designed to learn the matrix of local details.
Finally, an enhancement map is obtained by multiplying these two ma-
trices. A novel combination of loss functions is formulated to make the
color of the generated image more consistent with that of the target.
The enhanced image is formed by adding the original image with an en-
hancement map. Thus, we make it possible to adjust the enhancement
intensity by multiplying the enhancement map with a weighting coef-
ficient. We conduct experiments on the MIT-Adobe FiveK benchmark,
and our algorithm generates superior performance compared with the
state-of-the-art methods on images and videos, both qualitatively and
quantitatively.

1 Introduction

Color enhancement boosts the picture quality of an image or video by adjust-
ing the global contrast, intensifying the local details, and generating more vivid
colors. Due to low light, poor shooting equipment, bad weather conditions and
other factors, the colors of images and videos may fade and distort, which seri-
ously affect the visual quality. Using image processing software such as photo-
shop, many people like to manually modify image color to subjectively adjust
the contrast, brightness, saturation, hue, exposure and etc. Different image con-
tents need specific operations for maximize its visual quality. If all images are
processed individually, it is time-consuming and the color coherence between
adjacent video frames would be disrupted. For these reasons, color enhancement
for both images and videos is a challenging and popular task in computer vision.

On the other hand, in the literature many algorithms have been developed
to enhance colors automatically. The traditional algorithms [1][2] enhanced im-
ages from the spatial domain or frequency domain by exploiting techniques, such
as histogram equalization, retinex, and wavelet multi-scale transform. However,
these methods cannot enhance image details effectively. Deep learning based
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methods are widely investigated for this task in recent years [3][4], which can
achieve better performance compared with traditional methods. There are two
mainstream methods: one is to learn the local features; the other is to esti-
mate the global transformation parameters. For the method of learning local
features, it is indeed effective to obtain good effects, but improper network de-
sign may cause flickering problems in videos, so postprocessing is needed to keep
the brightness consistency between video frames. While for the method of esti-
mating global parameters, compared with the method of learning local features,
it can better maintain the consistency in video processing, but a global matrix
may cause the inadequate enhancement of the local contrast, making the picture
details in dark and bright regions less visible.

Therefore, we propose a novel deep model for tackling these problems, which
obtains superior color enhancement effects by combining the global parameters
and local features. The design of our network considers its practical applicability.
The input can be of arbitrary resolution and the color enhancement intensity can
be adjusted conveniently by tuning a single parameter. Estimating a global color
transformation matrix as in [5] is appealing for its computational efficiency and
the ability to coherently enhance the global contrast of adjacent video frames.
And image details are also considered by learning local features.

1. In order to extract global parameters, a multi-branch network with multi-
scale dilated convolution layers is proposed to enlarge the receptive field so as
to get a more accurate global transformation matrix.

2. For extracting local features, a network with a light dense block is em-
ployed, which can strengthen the feature propagation and enhance the local
contrast.

3. Considering both structure and color similarity, we propose a novel com-
bination of loss functions, including a L2 loss in CIElab color space, a structure
similarity (SSIM) loss, and an improved color loss.

Our algorithm can enhance the picture color and contrast both globally and
locally. We conduct subjective and objective experiments to prove its superiority
over the state-of-art methods. Furthermore, the proposed method can be applied
on video, since it can effectively avoid flicker and maintain the color consistency
of adjacent video frames.

2 Related Work

For color enhancement, many algorithms have been proposed to improve bright-
ness, contrast and saturation. Converting to HSV color space is one of the ef-
fective approaches [6][7]. HSV represents hue, saturation and brightness respec-
tively. The HSV space can subtly separate each feature, so it is more convenient
to process each factor and obtain good enhancement results. However, a global
enhancement may cause the loss of local details.

Example-based enhancement methods are also widely investigated. Wang et
al. [8] proposed a method to discover mathematical relationships and to learn
the nonlinear mappings of color and tone from a pair of corresponding images
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before and after adjustments. Lee et al. [9] presented an unsupervised algorithm
by selecting several styles from subsets and transforming the color of the input
into the style and tone of selected exemplars. However, selecting suitable example
images and learning the mapping between inputs and example images are tricky
and difficult problems.

The generative adversarial networks (GAN) based approach is able to achieve
good results [4]. Hui et al. [10] designed lightweight local residual networks that
can be applied on smartphone cameras. Specifically, transformation of teacher-
student information is introduced to maintain the realism of the outputs. Chen
et al. [11] proposed a global feature network, which used Wasserstein GAN
(WGAN) to speed up the convergence. Two-way GANs exploited individual
batch normalization layers for each generator which can adjust to their own dis-
tributions easily. Chai et al. [5] trained an unsupervised model which applied
the cycle consistency of CycleGAN [12] and also employed individual batch nor-
malization layers.

Deep reinforcement learning can be applied for this task as well. Park et
al. [13] used reinforcement learning to give a guidance of several image enhance-
ment operations, and a distort-recover scheme was proposed for unpaired images
training. The advantage of these methods is that the unsupervised learning uses
unpaired images for training which are more accessible than paired images. How-
ever, it is hard to converge, and is subject to color distortions.

Recently, investigation of using supervised CNN for color enhancement are
thriving. Since training on matched pairs is more accurate and controllable, our
algorithm also uses paired images for training. Chen et al. [14] proposed to use
dilated convolution and individual batch normalization on a fully convolutional
network to learn the mapping from the input to the output. Ignatov et al. [15]
collected a dataset that consists of real photos captured from different cameras
and trained an end-to-end network to generate the enhanced images for mobile
devices. Huang et al. [3] proposed a range scaling layer based on UNet [16] to
extract features at different resolutions so as to reduce the output artifacts. Isola
et al. [4] also used UNet [16] to learn the mapping between the target and the
input.

Rather than directly generating an enhanced image, there are approaches
that use deep neural networks to predict intermediate color transformation ma-
trices, which then are applied on the input image to produce the output [5][17].
Gharbi et al. [17] introduced the HDRNet which predicted the intermediate color
transformation matrices in a low resolution bilateral grid, and then used bilat-
eral slicing to up-sample the grid into the orginal resolution. Bianco et al. [18]
proposed to predict the coefficients of local polynomial transformations that are
applied to the input image to remove artistic photo filter. Based on previous
research, Bianco et al. [19] later designed the novel CNN that estimates the
coefficients to be used to the basis function (including polynomial, piecewise,
cosine and radial) to get the color transformation. Afifi et al. [20] trained several
pairs of incorrect white-balanced images and computed nonlinear color correc-
tion matrices that map the incorrect colors to the target, and finally their cor-
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responding correctly white-balanced images are obtained by weighting multiple
effects. Wang et al. [21] developed a network to predict a mapping between the
input image and its illumination, and the input was combined with the illumi-
nation map for color enhancement. This method can successfully cover different
photographic adjustments. Biano et al. [22] proposed to use two neural net-
works. One for a global tone enhancement, while the other for local adjustment
to spatially align the input and the ground truth. Maron et al. [23] introduced
a novel approach to automatically enhance images using learned parameters of
three spatial filters. Chai et al. [5] presented a supervised model that used the
CNN to predict color transformation parameters. And then the parameters are
multiplied by the color basis vector for each pixel to get the enhanced RGB
value.

3 Proposed Method

3.1 Overview

We develop our method based on [5] with modifications to enhance the output
both globally and locally. Specifically, an enhancement map M is calculated by
our neural network, and then the enhancement map is added on the input image
to obtain the enhanced image. The process can be simply defined as:

O = M + I (1)

where I is the input with RGB channels, O is the output, M is the enhancement
map, M ∈ R

w×h×3, w and h are the width and height of the image. Furthermore,
by using Eq. (2) which multiply M by a weighting factor, we can easily control
the color enhancement intensity:

O = α ·M + I (2)

where α is the weighting coefficient. If α > 1, the enhancement strength would
be enlarged; if 0 < α < 1, the strength would be reduced. This coefficient can be
adjusted according to different scenes or videos. In this paper, experiments are
performed by setting α = 1, which shows the original intensity learned from the
training set. The calculation of the enhancement map consists of two parts. One
is to estimate the matrix of the global parameters from the global parameters
extractor subnetwork, which is defined as P . The input of P is Ids,which is a
downsampled version of the input image I. The output of P is a global color
transformation matrix θ ∈ R

10×3, so the inference process of P can be expressed
as:

θP = P (Ids) (3)

The structure of the global parameters extractor subnetwork P is elaborated
in Section 3.2. The other part is to estimate the local features from the local
features extractor subnetwork. We use F as the notation for this subnetwork.
The input of F is defined as IF ∈ R

w×h×10, which contains the quadratic color
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basis vectors of I. pF (x, y) is the quadratic color basis vector at coordinate
(x, y) in IF , and p(x, y) represents RGB values at coordinate (x, y) in I, i.e.,
p(x, y) = [R(x, y), G(x, y), B(x, y)]. Thus, pF (x, y) can be defined as:

pF (x, y) = [R(x, y), G(x, y), B(x, y), R(x, y)2, G(x, y)2, B(x, y)2,

R(x, y) ·G(x, y), G(x, y) ·B(x, y), B(x, y) ·R(x, y), 1]
(4)

which is also used in [5][18], in order to make it easy to preserve the details
in the input [18]. The output of the local feature extractor subnetwork F is
θF ∈ R

w×h×10, which has the same size as its input. The inference process of F
can be expressed as:

θF = F (IF ) (5)

We elaborate on the structure of the local feature extractor subnetwork in Sec-
tion 3.3. Finally, the enhancement map M is defined as:

M = θP θF = F (IF )P (Ids) (6)

In order to make the structure and color of the output as close as possible to the
ground truth, we propose a loss function which consists of three loss terms as to
be described in Section 3.4. The overall architecture of our algorithm is shown
in Fig. 1.

Fig. 1. The architecture of our color enhancement network.

3.2 Global Parameters Extractor Subnetwork

To extract the global parameters, we augment the multi-branch network of [5]
with dilated convolution as shown in Fig. 2. The whole global parameters ex-
tractor subnetwork consists of five branches, and each branch has an identical
structure.

Each branch consists of four parts, including feature extraction, context ag-
gregation, feature extraction and parameter compression. Firstly, the input im-
age is downsampled to 256 × 256 × 3. The first layer consists of 5 × 5 filtering
followed by Leaky Relu, and the second and third layers use 3×3 filter with stride
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2. Every subsequent convolutional layer is followed by Batch Normalization and
Leaky Relu.

Next, the 32 × 32 × 48 feature map are expanded to 32 × 32 × 96 after the
context aggregation. Three dilated convolution layers are added in the middle
of the architecture with a kernal size of 3× 3, and the dilation rates of 1, 2 and
3 separately. The special combination of three dilation rates has been proved to
be helpful and defined as the hybrid dilated convolution (HDC) framework [24].
It can amplify the receptive fields of the network, aggregate global information,
and decrease the gridding issue produced by the normal dilated convolution
operation.

After that, the 32×32×96 feature maps are further convolved by 3×3 filters
to generate a 8 × 8 × 192 tensor. Finally, the dimensions of the parameters are
compressed. An average pooling with a kernel size of 8 decreases the 8× 8× 192
feature maps to a 1×1×192 tensor, followed by a 1×1 filter, and two Leaky Relu
layers. Subsequently the 1× 1× 192 tensor is processed by two fully connected
layers, a leaky relu and a softmax layer to generate a 1 × 1 × 30 tensor. Since
there are five identical branches, we obtain five 1 × 1 × 30 tensors which are
averaged and rearranged to generate the final 10× 3 global color transformation
matrix θP .

Fig. 2. The architecture of the global parameters extractor subnetwork.

3.3 Local Features Extractor Subnetwork

In order to extract features in different scales and overcome the vanishing gra-
dient, deep neural networks with skip connections are proposed, such as UNet
[4], ResNet [25] and DenseNet [26]. Empirically we adopt the DenseNet as the
local feature extractor subnetwork. But unlike the original DenseNet which has
three dense blocks, our neural network only uses one dense block. And the rea-
son for adopting only one denseblock in our network is based on the following
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considerations: first is the complexity of the network, and the second is the small
amount of datasets. An overly complex network may cause overfitting.

Here is a detailed description of the local features extractor subnetwork F ,
which is shown in Fig.3. First, IF goes through a convolutional layer to expand
the dimensions of IF . And then the matrix enters the dense block. In the dense
block, a bottleneck [26] layer with kernel size 1× 1 is used before a convolution
with kernel size 3× 3, which is proposed to fuse features in DenseNet [26]. Such
combination loops 3 times, which is far less than the times of each dense block
in DenseNet. Therefore, a light dense block is presented in our network. In a
denseblock, the output of each 3 × 3 convolution is the concatenation of the
inputs of all convolutional layers before and the output of this convolutional
layer. Finally, the feature matrix goes through the translation layer with kernel
size 1 × 1 to reduce dimension and obtain θF . Every subsequent convolutional
layer is followed by Batch Normalization and Relu layers. These layers are not
shown in Fig. 3, in order to illustrate the convolutional layers of our light dense
block more clearly and make comparisons with alternative architectures more
easily. In Section 4.3, we will analyze the selection and adjustment of our local
features extractor subnetwork.

We compare the results of whether to use local features extractor subnetwork,
in Fig. 4. When subnetwork is not used, θF = IF , the algorithm is similar to
PCE [5]. It can be clearly seen that without F subnetwork, the results have
obvious enhancement effects, but some details at the bright area are lost, such
as the silver decoration of the camera and the texture of the hand in the red box
in Fig. 4(a), and the details of ceiling in Fig. 4(b). These features are very clear
in the input, but after enhancement, local details are missing. It can be seen
much clearer from the residual images that with the utility of the local features
extractor subnetwork, the contents of bright areas are kept and the information
of dark areas is restored.

3.4 Loss Function

We combine three loss terms to make the generated image as close as possible
to the ground truth. Firstly, we use the L2 loss in the CIElab color space which
correlate better with the human perception of color differences than other color
spaces, such RGB, XYZ, YUV and so on. CIElab was derived from CIEXYZ.
And the intention behind CIElab was to create a space that can be computed
via simple formulas from CIEXYZ space but is more perceptually uniform then
CIEXYZ. I is the input with RGB channels, O is the output, J is the target, and
Olab is the output transformed into the CIElab color space, J lab is the target
transformed into the CIElab color space. The L2 loss term is given by:

L2 =
1

N

∑

i

‖Olab

i − J lab

i ‖2 (7)

N is the number of pixels, and i is the pixel index. We further add an color loss
using the angular difference to measure the color similarity [21]. The RGB values
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Fig. 3. The architecture of the local features extractor subnetwork.

of a pixel can be regarded as a 3D vector, and when two pixels are similar, the
angle of the two RGB vectors approaches 0◦, and its cosine value is close to 1.
Therefore, the cosine of the angle should be as close as possible to 1. The color
loss is defined as:

Lcolorloss =
1

N

∑

i

1− cos∠(Oi, Ji) (8)

Where ∠(, ) means the angle of two vectors.
Besides considering the color similarity, we also pay attention to the structure

of the image by using a SSIM loss [27] as defined in Eq. (9):

LSSIM = 1− SSIM(Oi, Ji) (9)

Finally, the total loss is given by:

L = ω1L2 + ω2Lcolorloss + ω3LSSIM (10)

where ω1, ω2, ω3 are the weighting coefficients. The functionality of each loss
function is analyzed in Section 4.2.

4 Experiments

4.1 Training Details

Training Datasets MIT-Adobe FiveK [28] is a high-quality dataset for color
enhancement containing a collection of five sets of retouched image pairs by ex-
pert A/B/C/D/E. Like most previous methods [5][13][21], we select 5000 images
retouched by Expert C as the ground truth. We randomly select 250 image pairs
for validation and test, each including 125 pairs, and use the remaining 4750
images for training.
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(a)

(b)

Fig. 4. The effects of the utilization of the local features extractor subnetwork. From
left to right (1) Input (2) Without the F subnetwork (3) With the F subnetwork (4)
Residual image.

Experiment Setting We train the proposed network using the Adam optimizer
on a Nvidia Tesla P40 GPU with 24GB of memory. The batch size is 20 and
the base learning rate is 9× 10−4. The learning rate linearly decays to 2× 10−6,
and the training stops at the 500th epoch. ω1, ω2, ω3 in the loss function (11)
are set to 1, 200, and 10 respectively. PSNR and SSIM are used to evaluate the
performance of our algorithm. Higher PSNR and SSIM values indicate better
performance. For features extractor subnetwork, the input channels of the dense
block is 24, and the growthrate is set as 12.

4.2 Ablation Study

Dilated Convolution Dilated convolution has the effect of expanding the re-
ceptive field. The specific role in the global parameters extractor subnetwork
is further distinguished through the subjective effect. With dilated convolution,
the details of the enhanced image are kept better. For example, in the red area
of Fig. 5, without dilated convolution, the texture of the mountain is less visible.

Loss Function L2 loss, SSIM loss, and the improved color loss are used in
this paper. Generally, we found that using SSIM can enhance the overall image
quality, but in some cases, as illustrated by Fig. 6, the color diversity becomes
more obvious. When using the improved color loss term, the color consistency
can be improved, as shown in the fourth column of Fig. 6.
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Fig. 5. The texture of the mountain is clearer when using the dilated convolution.

4.3 Alternative Architecture

For the local feature extractor network, we compare three different architectures.
One of the structures is our proposed subnetwork F with the light dense block,
which is illustrated in Section 3.3. Removing all of the skip connections in the
light dense block, another structure is obtained, which is denoted as F ′. For a
fair comparison, the number of channels of each 3×3 convolutional layer matches
that of the architecture. We also compare the setting that using the feature map
IF = θF directly without the local feature extractor subnetwork. The average
MSEs of the validation set are shown in Table 1. It can be seen that the light
dense block network has the lowest MSE and compared to F ′ it has a lower
complexity, so we finally choose it as the local features extractor subnetwork in
this paper.

Table 1. The average MSE values of different local feature extractor network.

Network structure Without F F
′ Proposed

MSE 8.954 8.602 8.553

4.4 Comparison with the State-of-the-Art Methods

We compare our algorithm with eight state-of-the-art methods. There are six
deep learning based methods, including HDRNet [17], Deep Photo Enhancer
[11], Pix2pix [4], DPED [14], the supervised model in PCE [5] and RSGU [3].
For fair comparison, the same training set are used for these models. The other
two methods are traditional algorithms, including NPEA [1] and SIRE [2].

Objective and subjective performance Table 2 shows the PSNR and SSIM
of different methods. We only compare with deep learning methods, because
these methods need ground truth. While for traditional algorithms, the pur-
pose is to recover more details and colors in dark or bright scenes, sometimes
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(a)

(b)

Fig. 6. Comparison with different loss functions. From left to right (1) Input (2) L2

loss only (3) L2+SSIM loss (4) Total loss.

these results show more content, but they are far from Expert-retouched im-
ages, resulting in extremely low values of PSNR and SSIM. While for DPED,
the pre-training model is used. Moreover, because the training set of DPED is
inconsistent with the training set of our algorithm and other comparison meth-
ods. So it is unfair to compare these two indicators with DPED [14], NPEA
[1], SIRE [2], which cannot reflect the real effect of these algorithms. With the
same dataset, our algorithm exhibits the highest PSNR and SSIM values. The
objective indexes of HDRNet [17] are the worst, while PCE [5] and Deep Photo
Enhancer[11] are relatively better.

Table 2. Objective performance of the deep learning methods in comparison.

Method PSNR SSIM

HDRNet[17] 19.138 0.860
Deep Photo Enhancer[11] 23.486 0.935
Pix2pix[4] 20.581 0.890
PCE[5] 24.127 0.905
RSGU[3] 20.818 0.905
Proposed 24.684 0.948
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Subjective comparison is given in Fig. 7. It can be seen from the comparison
that our algorithm can not only maintain and restore more details, but also have
brighter colors and higher contrast. For example, the sky in Fig. 7(a), our method
is bluer and more vivid, and the contrast of the mountain is higher; the enlarged
part of the white flowers of our algorithm in Fig. 7(b) still maintains excellent
details; the color and contrast of the squirrel and background in Fig. 7(c) are
superior to the effect of other algorithms.

User Study We conducted a user study and adopted pairwise comparisons with
seven state-of-the-art methods, which included 20 images and 58 participants.
We compared the paired results of our algorithm and the state-of-art method,
and each set of images was compared 7 times. While testing, the paired-images
were displayed side-by-side, allowing users to choose which one they prefer, ac-
cording to colors and details of the image. The 20 images were randomly selected
from our test set. The results of user study are shown in Fig. 8. Our algorithm
is more frequently picked as the better one compared with other state-of-the-art
methods.

Application on Video Our algorithm can also be applied on videos. Light-
room is a popular image processing software which can also process videos. We
use the Lightroom Auto-Tune feature to enhance the images. We downloaded
4K videos from Youtube, and compared the enhancing performance of our al-
gorithm and the lightroom. Our algorithm shows superior vivid results, and the
enhanced colors of adjacent frames stay consistent. Processed videos are attached
as supplementary materials.

5 Conclusion

We introduced a novel approach for color enhancement that the enhancement
map is learned using an end-to-end neural network, and added to the input to
obtain an enhanced image. The enhancement intensity can be adjusted by tun-
ing a coefficient, predefined or automatically determined according to the image
or video content. To generate the enhancement map, the extraction of global
parameters and local features are two important components. In the global pa-
rameter extractor network, a multi-branch network is used, and the operation of
multi-scale dilated convolution layers is introduced to aggregate global informa-
tion. We also design a network with a light dense block that can help to enhance
local contrasts. Furthermore, we present a new loss function, combining the im-
proved color loss with a L2 loss and a SSIM loss. We conducted experiments
to compare our algorithm with the state-of-art methods. Our algorithm shows
superior performance evaluated by both objective metrics and a subjective user
study.
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(a)

(b)

(c)

Fig. 7. Subjective quality comparisons with the state-of-the-art methods. From left to
righ, from top to bottom (1) Input (2) Proposed (3) Deep Photo Enhancer (4) HDRNet
(5) PCE (6) Expert (7) RSGU (8) DPED (9) NPEA (10) SIRE.
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Fig. 8. User study results.
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