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Abstract. We propose a new approach for synthesizing fully detailed
art-stylized images from sketches. Given a sketch, with no semantic tag-
ging, and a reference image of a specific style, the model can synthe-
size meaningful details with colors and textures. Based on the GAN
framework, the model consists of three novel modules designed explic-
itly for better artistic style capturing and generation. To enforce the
content faithfulness, we introduce the dual-masked mechanism which di-
rectly shapes the feature maps according to sketch. To capture more
artistic style aspects, we design feature-map transformation for a bet-
ter style consistency to the reference image. Finally, an inverse process
of instance-normalization disentangles the style and content information
and further improves the synthesis quality. Experiments demonstrate a
significant qualitative and quantitative boost over baseline models based
on previous state-of-the-art techniques, modified for the proposed task
(17% better Frechet Inception distance and 18% better style classifica-
tion score). Moreover, the lightweight design of the proposed modules
enables the high-quality synthesis at 512× 512 resolution.

1 Introduction

Synthesizing fully colored images from human-drawn sketches is an important
problem, with several real-life applications. For example, colorizing sketches
following a specified style can significantly reduce repetitive works in story-
boarding. Fruitful results have been achieved in applying deep learning to the art
literature [1–3]. Most research works have focused on synthesizing photo-realistic
images [4], or cartoonish images [5] from sketches. In this paper, we focus on ren-
dering an image in a specific given artistic style based on a human-drawn sketch
as input. The proposed approach is generic, however, what distinguish art im-
ages from other types of imagery is the variety of artistic styles that would affect
how a sketch should be synthesized into a fully colored and textured image.

In the history of art, style can refer to an art movement (Renaissance style,
Baroque style, Impressionism, etc.), or particular artist style (Cezanne style,
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Fig. 1. Synthetic images from sketches with different styles. Upper panel: our approach
synthesizes from different styles (art movements). The first row shows the reference
images from each style, and the second row shows the generated images. Lower panel:
our model synthesizes from specific artists’ styles by taking paintings from the artists
as reference.

Monet style, etc.), or a specific artwork style [6]. Style encompasses different
formal elements of art, such as the color palette, the rendering of the contours
(linear or painterly), the depth of the field (recessional or planer), the style of
the brush strokes, the light (diffused or light-dark contrast), etc.

We propose a novel generation task: given an input sketch and a style, defined
by a reference image, or an artist name, or a style category, we want to synthesize
a fully colored and textured image in that style following the sketch, as shown
in Figure 1. Previous works on synthesizing from sketches do not allow users
to specify a style reference [7, 4]. We propose a new model to achieve this task,
which takes the input sketch and sample reference image(s) from art-historical
corpus, defining the desired style, to generate the results.

A sketch contains very sparse information, basically the main composition
lines. The model has to guess the semantic composition of the scene and syn-
thesize an image with semantic context implied from the training corpus. E.g.,
given a corpus of landscape art of different styles, the model needs to learn how
different parts of the scene correlate with colors and texture given a choice of
style. In the proposed approach, no semantic tagging is required for the sketches
nor the style images used at both training and generation phases. The model
implicitly infers the scene semantic.

The proposed approach is at the intersection between two different generation
tasks: Sketch-to-image synthesis and Style transfer. Sketch-to-image synthesis
focuses on rendering a colored image based on a sketch, where recent approaches
focused on training deep learning models on a corpus of data, e.g., [7]. However,
these approaches do not control the output based on a given style.

More importantly, in our case the reference image should only define the
style not the content details. For example, the model should infer that certain
plain area of the sketch is sky, trees, mountains, or grass; and infer details of
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these regions differently given the style image, which might not have the same
semantic regions all together (see examples in Figure 1).

Fig. 2. Synthesized samples in 512 × 512 resolution. The first column are the input
sketches hand-drawn by human, and the first row are the style reference images.

On the other hand, style transfer focuses on capturing the style of an (or
many) image and transfer it to a content image [8]. However, we show that such
models are not applicable to synthesize stylized images from sketches because of
the lack of content in the sketch, i.e., the approach need to both transfer style
from the reference image and infer content based on the training corpus.

The proposed model has three novel components, which constitute the tech-
nical contributions of this paper, based on a GAN [9] infrastructure,:
Dual Mask Injection. A simple trainable layer that directly imposes sketch
constraints on the feature maps, to increase content faithfulness.
Feature Map Transfer. An adaptive layer that applies a novel transformation
on the style image’s feature map, extracting only the style information without
the interference of the style images’ content.
Instance De-Normalization. A reverse procedure of Instance Norm [10] on
the discriminator to effectively disentangle the style and content information.

2 Related Work

Image-to-Image Translation: I2I aims to learn a transformation between two
different domains of images. The application scenario is broad, including object
transfiguration, season transfer, and photo enhancement. With the generative
power of GAN [9], fruitful advances have been achieved in the I2I area. Pix2pix
[11] established a common framework to do the one-to-one mapping for paired
images using conditional GAN. Then a series of unsupervised methods such
as CycleGAN [12–15] were proposed when paired data is not available. Fur-
thermore, multi-modal I2I methods are introduced to simulate the real-world
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many-to-many mapping between image domains such as MUNIT and Bicycle-
GAN [16–21]. However, those I2I methods can not generate satisfying images
from the coarse sketch’s domain, nor can they adequately reproduce the styles
from the reference image, as will be shown in the experiments.

Neural Style Transfer: NST transfers textures and color palette from one
image to another. In [8], the problem was formulated by transforming the statis-
tics of multi-level feature maps in CNN layers in the form of a Gram Matrix.
The follow-up works of NST have multiple directions, such as accelerating the
transfer speed by training feed-forward networks [22, 23], and capturing multi-
ple styles simultaneously with adaptive instance normalization [24, 10]. However,
little attention has been paid on optimizing towards artistic style transfer from
a sketch, nor on improving the style transfer quality regarding the fine-grained
artistic patterns among the various NST methods [25].

Sketch-to-image Synthesis: Our task can be viewed from both the I2I and
the NST perspectives, while it has its unique challenges. Firstly, unlike datasets
such as horse-zebra or map-satellite imagery, the sketch-to-painting dataset is
heavily unbalanced and one-to-many. The information in the sketch domain is
ambiguous and sparse with only few lines, while in the painting’s domain is rich
and diverse across all artistic styles. Secondly, “style transfer” approaches focus
mainly on color palettes and “oil painting like” textures but pays limited atten-
tion to other important artistic attributes such as linear vs. painterly contours,
texture boldness, and brush stroke styles. Thirdly, it is much harder for NST
methods to be semantically meaningful, as the optimization procedure of NST is
only between few images. On the contrary, with a sketch-to-image model trained
on a large corpus of images, learning semantics is made possible (the model can
find the common coloring on different shapes and different locations across the
images) and thus make the synthesized images semantically meaningful.

To our knowledge, there are few prior works close to our task. AutoPainter
[26] propose to do sketch-to-image synthesis using conditional GANs, but their
model is designed towards cartoon images. ScribblerGAN [7] achieves user-
guided sketch colorization but requires the user to provide localized color scrib-
bles. SketchyGAN [4] is the state-of-the-art approach for multi-modal sketch-to-
image synthesis, focusing on photo-realistic rendering of images conditioned on
object categories. Furthermore, [5, 27, 28] accomplish the conditioned coloriza-
tion with a reference image, but they only optimize towards datasets that lack
style and content variances. None of those works is specifically geared towards
artistic images with the concern of capturing the significant style variances. In
contrast, Figure 1 and Figure 2 demonstrate the ability of our model to capture
the essential style patterns and generate diversely styled images.

3 Methods

In this section, we provide an overview of our model and introduce the detailed
training schema. Then three dedicated components will be described.
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Fig. 3. Overview of the model structure. G adopts a U-Net structure [29]. It takes the
features of the reference image Istyle from E, runs style-conditioned image synthesis on
the input sketch image Isketch, and outputs Ig. D takes as input an image (alternatively
sampled from real and generated images) and gives three outputs: a predicted style
vector, a predicted sketch, and a real/fake signal of the image

As shown in Figure 3, our model consists of three parts: a generator G, a
discriminator D, and a separately pre-trained feature-extractor E. Either an
unsupervised Auto-Encoder or a supervised DNN classifier, such as VGG [30]
can work as the feature-extractor. During the training of G and D, E is fixed and
provides multi-level feature-maps and a style vector of the reference image Istyle.
The feature-maps serve as inputs for G, and the style vector serves as the ground
truth for D. We train G and D under the Pix2pix [11] schema. In the synthesis
phase, the input style is not limited to one reference image. We can always let E
extract style features from multiple images and combine them in various ways
(averaging or weighted averaging) before feeding them to G. Apart from the
following three modules, our model also includes a newly designed attentional
residual block and a patch-level image gradient matching loss, please refer to the
appendix for more details.

3.1 Reinforcing Content: Dual Mask Injection

In our case, the content comes in the form of a sketch, which only provides sparse
compositional constraints. It is not desirable to transfer composition elements
from the style image or training corpus into empty areas of the sketch that should
imply textured areas. Typically when training a generator to provide images
with diverse style patterns, the model tends to lose faithfulness to the content,
which results in missing or excrescent shapes, objects, and ambiguous contours
(especially common in NST methods). To strengthen the content faithfulness, we
introduce Dual-Mask Injection layer (DMI), which directly imposes the sketch
information on the intermediate feature-maps during the forward-pass in G.

Given the features of a style image, in the form of the conv-layer activation
f ∈ IRC×H×W , we down sample the binary input sketch to the same size of f
and use it as a feature mask, denoted as Ms ∈ [0, 1]

H×W
. The proposed DMI

layer will first filter out a contour-area feature fc and a plain-area feature fp by:

fc = Ms × f, fp = (1−Ms)× f, (1)



6 Liu et al.

where × is element-wise product. For fc and fp, the DMI layer has two sets

of trainable weights and biases, wc, bc, wp, bp ∈ IRC×1×1, that serve for a value

relocation purpose, to differentiate the features around edge and plain area:

f ′

c = wc × fc + bc, f ′

p = wp × fp + bp (2)

Finally, the output feature maps of DMI will be f ′ = f ′

c + f ′

p.

Feature maps

     1 -         

Mask multiplication

Value relocation

Element wise sum

Aggregated Visualization

Fig. 4. Forward flow of Dual-Mask Injection layer, we aggregate the first three channels
in feature-map as an RGB image for visualization purpose

A real-time forward flow of the DMI layer is shown in Figure 4. Notice that,
when w = 1 and b = 0, the output feature will be the same as the input, and
we set the weights and bias along the channel dimension so that the model can
learn to impose the sketch on the feature-maps at different degrees on different
channels. By imposing the sketch directly to the feature-maps, DMI layer ensures
that the generated images have correct and clear contours and compositions.
While DMI serves the same purpose as the masked residual layer (MRU) in
SketchyGAN [4], it comes with almost zero extra computing cost, where MRU
requires three more convolution layers per unit. In our experiments, our model
is two times faster in training compared with SketchyGAN, while yields better
results on art dataset. Moreover, the lightweight property of DMI enables our
model to achieve great performance on 512× 512 resolution, while SketchyGAN
was studied only on 128× 128 resolution.

3.2 Disentangling Style and Content by Instance De-Normalization

To better guide G, D is trained to adequately predict an style latent represen-
tation of the input image as well as the content sketch that should match with
the input image. Ideally, a well-disentangled discriminator can learn a style rep-
resentation without the interference of the content information, and retrieve the
content sketch regardless of the styles.

Several works have been done in specifically disentangling style and content
[31, 32], but they only work around the generator side, using AdaIN or Gram-
matrix to separate the factors. To train D to effectively disentangle, we propose
the Instance De-Normalization (IDN) layer. IDN takes the feature-map of an
image as input, then reverses the process of Instance-Normalization [24, 10] to



Sketch2art: Synthesizing Stylized Art Images From Sketches 7

produces a style vector and a content feature map. In the training phrase of our
model, IDN helps D learn to predict accurate style-vectors and contents of the
ground truth images, therefore, helps G to synthesis better.

In AdaIN or IN, a stylized feature-map is calculated by:

fstyled = σstyle ×
(f − µ(f))

σ(f)
+ µstyle, (3)

where σ(·) and µ(·) calculate the variance and mean of the feature map f respec-
tively. It assumes that while the original feature map f ∈ IRC×H×W contains the
content information, some external µstyle and σstyle can be collaborated with f

to produce a stylized feature map. The resulted feature map possesses the style
information while also preserves the original content information.

Here, we reverse the process for a stylized feature map f ′

style by: first predict

µstyle and σstyle, (µstyle, σstyle)∈ IRC×1×1 from f ′

style, then separate them out
from f ′

style to get fcontent which carries the style-invariant content information.
Formally, the IDN process is:

µ′

style =Conv(f ′

style), σ′

style = σ(f ′

style − µ′

style), (4)

fcontent =
(f ′

style − µ′

style)

σ′

style

, (5)

where Conv(·) is 2 conv layers. Note that unlike in AdaIN where µstyle can be
directly computed from the known style feature fstyle, in IDN the ground truth
style feature is unknown (we don’t have fstyle), thus we should not naively com-
pute the mean of f ′

style. Therefore, we use conv layers to actively predict the
style information, and will reshape the output into a vector as µ′

style. Finally, we
concatenate µ′

style and σ′

style to predict the style-vector with MLP, and use conv
layers on fcontent to predict the sketch. The whole IDN process can be trained
end-to-end with the target style-vector and target-sketch. Unlike other disentan-
gling methods, we separate the style and content from a structural perspective
that is straightforward while maintaining effectiveness.

3.3 Reinforcing Style: Feature Map Transformation

To approach the conditional image generation task, previous methods such as
MUNIT [16] and BicycleGAN [17] use a low-dimensional latent vector of Istyle
extracted from some feature extractors E as the conditioning factor. However,
we argue that such vector representation carries limited information in terms
of style details. Therefore, it is more effective to directly use feature-maps as a
conditional factor and information supplier.

Nevertheless, the image feature-maps in CNN usually carry both the style
information and strong content information. Such content information can be
problematic and is undesired. For instance, if the style image is a house while
the input sketch implies a lake, we do not want any shape or illusion of a house
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Fig. 5. Process flow of Feature-Map Transformation

within the lake region in the synthesized image. To get rid of the content infor-
mation, while keeping the richness of the style features, we propose the Feature
Map Transformation (FMT). FMT takes the input sketch Isketch, the sketch of
the style image Istyle−sketch, and the feature map of the style image fstyle as
inputs, and produces transformed feature-maps ft. ft only preserves the desired
style features of the style image and discards its content structure. Note that
Istyle−sketch is extracted using simple edge detection methods and fstyle comes
from the feature-extractor E, that are both easy to achieve.

The proposed FMT is a fixed formula without parameter-training. The pro-
cedure is illustrated in Figure 5 with five steps. In step 1, we use Istyle−sketch as
a mask to filter fstyle and get two sets of features, i.e., f c

style that only have the

features around the contours and f
p
style with features on plain areas. In step 2,

we apply a series of max-pooling and average-pooling to this filtered yet sparse
feature values to extract a 4 × 4 feature-map for each part, namely f c′

style and

f
p′

style. In step 3, we repeatedly fill the 4× 4 f c′

style and f
p′

style into a f c
t and a f

p
t

with the same size of fstyle. In step 4, we use Isketch as a mask in the same man-

ner to filter these two feature maps, and get f c
t
′ and f

p
t
′

that have the features
of Istyle but in the shape of Isketch. Finally in step 5, we add the results to get

ft = f c
t
′ + f

p
t
′

as the output of the FMT layer. We then concatenate ft to its
corresponding feature-maps in G for the synthesis process.

The pooling operation collects the most distinguishable feature values along
spatial channel in fstyle, then the repeat-filling operation expands the collected
global statistics, finally the masking operation makes sure the transformed feature-
map will not introduce any undesired content information of the style image.
FMT provides accurate guidance to the generation of fine-grained style patterns
in a straightforward manner, and unlike AdaIN [24] and Gram-matrix [8] which
require higher-order statistics. In practice, we apply FMT from the 16 × 16 to
64×64 feature maps. FMT contains two max-pooling layers and one avg-pooling
layer. These layers have 5× 5 kernel and stride of 3, which give us a reasonable
receptive field to get the highlighted style features. We first use max-pooling to
get the most outstanding feature values as the style information, then use the
average-pooling to summarize the values into a “mean feature” along the spa-
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tial dimensions. The average-pooling can help smooth out some local bias (peak
values) and get a more generalized style representation.

3.4 Objective Functions

Besides the original GAN loss, auxiliary losses are adopted in our model. Specif-
ically, when the input is a real image, we train D with a style loss and a content

loss, which minimize the MSE of the predicted style vector and sketch with the
ground-truth ones respectively. Meanwhile, G aims to deceive D to predict the
same style vector as the one extracted from Istyle and output the same sketch
as Isketch. These auxiliary losses strengthen D’s ability to understand the input
images and let G generate more accurate style patterns while ensuring the con-
tent faithfulness. During training, we have two types of input for the model, one
is the paired data, where the Isketch and Istyle are from the same image, and
the other is randomly matched data, where Isketch and Istyle are not paired. We
also have a reconstruction MSE loss on the paired data.

Formally, D gives three outputs: S(I), C(I), P (I), where S(I) is the pre-
dicted style vector of an image I, C(I) is the predicted sketch, and P (I) is the
probability of I being a real image. Thus, the loss functions for D and G are:

L(D) =E[log(P (Ireal))] + E[log(1− P (G(Isketch, Istyle)))]

+MSE(S(Ireal), E(Ireal)) +MSE(C(Ireal), Ireal−sketch), (6)

L(G) =E[log(P (G(Isketch, Istyle)))] +MSE(C(G(Isketch, Istyle)), Isketch)

+MSE(S(G(Isketch, Istyle)), E(Istyle)). (7)

and the extra loss for G: MSE(G(Isketch, Istyle), Istyle) is applied when the in-
puts are paired. Ireal is randomly sampled real data and Ireal−sketch is its cor-
responding sketch, and Isketch and Istyle are randomly sampled sketches and
referential style images as the input for G.

4 Experiments

We first show comparisons between our model and baseline methods, and then
present the ablation studies. The code to reproduce all the experiments with
detailed training configurations are included in the supplementary materials,
along with a video demonstrating our model in real time. A website powered
by the proposed model is available online at: https://www.playform.io, where
people can synthesize 512× 512 images with their free-hand drawn sketches.
Dataset: Our dataset is collected from Wikiart [33] and consists of 10k images
with 55 artistic styles (e.g., impressionism, realism, etc.). We follow the sketch
creation method described by [4] to get the paired sketch for each painting.
We split the images into training and testing set with a ratio of 9 : 1. All the
comparisons shown in this section were conducted on the testing set, where both
the sketches and the art images were unseen to the models.
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Metrics: We use FID [34] and a classification accuracy for the quantitative
comparisons. FID is a popular image generation metric that provides a percep-
tual similarity between two sets of images. For our task, we generate Ig from all
the testing sketches using the same Istyle, and compute the FID between Ig and
the images from the same style. We repeat this process for all style images. We
further employ a more direct metric to compute the style classification accuracy
of Ig, which leverages a VGG model pre-trained on ImageNet [35] and fine-tuned
on art for style classification. Such model is more invariant to compositions, and
focuses more on the artistic style patterns. We record how many of Ig are classi-
fied correctly as the style of Istyle, which reflects how well the generator captures
the style features and translates them into Ig. The style-classification accuracy
for VGG is 95.1%, indicating a trustworthy performance.

4.1 Comparison to Baselines:

MUNIT [16] (unsupervised) and BicycleGAN [17] (supervised) are the two state-
of-the-art I2I models that are comparable to our model for their ability to do
conditional image translation. SketchyGAN [4] is the latest model that is ded-
icated to the sketch-to-image task. Pix2pix [11] is the fundamental model for
the I2I process. In this section, we show comparisons between our model and
the aforementioned models. We also include the results from the classical NST
method by [8] as a representative of that class of methods. For SketchyGAN
(noted as “Pix2pix+MRU” since its main contribution is MRU) and Pix2pix,
we adopt their model components but use our training schema to enable them
the style-conditioned sketch-to-image synthesis.

Pix2pix+MRU OursStyleSketch Pix2pix+MRU OursStyleSketch

(a) (b)
Sketch NST MUNIT Bicycle Pix2pix OursStyle 

Fig. 6. Qualitative comparison to baseline models

All the tested models are trained on images with 128 × 128 resolution due
to the compared models’ capacity restrictions (our model can easily upscale to
512 × 512). We make sure all the compared models have a similar generative
capacity by having a similar amount of weights in their respective generators.
Except for Pix2pix, all the compared models have more total parameters than
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ours and require a longer time to train. We tested multiple hyper-parameter
settings on baseline models and reported the highest figures.

Qualitative results are shown in Figure 6. Except “Pix2pix+MRU”, all the
other methods can hardly handle the art dataset and do not produce mean-
ingful results. Due to the limited information in sketches, NST and MUNIT
can hardly generate meaningful images, BicycleGAN only generates images with
blurry edges and fuzzy colors, and Pix2pix consistently gets undesirable artifacts.
Notice that, models like MUNIT and BicycleGAN do work well on datasets with
simple sketches, where the images share one standard shape (only cats, shoes)
and are well registered with white background, and without any artistic features
involved (semantically diversified, different color palettes and texture). In con-
trast, images in art dataset are much more complicated with multiple objects
and different compositions, which result in bad performance for these previous
models and show the effectiveness of our proposed components.

Table 1. Quantitative comparison to baseline models

NST MUNIT Pix2pix BicycleGAN Pix2pix+MRU Ours

FID ↓ 6.85 7.43 ± 0.08 7.08 ± 0.05 6.39 ± 0.05 5.05 ± 0.13 4.18 ± 0.11

Classification Score ↑ 0.182 0.241 ± 0.012 0.485 ± 0.012 0.321 ± 0.009 0.487 ± 0.002 0.573 ± 0.011

The quantitative results, shown in Table 1, concur with the qualitative re-
sults. It is worth noticing that, while “Pix2pix+MRU” generates comparably
visual-appealing images, our model outperforms it by a large margin especially
in terms of style classification score, which indicates the superiority of our model
in translating the right style cues from the style image into the generated images.
Comparison to MRU from SketchyGAN: Since SketchyGAN is not pro-
posed for the exemplar-based s2i task, the comparison here is not with Sketchy-
GAN as it is, but rather with a modified version with our training schema to
suit our problem definition. While the “Pix2pix+MRU” results look good from
a sketch colorization perspective, they are not satisfactory from the artistic style
transfer perspective compared with the given style images (eg., texture of flat
area, linear vs painterly). As shown in Figure 6-(b), “Pix2pix+MRU” tends to
produce dull colors on all its generations, with an undesired color shift compared
to the style images. In contrast, our results provide more accurate color palette
and texture restoration. Apart from the quantitative result, “Pix2pix+MRU” is
outperformed by our model especially in terms of the fine-grained artistic style
features, such as color flatness or fuzziness and edge sharpness.

4.2 Ablation study

We perform ablation studies to evaluate the three proposed components using
a customized Pix2pix+MRU model as the baseline. More experiments can be
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Table 2. Ablation study of the proposed components

baseline with DMI with FMT with 2B with IDN

FID ↓ 4.77 ± 0.14 4.84 ± 0.09 4.43 ± 0.15 4.73 ± 0.09 4.18± 0.11

Classification Score ↑ 0.485 ± 0.012 0.507 ± 0.007 0.512 ± 0.009 0.479 ± 0.013 0.573 ± 0.011

found in the appendix, including a quantitative evaluation of the content and
style disentanglement performance of our model, an effectiveness analysis of an
image gradient matching loss for better texture generation, and a more detailed
comparison between AdaIN and the proposed FMT for style transfer.

In this section, we show both the cumulative comparisons and individual
benefits for each modules. When evaluating FMT, we replace the AdaIN layer
on lower level image features with FMT, and show better performance of FMT
compared to AdaIN. IDN changes the structure of the discriminator, so when
validating the effectiveness of IDN, we add an extra baseline model which has
a discriminator naively predicting the sketch and style-vector (noted as “with
2B”) from its two separate convolution branches.

In Table 2, the proposed components are cumulatively added to the model.
FID and classification scores consistently show that each of the proposed com-
ponents contributes to the generation performance.

FMT and IDN bring the most significant boost in FID and Classification,
respectively. It is worth noticing how the added two branches on the discrimi-
nator (with 2B) hurt the performance and how IDN reverses that drawback and
further boosts the performance. We hypothesis that naively adding two branches
collected conflicting information during training (content and style) and made
the models harder to converge. In contrast, IDN neatly eliminates the conflict
thanks to its disentangling effect, and takes advantage of both the content and
style information for a better generation performance.

StyleInput No FMT With FMT

(a)

(b)

(c)

(d)

StyleInput No IDN With IDN

(a)

(c)

(d)

(b)

StyleInput No DMI With DMI

(a)

(b)

(c)

(d)

Fig. 7. Qualitative comparisons of DMI, FMT and IDN

Qualitative Comparisons: In Figure 7, the left panel shows how DMI boosts
the content faithfulness to the input sketches. In row (a), the model without
DMI misses the sketch lines on the top and right portion, while DMI redeems
all the lines in Isketch. In row (b), Ig without DMI is affected by Istyle which
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has a flat and empty sky and misses the lines on the top portion of Isketch. In
contrast, the model with DMI successfully generates trees, clouds, and mountain
views following the lines in Isketch. In row (c), Ig without DMI totally messes up
the shapes in the mid area in Isketch, while, in the one with DMI, all the edges
are correctly shaped with clear contrast.

The middle panel in Figure 7 shows how FMT helps translate the style from
the input style images. In row (a), FMT helps generate the correct colors and
rich textures in the mountain as in Istyle. In row (b), Ig with FMT inherits
the smoothness from Istyle where the colors are fuzzy and the edges are blurry,
while removing FMT leads to sharp edges and flat colors. When Istyle is flat
without texture, FMT is also able to resume the correct style. Row (c) and row
(d) demonstrate that when Istyle is clean and flat without fuzziness, Ig without
FMT generates undesired textures while FMT ensures the accurate flat style.

The right panel in Figure 7 shows how IDN helps maintain a better color
palette and generally reduce the artifacts. In row (a) and (b), there are visible
artifacts in the sky of the generated images without IDN, while IDN greatly
reduces such effects. In row (b) and (c), the images without IDN shows undesired
green and purple-brown colors that are not in the given style images, and IDN
has better color consistency. In row (c) and (d), there are clear color-shifts in
the generated images, which then been corrected in the model with IDN. Please
refer to the Appendix for more qualitative comparisons.

4.3 Human Evaluation

We conduct human survey to validate our model’s effectiveness compared to
the “Pix2pix+MRU” baseline model. The survey is taken by 100 undergraduate
students to ensure the quality. In each question, the user is presented with a
sketch, a style image and the generated images from baseline (Pix2pix+MRU)
and our model (option letters are randomly assigned to reduce bias) and asked:
“Which image, a or b, better captures the style in colorizing the sketch?”. We
collected 1000 results and 63.3% selects our model as the better performer. 13.3%
selects “hard to tell”. Only 23.4% prefer the baseline model.

4.4 Qualitative Results on Multi Domains

While focused on art, our model is generic to other image domains with superior
visual quality than previous models. On more commonly used datasets CelebA
and Fashion Apparel, our model also out-performs the baselines and shows the
new state-of-the-art performance. Figure 8 shows the results on multiple image
domains. In figure (c), the glasses in the sketches are successfully rendered in the
generated images even when there is no glasses in the style image. Similarly, the
moustache is correctly removed when there is moustache in the style images but
is not indicated in the sketches. It’s worth noticing that the gender of generated
images follows the sketch instead of style. These results show clear evidence that
the model learns semantics of input sketch from the training corpus.
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(a) (b) (c)

sk
et
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style

Fig. 8. Synthesize on still-life painting, apparel, and portrait at 5122 resolution.

5 Discussions

The model yields consistent performance when we try different input settings
for the synthesis, including using multiple reference style images rather than
one. During the experiments, we also discovered some interesting behaviors and
limitations that worth further research. For instance, learning from the corpus
can be a good thing for providing extra style cues apart from the style image,
however, it may also cause conflicts against it, such as inaccurate coloring and
excess shapes. It is worth study on how to balance the representation the model
learns from the whole corpus and from the referential style image, and how
to take advantage of the knowledge from the corpus for better generation. We
sincerely guide the readers to the Appendix for more information.

6 Conclusion

We approached the task of generating artistic images from sketch while condi-
tioned on style images with a novel sketch-to-art model. Unlike photo-realistic
datasets, we highlighted and identified the unique properties of artistic images
and pointed out the different challenges they possess. Respectively, we proposed
methods that can effectively addressed these challenges. Our model synthesizes
images with the awareness of more comprehensive artistic style attributes, which
goes beyond color palettes, and for the first time, identifies the varied texture,
contours, and plain area styles. Overall, our work pushes the boundary of the
deep neural networks in capturing and translating various artistic styles, and
makes a solid contribution to the sketch-to-image literature.
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