
MTNAS: Search Multi-Task Networks for

Autonomous Driving

Hao Liu1, Dong Li2, JinZhang Peng2, Qingjie Zhao1, Lu Tian2, and Yi Shan2

1 Beijing Institute of Technology, Beijing,CHN {3120181007,zhaoqj}@bit.edu.cn
2 Xilinx Inc. Beijing,CHN {dongl,jinzhang,lutian,yishan}@xilinx.com

Abstract. Multi-task learning (MTL) aims to learn shared representa-
tions from multiple tasks simultaneously, which has yielded outstanding
performance in widespread applications of computer vision. However, ex-
isting multi-task approaches often demand manual design on network ar-
chitectures, including shared backbone and individual branches. In this
work, we propose MTNAS, a practical and principled neural architec-
ture search algorithm for multi-task learning. We focus on searching for
the overall optimized network architecture with task-specific branches
and task-shared backbone. Specifically, the MTNAS pipeline consists
of two searching stages: branch search and backbone search. For branch
search, we separately optimize each branch structure for each target task.
For backbone search, we first design a pre-searching procedure t1o pre-
optimize the backbone structure on ImageNet. We observe that searching
on such auxiliary large-scale data can not only help learn low-/mid-level
features but also offer good initialization of backbone structure. After
backbone pre-searching, we further optimize the backbone structure for
learning task-shared knowledge under the overall multi-task guidance.
We apply MTNAS to joint learning of object detection and semantic
segmentation for autonomous driving. Extensive experimental results
demonstrate that our searched multi-task model achieves superior per-
formance for each task and consumes less computation complexity com-
pared to prior hand-crafted MTL baselines. Code and searched models
will be released at https://github.com/RalphLiu/MTNAS.

Keywords: Multi-task learning, neural architecture search, autonomous
driving

1 Introduction

Multi-task learning (MTL) [1] is one of the popular research topics among a
broad family of machine learning algorithms, which aims at learning multiple
tasks simultaneously. By learning shared representations across different tasks,
MTL can further improve the performance for each task and reduce model com-
plexity for inference. With the remarkable success of deep Convolutional Neural
Networks (CNNs), Multi-task networks have shown outstanding performance in
widespread applications of computer vision such as joint learning of face detec-
tion and landmark prediction [2], object detection and instance segmentation [3],

https://github.com/RalphLiu/MTNAS

2 Hao Liu et al.

pose estimation and action recognition [4]. MTL also has great significance in
practical systems (e.g. autonomous driving) where both high performance and
fast inference speed are required, especially on the resource-constrained devices.

However, most of the existing MTL methods directly use hand-crafted net-
work architectures for joint learning of multiple tasks. This might be sub-optimal
because: (1) The backbone is typically designed for large-scale image classifica-
tion tasks (e.g., ImageNet). Thus the backbone architecture is not adaptive for
different downstream tasks;(2) The branch often consists of simple architectures
(e.g., a few stacked convolution or deconvolution layers), which may not suffi-
ciently transfer the shared representations to each specific task.

Recently, neural architecture search (NAS) has achieved great progress by
automatically seeking the optimal network architectures, instead of relying on
expert knowledge and tedious trials. Much effort has been made on employ-
ing NAS for different tasks such as image classification [6,7,8,9], object detection
[10,11,12] and semantic segmentation [13,14]. However, there have been little con-
siderations on NAS for MTL in a unified framework. It is infeasible to simply ap-
ply existing NAS methods for jointly learning multi-task networks. First, proxy
datasets/tasks are often required for searching architectures [6,7,8,9], which are
often based on relatively small input and aim at classifying images only. The re-
sulting structure is likely to be sub-optimal for other tasks, especially for those
requiring high-resolution inputs. Although recent work [15] has been explored
by directly optimizing the target task, it mainly focuses on the single basic clas-
sification task. Second, for more challenging tasks beyond classification, existing
NAS algorithms only search part of networks, e.g., backbone [11,13], FPN struc-
ture [10] and ASPP architecture [14], which would not suffice the requirement
of overall optimization for multiple tasks. Third, conventional ImageNet pre-
training procedure is usually adopted to learn initialized network weights but
can not optimize the network architectures for target downstream tasks.

To alleviate these problems, we propose a multi-task neural architecture
search (MTNAS) algorithm in this work. We aim to optimize an overall network
architecture for MTL with two stages: branch search and backbone search. For
branch search, we optimize each branch architecture for each task separately.
We observe that searching for task-specific branch architectures helps better
adapt the feature representations to each target task. For backbone search, our
goal is to optimize task-shared backbone architecture for better learning gen-
eral shared representations with different tasks. To this end, we first design a
pre-searching procedure to learn the initialized backbone architecture and fur-
ther optimize it under the overall multi-task guidance. Unlike ImageNet pre-
training, our pre-searching procedure can optimize architecture parameters and
network weights simultaneously, offering good initialization for subsequent opti-
mization. Our MTNAS pipeline is built on the recent differentiable NAS algo-
rithms [9,16,17] by searching for the optimal computation cells in both of branch
and backbone search stages.

We apply the proposed MTNAS approach for joint learning of object de-
tection and semantic segmentation for autonomous driving using both single

MTNAS: Search Multi-Task Networks for Autonomous Driving 3

and mixed datasets. We focus on automatically generating light-weight multi-
task networks for fast inference speed and high performance in such practical
scenarios. Experimental results consistently demonstrate our MTNAS method
performs favorably against the existing single-task / multi-task learning base-
lines. In particular, on the challenging mixed-set benchmark (i.e., combination of
CityScapes, Waymo and BDD100K), our searched multi-task model, with 65%
FLOPs only, achieves 3.5% higher mAP on detection and 2.0% higher mIoU
on segmentation compared to the hand-crafted MTL counterpart. Besides, com-
pared to the conventional ImageNet pre-training which only updates the network
weights, our pre-searching procedure achieves superior performance (e.g., 1.2%
gain on segmentation) by simultaneously optimizing network weights and archi-
tectures.

The main contributions of this paper are summarized as follows:

• We propose a practical and principled neural architecture search algorithm
beyond single-task to multi-task learning. We search for the complete ar-
chitectures instead of sub-optimal parts of network structure by optimizing
task-specific branches and task-shared backbone.

• We develop a simple but effective pre-searching procedure by simultaneously
optimizing the network weights and architectures for backbone. Such scheme
serves as a better alternative of conventional ImageNet pre-training and pro-
vides good initialization of backbone structure for subsequent optimization.

• We apply the proposed MTNAS method to the joint learning of object
detection and semantic segmentation in the autonomous driving scenarios.
Extensive experimental results demonstrate the superiority of our searched
multi-task model over the existing hand-crafted MTL baselines in terms of
recognition performance and computation complexity.

2 Related Work

2.1 Multi-Task Learning

Multi-task learning is a learning framework where multiple tasks are learned
simultaneously [1]. By sharing commonalities across different tasks, MTL has
widely shown promising performance for various applications [2,3,4]. Owing to
the shared architectures and weights, multi-task networks can also improve the
inference efficiency compared to separate models of each task.

One line of recent research on MTL is balancing different tasks [18,19] or
seeking solutions with trade-offs between different tasks [20]. These works either
learn fixed optimal weights or learn a set of optimal solutions. Another line of
literature on MTL is investigating the optimal strategies of sharing network ac-
tivations or parameters across different tasks [21,22,23]. Our approach is orthog-
onal to these strategies as we focus on searching optimal network architectures
by jointly learning multiple tasks in this work.

Recently, some work has attempted to use one single network architecture for
MTL by exploiting network redundancies to pack multiple tasks [24], developing

4 Hao Liu et al.

multiple internal virtual models with different configurations for different tasks
[25] or dynamically selecting the optimal model from a pool of candidates [26].
However, these approaches are often built for different classification tasks (e.g.,
ImageNet classification, scene classification, and fine-grained classification). Dif-
ferently, our method can address more challenging tasks beyond classification.

Previous work that is mostly related to our method includes [27,28]. The
work of [27] builds a self-organized neural network by dynamically composing
different function blocks for each input. The work of [28] explores different evolu-
tion ways of routing and shared modules in MTL. Our method differs from these
related approaches in three aspects. First, they perform architecture search by
reinforcement learning or evolutionary algorithms, while we employ the efficient
differentiable NAS to search for the optimal cell structure. Second, only final
fully-connected layers are routed in the network by [27], whereas our method
aims to optimize the overall multi-task network architecture instead of parts of
the network. Third, these methods are only applied to classification tasks. Differ-
ently, we bring the best practices to realize a multi-task NAS on more challenging
tasks (e.g., object detection and semantic segmentation) simultaneously.

2.2 Neural Architecture Search

In the past years, plentiful efforts have been made into manual design of high-
performance networks [5,29,30,31,32,33]. Neural architecture search, as an emerg-
ing alternative approach, aims at designing networks automatically, which has
attracted recent research interests. Three key components of NAS lie in search
space, search algorithm and performance evaluator. (1) For search space, ex-
isting work constructs the final network architectures by directly searching for
the entire network [6,7,34], searching for the repeatable cell structure [9,35,36]
or exploiting hierarchical structure [13,37,38]. (2) For search algorithms, some
works exploit reinforcement learning (RL) [7,15,34,39] to train recurrent neural
network controllers for generating architectural hyperparameters of networks.
Evolutionary algorithms (EA) provide an alternative to searching for neural ar-
chitectures by evolving them with crossover and mutation [8,11]. However, these
RL and EA methods tend to require intensive computation even on small in-
put images. Recent work attempts to reduce the computational cost by weight
sharing [6] or gradient-based optimization [9,35,40]. (3) For performance evalua-
tor, existing work has explored mono-objective (i.e., accuracy) or multi-objective
(e.g., accuracy, latency, and FLOPs) schemes. In this work, we follow the differ-
entiable NAS [9,16,17] to search for the optimal cell structure for both branches
and backbone, and combine multiple rewards from different tasks to guide the
search procedures in an alternating way.

Most of existing NAS approaches target on image classification tasks, either
requiring proxy datasets / tasks [7,9,12,35] or directly optimizing on target tasks
[15]. The most recent NAS papers [41,42,43] mainly focus on improving the
search algorithm for a single task while we aim to realize a multi-task NAS
pipeline. Recent methods have investigated NAS for more tasks, e.g., object
detection [11,12,44] and semantic segmentation [13]. However, these methods

MTNAS: Search Multi-Task Networks for Autonomous Driving 5

Backbone

Segmentation Branch

Detection Branch

Pi
xe

lw
ise

 P
re

di
ct

io
n

Im
ag

e

Pr
io

r B
ox

es
 P

re
di

ct
io

n

Add Add Add Add

U
ps

am
pl

e

U
ps

am
pl

e

U
ps

am
pl

e

U
ps

am
pl

e

Backbone

Segmentation Branch

Detection Branch

Pi
xe

lw
ise

 P
re

di
ct

io
n

Im
ag

e

Pr
io

r B
ox

es
 P

re
di

ct
io

n

Add Add Add Add

U
p
sa
m
p
le

N
or

m
al

 C
el

l ×
1

N
or

m
al

 C
el

l ×
1

 U

ps
am

pl
e

N

or
m

al
 C

el
l ×

1

N
or

m
al

 C
el

l ×
1

Co
nv

 w
ith

 st
rid

e=
2

Co
nv

 w
ith

 st
rid

e=
2

N
or

m
al

 C
el

l ×
4

Re
du

ct
io

n
Ce

ll ×
1

N
or

m
al

 C
el

l ×
3

Re
du

ct
io

n
Ce

ll ×
1

N
or

m
al

 C
el

l ×
2

Re
du

ct
io

n
Ce

ll ×
1

N
or

m
al

 C
el

l ×
2

Re
du

ct
io

n
Ce

ll ×
1

N
or

m
al

 C
el

l ×
1

N
or

m
al

 C
el

l ×
1

U
ps

am
pl

e

H
ea

tm
ap

U
ps

am
pl

e

(a) MTL Baseline (b) MTNAS

Fig. 1. Illustration of our hand-crafted multi-task network baseline and MTNAS ar-
chitecture which includes backbone, detection branch, and segmentation branch.

only search parts of networks such as the backbone or other functional units. In
contrast, our method extends NAS from single-task to multi-task learning and
aims to search for the overall network architecture.

3 Proposed Method

3.1 Hand-Crafted Multi-Task Network Baseline

We first introduce the hand-crafted multi-task network baseline in this section.
As shown in Fig. 1 (a), we build a backbone architecture to learn task-shared
representations, followed by task-specific decoders that learn adapted represen-
tations for each task.

Backbone acts as a feature extractor to extract different abstract levels of
shared representations in a multi-task network, which has a great impact on
the performance of consecutive tasks. We use ImageNet pre-trained networks
(e.g., ResNet) as our backbone but remove the last fully-connected classification
layer associated with the pre-training task. We consider joint learning of object
detection and semantic segmentation in this work. For the detection branch,
we employ the SSD detection head [45] and aggregate prior box predictions
from multiple feature maps of different resolutions. For the segmentation branch,
similar to FCN [32], we stack several upsampling layers (each followed by ReLU
activation and Batch Normalization) for pixel-wise prediction. We also integrate
FPN structure [46] to further improve the quality of representations for both
tasks.

3.2 Multi-Task Neural Architecture Search

In this section, we first describe our search space design and search algorithm
and then introduce the proposed MTNAS pipeline.

6 Hao Liu et al.

Search Space. We follow [9] to search for two types of computation cells (i.e.,
normal cell and reduction cell) as the building block of network architecture.
Each cell is a directed acyclic graph G = (V, E) where V = {vi}|

N−1
i=0 and

E = {e(i, j)}|0≤i<j≤N−1. Each node vi represents a certain feature map in CNNs
and each directed edge e(i, j) represents a certain operation o(i, j) ∈ O trans-
forming vi to vj . In this work, each cell has |V| = 7 nodes (i.e., two input nodes,
four intermediate nodes and one output node) and we set |O| = 8 candidate
operations 3 as our base search space. The base search space is shared across
the entire search process including searching for architectures of backbone and
branches.

Search Algorithm. Following [9], we solve the bi-level optimization problem
to attain the optimal architecture parameters φ:

min
φ
Lval(ω

∗(φ), φ) s.t. ω∗(φ) = argmin
ω
Ltrain(ω, φ) . (1)

where Ltrain and Lval mean the training loss and validation loss, respectively.
After obtaining the optimized architecture parameters, we can derive the final
network architecture by preserving operations with the two largest probabilities.
We also apply strategies of partial connection [17] and early stopping [16,47] to
reduce the computation overhead during the multi-task search process. Besides,
we apply SyncBN [48] to allow calculation of batch statistics across multiple
GPU cards for the challenging tasks (e.g., detection and segmentation) which
often require high-resolution input.

Multi-Task Search Pipeline. We denote a multi-task network as N (φ, ω)
where φ = {φ0, φ1, . . . , φn} and ω = {ω0, ω1, . . . , ωn} represent the architecture
parameters and network weights, respectively. Specifically, the index 0 indicates
backbone and {i}|n1 indicate n branches in the multi-task network. Our goal is to
search for the overall multi-task model with optimal architectures and weights:

N (φ∗, ω∗)|φ(0),ω(0) . (2)

where φ(0) and ω(0) mean the initialization of architecture parameters and net-
work weights, respectively. We note that it is hard to directly optimize the overall
multi-task architecture φ in practice because (1) Different optimization targets
of each task may incur conflicts during searching for the task-specific branch
architectures; (2) It requires substantial GPU memory consumption since large
search space is caused by optimizing different normal and reduction cells for
multiple tasks at the same time. Thus, to reduce the search space and ease the
optimization of joint search, we propose a two-stage multi-task search process:
branch search and backbone search, as illustrated in Fig. 2. Specifically, we first
search for the optimal branch architectures for each task separately and then

3 zero, skip-connect, max-pool-3x3, avg-pool3x3, sep-conv-3x3, sep-conv-5x5, dil-conv-
3x3, dil-conv5x5

MTNAS: Search Multi-Task Networks for Autonomous Driving 7

Multi-task

Dataset

Normal Cell

Reduction Cell

Reduction Cell

Normal Cell

Backbone

(a) Branch

search

Det Loss Seg Loss

ImageNet

Dataset

Normal Cell

Reduction Cell

Normal Cell

Detection

Branch

Backbone

Det Loss Seg Loss

Normal Cell

Reduction Cell

Normal Cell

Segmentation

Branch

Normal Cell

Normal Cell

Normal Cell

Normal Cell

Cls Loss

Updata (f0 ,w0)

ImageNet

Dataset

Normal Cell

Reduction Cell

Reduction Cell

Normal Cell

Detection

Branch

Backbone

Det Loss Seg Loss

Normal Cell

Reduction Cell

Normal Cell

Segmentation

Branch

Normal Cell

Normal Cell

Normal Cell

Normal Cell

Reuse (f0 ,w0) as

initialization

·
 ·

 ·

·
 ·

 ·

(b) Backbone pre-

search with auxiliary

cls loss

(c) Backbone

search with

multi-task loss

Updata (f1 ,w1)

Detection

Branch

Normal Cell

Reduction Cell

Normal Cell

Segmentation

Branch

Normal Cell

Normal Cell

Normal Cell

Normal Cell

Updata (f2 ,w2) Updata (f0 ,w0)

Reduction Cell

·
 ·

 ·

Fig. 2. Proposed multi-task neural architecture search (MTNAS) algorithm pipeline.

search for the optimal backbone architecture under the overall guidance. For
the reason of search order, we explain that our goal is to search for task-specific
branches and task-shared backbone. When optimizing the backbone, we need
to compute the loss from all the tasks. After obtaining the optimal branch ar-
chitectures, backbone can benefit from each branch architecture and then learn
shared knowledge across all tasks, leading to overall optimization for MTL.

S1: Branch Search. The goal of this search stage is to optimize the task-
specific branch architectures for each task. Thus, we address each target task
separately so that these tasks will not affect each other. In other words, when
optimizing i-th branch, only the loss Li associated with this task is backprop-
agated through the network. The architectures and weights of other branches
(φj , ωj)|

n
j=1,j 6=i are frozen. The backbone will be initialized with the same cells as

the current branch and will be re-initialized when searching for another branch.
After the branch search stage, we can obtain the task-specific branch models:

N (φ∗
i , ω

∗
i)|φ(0)

i
,ω

(0)
i

, i ∈ {1, 2, . . . , n} . (3)

S2: Backbone Search. The goal of this search stage is to optimize task-shared
backbone architectures for all tasks of interest. ImageNet pre-training has been
widely used for various vision tasks as it can learn from large-scale data and pro-
vide a good weight initialization for different downstream tasks. We observe that
large-scale data is also important to help optimize the backbone architecture.
Thus, we propose a simple but effective pre-searching procedure to search for
an initialized backbone architecture under the guidance of auxiliary ImageNet
classification task. To this end, we freeze all branches (including architectures
and weights) and append a fully-connected classification layer to the backbone.
After pre-searching, a well-initialized backbone model is obtained:

N (φ
′

0, ω
′

0)|φ(0)
0 ,ω

(0)
0

. (4)

The proposed pre-searching procedure can be viewed as a better alterna-
tive of ImageNet pre-training in the context of NAS. The auxiliary large-scale

8 Hao Liu et al.

data not only helps learn the low-/mid-level features but also helps learn gen-
eral cell architectures. Unlike ImageNet pre-training which only updates the
network weights, our pre-searching can update both of architecture parameters
and network weights, and provide better initialization of backbone structure for
subsequent optimization.

With the pre-searched architecture parameters and network weights of the
backbone as initialization, we further optimize the backbone structure under the
overall multi-task guidance. Specifically, we design an alternating optimization
strategy by incorporating iterative supervision from each task. For each iteration,
only one loss from a single task will be backpropagated. The benefits of such
scheme are two-fold. First, it helps improve training stability for the collaborative
optimization of multiple tasks empirically. Second, it is flexible for MTL since
it enables the utilization of datasets where only annotations of a single task
are available. That is, we do not require complete labeled data of all tasks on
a single dataset. In the stage of backbone search, branch architectures remain
unchanged. Backbone can benefit from the optimal branches to learn shared
knowledge from all tasks. The task-shared backbone will be generated after this
backbone search stage:

N (φ∗
0, ω

∗
0)|φ(0)

0 =φ
′

0,ω
(0)
0 =ω

′

0
. (5)

The entire MTNAS algorithm pipeline is also described in Algorithm 1. We
show in Fig. 1 (b) an example of the final overall architecture of the searched
multi-task network.

Multi-Task Finetuning. After obtaining the optimized multi-task network
architecture, we further finetune the overall network weights ω̂∗ ← ω∗ and the
overall network architectures φ∗

i |
n
i=0 remain unchanged during this process.

4 Experiments

4.1 Datasets and Evaluation Metrics

In this work, we apply the proposed MTNAS method to joint learning of object
detection and segmentation for autonomous driving. Our experiments are con-
ducted on four public datasets, including KITTI [49], CityScapes [50], BDD100K
[51] and Waymo [52]. The KITTI dataset contains 7,481 training images and
7,518 test images with three categories of car, pedestrian and cyclist for ob-
ject detection. The Cityscapes dataset contains 2,975 training, 500 validation
and 1525 test images of 19 categories for semantic segmentation. Waymo and
BDD100K are recent large-scale datasets with diverse autonomous driving scenes
and are challenging for both detection and segmentation tasks. BDD100K in-
cludes annotations for both detection and segmentation while Waymo includes
detection annotations only. Note that our method can be flexibly applied to the
case that annotations are available for a certain task but not for other tasks.
Based on these datasets, we create two sets of benchmarks for evaluating multi-
task networks in our experiments.

MTNAS: Search Multi-Task Networks for Autonomous Driving 9

Algorithm 1 MTNAS - Multi-Task Neural Architecture Search

Input:

Base search space O.
ImageNet dataset D0.
Task-specific datasets Di|ni=1 associated with n tasks.
Hyperparameters of early stopping policy: K, T .

Branch Search:

for i = 1 → n do

Initialize φi with task-specific search space and initialize ωi randomly.
repeat

Update (φi, ωi) according to Eq. 1
until N (φi, ωi) does not change for K iterations.

end for

Output the resulting branches (φ∗
i , ω

∗
i)|ni=1.

Backbone Search:

Freeze branches and add an auxiliary ImageNet classification layer.
Initialize φ0 and ω0 randomly.
while number of skip-connect operation ≤ T do

Update (φ0, ω0) according to Eq. 1
end while

Output the pre-searched backbone (φ
′

0, ω
′

0).
Activate branches and remove the ImageNet classification layer.
Initialize (φ0, ω0) with (φ

′

0, ω
′

0) and fix branch architectures φi|ni=1.
repeat

Update (φ0, ω0) according to Eq. 1
until N (φ0, ω0) does not change for K iterations.
Output the resulting backbone N (φ∗

0, ω
∗
0).

Output:

Derive the final optimal multi-task network architecture N (φ∗
i , ω

∗
i)|ni=0.

Single Set. We apply a single small dataset for each task in this version. Specif-
ically, KITTI is used for detection and CityScapes is used for segmentation. This
single-set benchmark is used for performance comparisons with existing work on
each task.

Mixed Set. We also employ large-scale data to further improve the performance
for the practical application. In detail, we combine Waymo and BDD100K by
merging their common categories for detection and combine CityScapes and
BDD100K for segmentation similarly. This leads to 4 classes for detection and
16 classes for segmentation. We also randomly divide the mixed data into train,
validation and test sets. For object detection, we have 120k, 2k, 10k images
for train, validation and test sets, respectively. For semantic segmentation, we
have 10k, 500, 1500 images for train, validation and test sets, respectively. This
mixed-set benchmark is used for our main multi-task results.

For evaluation metrics, we use the standard mean Average Precision (mAP)
for detection and mean Intersection over Union (mIoU) for segmentation.

10 Hao Liu et al.

4.2 Implementation Details

MTL Baseline. We take Resnet-18 as the backbone of our hand-crafted multi-
task network baseline. For all tasks, we resize images to the same 320 × 512
resolution as input. We train the multi-task network with a batch size of 32 for
150k iterations on 2 NVIDIA V100 GPUs. We use SGD for optimization with an
initial learning rate of 0.01 (decreased with a linear cosine policy), momentum
of 0.9 and weight decay of 3× 10−5. As for balancing different branches’ losses,
we simply set the loss weights of detection and segmentation as 1:1.

MTNAS. We setK = 10 and T = 2 in Algorithm 1. We use the same batch size
of 32 with MTL baseline but different initial learning rate of 0.1 for searching.
The maximum iterations of searching for each branch and backbone are set as 5k
and 10k, respectively. On the single-set benchmark, the branch search, backbone
search and multi-task finetuning processes cost 2, 12, 4 GPU days, respectively.
All of our experiments are conducted on PyTorch.

4.3 MTL Results on Mixed Set

After obtaining the searched cells for both backbone and branches on the mixed
set, we stack a light-weight multi-task network and further finetune its weights.
We show the main multi-task results on the mixed-set benchmark in Table 1. We
compare the single-task baseline (i.e., SSD for detection and FCN for segmen-
tation) and the multi-task baseline described in Section 3.1. We also implement
recent MTL methods on our mix-set benchmark including Pareto MTL [20] and
TripleNet [53]. Since there are little considerations of NAS methods on MTL, we
also implement several related differentiable NAS baselines and extend them to
our multi-task setting by searching on a proxy CIFAR10 dataset. Table 1 shows
that the proposed MTNAS method achieves the best performance on both tasks
and simultaneously consumes the least computation cost compared to the single-
task, multi-task and NAS baselines. (1) Our method obtains significant improve-
ment over each single task baseline (e.g., 3.5% mIoU gain for segmentation). By
sharing representations in the multi-task network, the computation complexity
of the model is largely reduced. We only require around 35% fewer FLOPs than
a summation of two separate models (i.e., 9.0 vs. 13.5+12.1=25.6) but obtain
higher performance (i.e., 43.7% vs. 41.5% for detection, 46.2% vs. 42.7% seg-
mentation). (2) Our method outperforms the hand-crafted MTL baseline with
3.5% higher mAP for detection, 2.0% higher mIoU for segmentation and only
consumes 65% fewer FLOPs. We also compare MTNAS with other state-of-the-
art MTL methods [20,53] using the same network and experimental setting as
MTL baseline. The results show that MTNAS outperforms Pareto MTL by 1.9%
for detection and 1.3% for segmentation, and outperforms TripleNet by 1.5% for
detection and 1.0% for segmentation. (3) We compare our method with those de-
manding proxy tasks (CIFAR10 classification). The results show the consistent
superiority of MTNAS, e.g., 43.7% (Ours) vs. 38.6% (DARTS) for detection.

MTNAS: Search Multi-Task Networks for Autonomous Driving 11

Table 1. Performance comparisons of multi-task learning on mixed set in terms of de-
tection accuracy (mAP), segmentation accuracy (mIoU) and computation complexity
(FLOPs). † denotes conventional Imagenet pre-training and ∗ denotes the proposed
ImageNet pre-searching procedure.

Methods mAP (%) mIoU (%) FLOPs (G)

Manual design†

SSD [45] 41.5 - 13.5
FCN [32] - 42.7 12.1
MTL baseline 40.2 44.2 13.7
Pareto MTL [20] 41.8 44.9 13.7
TripleNet [53] 42.2 45.2 21.2

Search on proxy tasks

DARTS [9] 36.2 40.1 9.7

DARTS† [9] 38.6 42.6 9.7
PC-DARTS [17] 34.0 43.0 11.4

PC-DARTS† [17] 36.0 44.5 11.4
DARTS+ [16] 34.8 44.2 11.4

DARTS+† [16] 37.7 45.0 11.4

Search on target tasks

Random search [54] 38.6 41.5 10.4
Co-search 41.1 43.0 10.5

Ours†, w/o branch search 41.4 45.5 10.9

Ours†, w/o backbone search 40.5 44.5 11.8

Ours† 42.1 45.4 9.0

Ours∗ 43.7 46.2 9.0

We show our contributions from the algorithmic components in the last group
of Table 1. (1) By discarding either branch or backbone search stage, the per-
formance on both tasks will drop. This validates the necessity of searching for
overall architecture in MTL. (2) Compared with the results of the last two rows
in Table 1, we demonstrate the effectiveness of our pre-searching procedure. Un-
like ImageNet pre-training that updates network weights only, our pre-searching
procedure can optimize both of architecture parameters and network weights
and provide good initialization for the subsequent backbone search process. (3)
To demonstrate the effectiveness of our search method, we follow [54] to imple-
ment the random search baseline and the result is worse than our baseline, and
we tried the co-search scheme (searching backbone and branches at same time)
but get worse results than MTNAS, because we need to reduce the batch size to
fit the memory limit in the co-search manner (only 2 images can be loaded for
training with 32G memory) and the performance is harmed. We further test the
latency on P100: MTL baseline (8.4ms), SSD (8.2ms), FCN (8.1ms), MTNAS
(6.2ms). More results on CIFAR10 [55], VOC12 [56] and cross dataset are in our
supplementary material.

We show more detailed ablation studies on backbone search as well as the
searching time in Table 2. In these experiments, we use the searched architec-
ture for two branches. (1) Our method (PS+BS) outperforms that of using the
pre-trained hand-crafted ResNet as backbone (PT) by a large margin, which
validates the superiority of optimizing the backbone structure. (2) Our method
outperforms pre-searching only or searching with the multi-task loss only, which
demonstrates that both auxiliary large-scale data and task-specific data are ben-

12 Hao Liu et al.

Table 2. Ablation studies with respect to backbone search on the mixed-set bench-
mark. PS: Pre-search backbone on ImageNet. BS: Search backbone with the multi-task
loss. PT: Pre-train backbone on ImageNet.

PS BS PT Time (GPU days) mAP (%) mIoU (%)
√

14 40.5 44.5√
8 40.5 44.3√
12 41.2 44.7√ √
26 42.1 45.4√ √
20 43.7 46.2

Table 3. Performance comparisons on single set in terms of per-class AP and mAP on
KITTI, mIoU accuracy on CityScapes and FLOPs.

Methods Car Pedestrian Cyclist mAP (%) mIoU (%) FLOPs (G)

PSPNet [58] - - - - 81.2 412.2
DeepLabv2 [59] - - - - 63.1 457.8
DeepLabv3+ [60] - - - - 82.1 496
SegNet [61] - - - - 57.0 286
SQ [62] - - - - 59.8 270
DPN [63] - - - - 59.1 270
SSD-VGG16 [64] 75.9 50.6 50.2 58.9 - 157.4
Faster-RCNN [65] 81.6 65.6 63.4 70.2 - 181

RTSeg-MobileNet [57] - - - - 61.5 13.8
FCN-ResNet18 [32] - - - - 51.1 12.1
SSD-ResNet18 [45] 77.4 56.1 54.6 62.7 - 13.5
SqueezeDet [66] 66.1 - - - - 9.7
YOLOv2 [67] 62.8 - - - - 35
MTNAS (Ours) 79.2 65.4 61.8 68.8 63.4 12.6

eficial for optimizing the backbone architecture. (3) Compared to ImageNet pre-
training, our pre-searching procedure obtains higher performance on both tasks
(43.7% vs. 42.1% for detection, 46.2% vs. 45.4% for segmentation).

4.4 Comparisons to State-of-the-Arts on Single Set

We search for another light-weight multi-task network on the single set. Ta-
ble 3 compares our MTNAS with the state-of-the-art methods on each task. We
group these existing methods by their FLOPs and our searched network achieves
competitive performance with other light-weight models on both tasks. For ex-
ample, compared to RTSeg-MobileNet [57] for segmentation, we achieve 1.9%
higher mIoU and consumes less FLOPs (12.6G vs. 13.8G). Compared to SSD-
ResNet18 [45] for detection, we achieve 6.1% higher mAP and also consumes less
FLOPs (12.6G vs. 13.5G).

4.5 MTNAS Architecture and Discussions

Fig. 3 shows our searched backbone architectures on the target tasks and those
searched by DARTS on the proxy task. Our searched normal cell has a deeper

MTNAS: Search Multi-Task Networks for Autonomous Driving 13

c_{k-2}
0

1

3sep_conv_3x3

c_{k-1}

skip_connect

dil_conv_3x3

skip_connect
sep_conv_3x3

2
sep_conv_3x3

c_{k}

sep_conv_3x3 dil_conv_5x5 c_{k-2} 0

1

2

3skip_connect

c_{k-1}
sep_conv_3x3

sep_conv_3x3
skip_connect

dil_conv_3x3
c_{k}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

Normal cell Normal cell

c_{k-2}

0
1

2
c_{k-1}

sep_conv_3x3
avg_pool_3x3
max_pool_3x3

sep_conv_5x5

dil_conv_3x3
3sep_conv_3x3

dil_conv_5x5

c_{k}

dil_conv_5x5

c_{k-2}
max_pool_3x3

2max_pool_3x3

c_{k-1}

0
max_pool_3x3

1

3

max_pool_3x3
max_pool_3x3

skip_connect

skip_connect
skip_connect

c_{k}

Reduction cell Reduction cell

(a) MTNAS (Ours) (b) DARTS

Fig. 3. Searched cell architectures of backbone by our MTNAS algorithm and the
original DARTS method.

c_{k-2} 0
1skip_connect

2

3

c_{k-1}
sep_conv_3x3

sep_conv_3x3
c_{k}

skip_connect
skip_connect

skip_connect

sep_conv_3x3
sep_conv_3x3

c_{k-2}

0

3

c_{k-1} 1

2

skip_connect

dil_conv_3x3 dil_conv_3x3

c_{k}

skip_connect

dil_conv_3x3

dil_conv_3x3

skip_connect
sep_conv_3x3

Normal cell Normal cell

c_{k-2}

0
avg_pool_3x3

1sep_conv_3x3 2
avg_pool_3x3

c_{k-1}max_pool_3x3
sep_conv_3x3 3sep_conv_5x5

c_{k}skip_connect
 dil_conv_5x5

c_{k-2}
0

dil_conv_3x3

1

2

avg_pool_3x3

dil_conv_3x3

3max_pool_3x3
c_{k-1}

skip_connect

max_pool_3x3

c_{k}skip_connect
skip_connect

Reduction cell Reduction cell

(a) Detection branch (b) Segmentation branch

Fig. 4. Searched cell architectures for our detection and segmentation branches by our
method.

structure which is likely to help improve the representation ability of networks.
In terms of reduction cell, DARTS suffers from the collapse problem as it only
generates weight-free operations like max-pooling and skip-connection. We ob-
serve that these weight-free operations are easier to converge, which incur se-
lection bias during the optimization process. Besides, many pooling operations
will cause location information loss and negatively affect the performance of de-
tection and segmentation tasks. In contrast, our MTNAS method leads to more
diverse architecture for learning richer information in the reduction cell.

Fig. 4 shows our searched branch architectures. By optimizing the branch
structure for each task separately, we can learn task-specific cell architectures,
e.g., separate convolution for detection and dilated convolution for segmentation,
which are crucial for good performance.

4.6 Qualitative Evaluations

Fig. 5 visualizes some examples of MTL results on the BDD100K dataset. In gen-
eral, our MTNAS method can achieve more accurate detection and segmentation
results compared to the hand-crafted MTL baseline. For example, MTNAS can
better detect small objects (e.g., traffic sign) in the first row and crowd people

14 Hao Liu et al.

(a) Input (b) MTL baseline (c) MTNAS

Fig. 5. Example results of multi-task learning on the BDD100K dataset. Our MTNAS
method can achieve more accurate detection and segmentation results compared to the
hand-crafted multi-task network baseline.

in the second row. Besides, MTNAS can better segment the objects with a well-
defined shape (e.g., car) and amorphous background regions (e.g., sidewalk and
sky) as shown in the last three rows of Fig. 5.

5 Conclusion

In this paper, we propose a practical and principled neural architecture search
algorithm for multi-task learning, named MTNAS. Our method aims to search
for the overall optimized network architecture for multi-task learning with two
stages. For branch search, we separately optimize the task-specific neural archi-
tecture for each branch based on its own optimization objective. For backbone
search, we first propose a pre-searching procedure to obtain the initial backbone
structure and then refine them under the overall multi-task guidance. We apply
the proposed MTNAS pipeline for the challenging autonomous driving scenarios
by jointly learning object detection and semantic segmentation. Experimental
results demonstrate our searched multi-task model surpasses the hand-crafted
single-task and multi-task baselines largely and consumes less computation cost.
We believe that our proposed method can provide new insights into neural ar-
chitecture search on multi-task learning and has broad real-world applications.

MTNAS: Search Multi-Task Networks for Autonomous Driving 15

References

1. Caruana, R.: Multitask learning. Machine learning 28 (1997) 41–75 1, 3
2. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using

multitask cascaded convolutional networks. SPL 23 (2016) 1499–1503 1, 3
3. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV. (2017) 1, 3
4. Luvizon, D.C., Picard, D., Tabia, H.: 2d/3d pose estimation and action recognition

using multitask deep learning. In: CVPR. (2018) 2, 3
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR. (2016) 4
6. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture

search via parameters sharing. In: ICML. (2018) 2, 4
7. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures

for scalable image recognition. In: CVPR. (2018) 2, 4
8. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image

classifier architecture search. In: AAAI. (2019) 2, 4
9. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. ICLR

(2018) 2, 4, 6, 11
10. Ghiasi, G., Lin, T.Y., Le, Q.V.: Nas-fpn: Learning scalable feature pyramid archi-

tecture for object detection. In: CVPR. (2019) 2
11. Chen, Y., Yang, T., Zhang, X., Meng, G., Xiao, X., Sun, J.: Detnas: Backbone

search for object detection. In: NeurIPS. (2019) 2, 4
12. Peng, J., Sun, M., ZHANG, Z.X., Tan, T., Yan, J.: Efficient neural architecture

transformation search in channel-level for object detection. In: NeurIPS. (2019) 2,
4

13. Liu, C., Chen, L.C., Schroff, F., Adam, H., Hua, W., Yuille, A.L., Fei-Fei, L.: Auto-
deeplab: Hierarchical neural architecture search for semantic image segmentation.
In: CVPR. (2019) 2, 4

14. Chen, L.C., Collins, M., Zhu, Y., Papandreou, G., Zoph, B., Schroff, F., Adam,
H., Shlens, J.: Searching for efficient multi-scale architectures for dense image
prediction. In: NeurIPS. (2018) 2

15. Cai, H., Zhu, L., Han, S.: Proxylessnas: Direct neural architecture search on target
task and hardware. In: ICLR. (2019) 2, 4

16. Liang, H., Zhang, S., Sun, J., He, X., Huang, W., Zhuang, K., Li, Z.: Darts+:
Improved differentiable architecture search with early stopping. arXiv preprint
arXiv:1909.06035 (2019) 2, 4, 6, 11

17. Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.J., Tian, Q., Xiong, H.: Pc-darts:
Partial channel connections for memory-efficient architecture search. In: ICLR.
(2019) 2, 4, 6, 11

18. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: CVPR. (2018) 3

19. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In: ICML.
(2018) 3

20. Lin, X., Zhen, H.L., Li, Z., Zhang, Q.F., Kwong, S.: Pareto multi-task learning.
In: NeurIPS. (2019) 3, 10, 11

21. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-
task learning. In: CVPR. (2016) 3

22. He, X., Zhou, Z., Thiele, L.: Multi-task zipping via layer-wise neuron sharing. In:
NeurIPS. (2018) 3

16 Hao Liu et al.

23. Meyerson, E., Miikkulainen, R.: Beyond shared hierarchies: Deep multitask learn-
ing through soft layer ordering. In: ICLR. (2018) 3

24. Mallya, A., Lazebnik, S.: Packnet: Adding multiple tasks to a single network by
iterative pruning. In: CVPR. (2018) 3

25. Kim, E., Ahn, C., Torr, P.H., Oh, S.: Deep virtual networks for memory efficient
inference of multiple tasks. In: CVPR. (2019) 4

26. Ahn, C., Kim, E., Oh, S.: Deep elastic networks with model selection for multi-task
learning. In: ICCV. (2019) 4

27. Rosenbaum, C., Klinger, T., Riemer, M.: Routing networks: Adaptive selection of
non-linear functions for multi-task learning. In: ICLR. (2018) 4

28. Liang, J., Meyerson, E., Miikkulainen, R.: Evolutionary architecture search for
deep multitask networks. In: GECCO. (2018) 4

29. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: In-
verted residuals and linear bottlenecks. In: CVPR. (2018) 4

30. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In:
ICLR. (2015) 4

31. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: ECCV. (2018) 4

32. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR. (2015) 4, 5, 11, 12

33. Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Detnet: Design backbone
for object detection. In: ECCV. (2018) 4

34. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In:
ICLR. (2016) 4

35. Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search.
In: ICLR. (2019) 4

36. Dong, J.D., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Dpp-net: Device-aware
progressive search for pareto-optimal neural architectures. In: ECCV. (2018) 4

37. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical
representations for efficient architecture search. In: ICLR. (2018) 4

38. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
Mnasnet: Platform-aware neural architecture search for mobile. In: CVPR. (2019)
4

39. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: Amc: Automl for model
compression and acceleration on mobile devices. In: ECCV. (2018) 4

40. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia,
Y., Keutzer, K.: Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. In: CVPR. (2019) 4

41. Yu, J., Jin, P., Liu, H., Bender, G., Kindermans, P.J., Tan, M., Huang, T., Song,
X., Pang, R., Le, Q.: Bignas: Scaling up neural architecture search with big single-
stage models. In: ECCV. (2020) 4

42. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: Train one network
and specialize it for efficient deployment. In: ICLR. (2019) 4

43. He, C., Ye, H., Shen, L., Zhang, T.: Milenas: Efficient neural architecture search
via mixed-level reformulation. In: CVPR. (2020) 11993–12002 4

44. Guo, J., Han, K., Wang, Y., Zhang, C., Yang, Z., Wu, H., Chen, X., Xu, C.: Hit-
detector: Hierarchical trinity architecture search for object detection. In: CVPR.
(2020) 11405–11414 4

45. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: ECCV. (2016) 5, 11, 12

MTNAS: Search Multi-Task Networks for Autonomous Driving 17

46. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR. (2017) 5

47. Chen, X., Xie, L., Wu, J., Tian, Q.: Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. In: ICCV. (2019) 6

48. Peng, C., Xiao, T., Li, Z., Jiang, Y., Zhang, X., Jia, K., Yu, G., Sun, J.: Megdet:
A large mini-batch object detector. In: CVPR. (2018) 6

49. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: CVPR. (2012) 8

50. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: CVPR. (2016) 8

51. Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan, V., Darrell, T.: Bdd100k:
A diverse driving video database with scalable annotation tooling. arXiv preprint
arXiv:1805.04687 (2018) 8

52. : Waymo open dataset: An autonomous driving dataset (2019) 8
53. Cao, J., Pang, Y., Li, X.: Triply supervised decoder networks for joint detection

and segmentation. In: CVPR. (2019) 10, 11
54. Li, L., Talwalkar, A.: Random search and reproducibility for neural architecture

search. In: Uncertainty in Artificial Intelligence, PMLR (2020) 367–377 11
55. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images. (2009)

11
56. Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours

from inverse detectors. In: International Conference on Computer Vision (ICCV).
(2011) 11

57. Siam, M., Gamal, M., Abdel-Razek, M., Yogamani, S., Jagersand, M.: Rtseg:
Real-time semantic segmentation comparative study. In: ICIP. (2018) 12

58. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
CVPR. (2017) 12

59. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. TPAMI 40 (2017) 834–848 12

60. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with
atrous separable convolution for semantic image segmentation. In: ECCV. (2018)
12

61. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. TPAMI 39 (2017) 2481–
2495 12

62. Treml, M., Arjona-Medina, J., Unterthiner, T., Durgesh, R., Friedmann, F., Schu-
berth, P., Mayr, A., Heusel, M., Hofmarcher, M., Widrich, M., et al.: Speeding up
semantic segmentation for autonomous driving. In: MLITS, NeurIPS Workshop.
(2016) 12

63. Liu, Z., Li, X., Luo, P., Loy, C.C., Tang, X.: Semantic image segmentation via
deep parsing network. In: ICCV. (2015) 12

64. Kim, H., Lee, Y., Yim, B., Park, E., Kim, H.: On-road object detection using deep
neural network. In: ICCE-Asia. (2016) 12

65. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object
detection with region proposal networks. In: NeurIPS. (2015) 12

66. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: Squeezedet: Unified, small, low power
fully convolutional neural networks for real-time object detection for autonomous
driving. In: CVPR. (2017) 12

67. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR. (2017) 12

