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Abstract. Video summarization is among the challenging tasks in com-
puter vision, which aims at identifying highlight frames or shots over a
lengthy video input. In this paper, we propose a novel attention-based
framework for video summarization with complex video data. Unlike
previous works which only apply attention mechanism on the correspon-
dence between frames, our multi-concept video self-attention (MC-VSA)
model is presented to identify informative regions across temporal and
concept video features, which jointly exploit context diversity over time
and space for summarization purposes. Together with consistency be-
tween video and summary enforced in our framework, our model can be
applied to both labeled and unlabeled data, making our method prefer-
able to real-world applications. Extensive and complete experiments on
two benchmarks demonstrate the effectiveness of our model both quan-
titatively and qualitatively, and confirms its superiority over the state-
of-the-arts.

1 Introduction

Video summarization [1–4] aims at identifying highlighted video frames or shots,
which is among the challenging tasks in computer vision and machine learning.
Real-world applications such as video surveillance, video understanding and re-
trieval would benefit from successful video summarization outputs. To address
this challenging task, several deep learning-based models [5–9] employing long
short-term memory (LSTM) cells [10] have been recently proposed. However,
the use of such recurrent neural network (RNN) based techniques might fail if
the length of the input video is long [11]. Therefore, even the training video
data are with ground-truth labels, there is no guarantee that RNN-based mod-
els would achieve satisfactory results using the last output state. To address
the aforementioned issue, several approaches (also based on deep learning) are
proposed [12–14]. For example, [12, 13] advances hierarchical structure LSTMs
to capture longer video, which is shown to be able to handle video with longer
lengths. [14] proposes SUM-FCN which considers a CNN-based semantic seg-
mentation model to deal with videos while alleviating the above concern. Yet,
these existing techniques might not exhibit capabilities in modeling the rela-
tionship between video frames, since they generally treat each frame equally
important. Thus, their summarization performance might be limited.
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Fig. 1: Illustration of advancing self-attention while preserving visual diversity
for video summarization. Noted that Head 1 to 3 denote attention performed in
a subspace, which describes proper visual concept information across frames. We
proposed a multi-concept video self-attention (MC-VSA) framework for solving
this task.

To advance the attention mechanism for video summarization, a number of
methods are recently proposed [15–17]. With the ability of learning importance
weights across all video frames, attention-based models are expected to be more
robust while it is still able to tackle lengthy video as well as the video semantic
meanings. For example, [16] firstly proposes an attentive video summarization
model (AVS) for improved attention on summarization tasks. [17] also employs
attention models for properly identifying video shot boundaries. Nevertheless,
these attention-based methods might not generalize to general videos with com-
plex content information, since they typically perform attention on pre-selected
feature representations or latent spaces. To make a summarization model more
robust to real-world video, one needs to better observe and relate the temporal-
concept information within and across video frames, rather than exclusively
attend correlation between frames in the video.

In this paper, we propose a novel attention-based deep learning framework
for video summarization. With the goal to attend temporally and concept infor-
mative features for summarization in the sense, we present a multi-concept video
self-attention (MC-VSA) model in a discriminative learning mechanism. Based
on the idea of [18], we add the multi-head attention mechanism in our model
to transform input video frames features into different subspaces. Different from
the previous attention model [15–17], this allows us to exploit a variety of vi-
sual appearances during the attention process, and thus identify visual concept
informative regions across frames for both summarization and video semantic
consistency purposes, which we call multi-concept attention cross whole video
time step (temporal and concept attention).
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Take an example as illustrated in Fig. 1, it would be desirable to be able to
extract different visual concepts corresponding to different semantics or objects
with the highlight guidance, so that the joint attention across these concepts
would allow satisfactory video summarization outputs. More importantly, our
learning framework can be generalized well in a semi-supervised setting, i.e.,
only a number of training data are with ground-truth labels. More details of our
proposed framework will be presented in Sec. 3. In addition, we found that the
current evaluation protocol using pre-defined procedure has some problems [19,
3] (e.p., random summaries outperform even the human-generated summaries in
leave-one-out experiments), which are mentioned in [20]. Therefore, our quanti-
tative experiment and ablation study are based on both the current [19, 3] and
the new [20] evaluation protocol.

The contributions of this paper are highlighted as follows:

– We present a multi-concept video self-attention model (MC-VSA) that aims
at attending temporally and concept informative features via transforming
input video frames in different subspaces, which is beneficial to video sum-
marization purposes.

– We are among the first to propose the attention-based framework that ob-
serves semantic consistency between input videos and learned summarization
outputs, which allows the video summarization model can be generalized in
semi-supervised settings.

– Experimental results on benchmark datasets confirm that our proposed method
achieves favorable performances against the state-of-the-art approaches in
two evaluation protocols.

2 Related Work

Video summarization. Video summarization is among the active research
topics in computer vision. Several deep methods [5–9] developed for video sum-
marization choose to employ long short-term memory (LSTM) cells [10]. For
instance, [5] consider video summarization as a key-frame/shot selection task,
and propose an LSTM-based model for addressing this task. Since most of the
videos contain hundreds even thousands of frames, it might not be easy for
LSTMs to handle such long-term temporal dependency of videos. Hence, some
existing approaches [12–14] are further developed to deal with long videos. [12,
13] propose a hierarchical structure of RNN to exploit intra and inter-shot tempo-
ral dependency via two LSTM layers, respectively. Such a hierarchical structure
is considered to be more preferable for handling video data with hundreds of
frames. On the other hand, [14] develop fully convolutional networks for video
summarization which requires less training time due to the use of parallel compu-
tation techniques. Nevertheless, solving video summarization problems typically
requires one to consider the importance across video frames. Existing models
generally view the contributions of each frame are equally important during
their training stage, which might limit the summarization performance.
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Fig. 2: Overview of our Multi-Concept Video Self-Attention (MC-VSA) for video
summarization. Our MC-VSA is composed of three modules: the multi-head
multi-layer attention encoder, classifier, and the LSTM-based auto-encoder mod-
ule. Note that the attention encoder takes input videos X = {xi}

T
i=1 and trans-

forms them into attended features Z = {zi}
T
i=1, followed by the classifier to

output the associated highlight scores ŷi. The LSTM-based auto-encoder mod-
ule preserves data representation ability while enforcing visual concept similarity,
allowing guidance of self-attention for summarization purposes.

Attention based summarization. Attention-based models [17, 16, 15, 21] have
been proposed to video summarization tasks to alleviate the aforementioned
problems. For example, [17] introduces an attention mechanism for detecting
the shot boundaries, aiming at improving the summarization performances. An
attentive encoder-decoder framework is presented in [16], with the models AVS
to video summarization via matrix addition and multiplication techniques. [15]
utilizes adversarial learning for visual attention with models of [22], which aims
at learning a discriminator to detect highlighted fragments as a summary in the
input video. Yet, these attention-based methods typically require ground-truth
highlighted supervision, and thus it might not be easy to extend to the cases
when such labels are not available.

Semi-supervised and unsupervised summarization. In order to overcome
the above concerns, unsupervised [7, 21] and semi-supervised [8] method have
been proposed. [7] is the first unsupervised deep learning paper for video sum-
marization, which uses GANdpp [7] with different LSTM modules to select key-
frames from the input video via adversarial learning. Similarly, [21] uses trans-
former [18] in conditional GAN and achieve improved performance in unsuper-
vised setting. On the other hand, [8] uses an encoder-decoder mechanism aim
at enforcing similarity between the input and the summarized outputs. Never-
theless, the above models [7, 8] take two different LSTM module to maintain
the information consistency between raw video and the summary, which cannot
ensure the video information is in the embedding from the LSTM module. Also,
even though [21] improves the unsupervised model using an additional atten-
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tive module with GAN, there is still a large gap compared with SOTAs in a
supervised setting, and their model lacks discussion for the attentive module.
To overcome the above limitations, our MC-VSA model uses a share-weighted
LSTM module to encode the video feature and attended feature (resulting in the
summary later) enforcing the embedding from the LSTM encoder represents the
semantic meaning of the video, and focus on the benefit the attention module
brings.

3 Proposed Method

3.1 Problem Formulation and Notation

Given an input video with a total of T frames, our goal is to select the most
important key-frames, about 15% of the whole video, as the summarization
output. We now define the notations to be used in this paper. Assume that
we have frame set F = {fi}

T
f=1 with the associated label set Y = {yi}

T
i=1,

where fi ∈ R
H×W×3 and yi ∈ R represent the ith frame in the target video. To

extract the visual features from the frame set F , we apply a CNN (pre-trained
on ImageNet) and obtain the video feature set X = {xi}

T
i=1, where xi ∈ R

d (d
denotes the dimension of the visual feature).

3.2 Overview of MC-VSA

As shown in Figure 2, we propose a Multi-Concept Video Self-Attention model
(MC-VSA) to identify the most representative frames for summarization pur-
poses. Our Multi-Concept Video Self-Attention model is composed of three mod-
ules: the multi-head multi-layer attention encoder, classifier, and the LSTM auto
encoder decoder module. First, the model takes X = {xi}

T
i=1 with T sequential

features as input of its attention encoder. Our attention encoder then transforms
input features xi in X into different subspaces where attention can be performed
accordingly. As stated earlier, the attention encoder allows one to exploit vari-
ous visual appearances during the attention process, and thus identify concept
informative regions across frames.

We note that, while the learning of MC-VSA can be simply trained using
unlabeled data, we further introduce the visual concept loss, which would guide
the MC-VSA if the input video data is with ground-truth highlighted labels.
To be more precise, we encourage the learned attention weighted features Z =
{xi}

T
i=1 to preserve the same video information as the original one (X = {xi}

T
i=1).

To achieve this, the shared LSTM encoder in our framework is designed to match
latent vectors ez and ex from the same video, thus implying visual concept
similarity. If ground-truth highlighted labels are available, the final classifier
thus takes the attended features Z = {zi}

T
i=1 to produce the final highlighted

scores ŷi for each zi. With label supervision available, we encourage the output
labels Ŷ = {ŷi}

T
i=1 to match the corresponding ground truths Y = {yi}

T
i=1. More

details about our MC-VSA model are elaborated in the following.
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As for testing, we take the input video with T ′ frames and produce the final
summarization outputs from Ŷ = {ŷi}

T
i=1. We note that our MC-VSA is able

to handle a different number of frames in a video as input. The experimental
results will be presented in the next section.

3.3 Video Self-Attention for Summarization

The multi-head multi-layer attention encoder in our MC-VSA is inspired by
the Transformer [18]. To perform concept-temporal attention from the input
video, we project the “temporal” video features across video frames onto dif-
ferent subspaces. Each sub-space aims at observing distinct visual concepts as
verified later. To be more specific, this attention encoder module is developed
to transform input video frames into N subspaces by the introduced N self-
attention heads, with the goal of observing and distilling potentially represen-
tative information across video frames. It then aggregates the attended results
from each subspace and produces the final attended features, which can be seen
as jointly incorporating the temporal and concept information. In addition, we
also perform such multi-head attention across image layers to exhibit robustness
in identifying representative visual concepts.

Standard Self-Attention. For the sake of completeness, we briefly review
the self-attention module [23]. Typical self-attention mechanisms transform the
input features into three inputs: query Q, key K, and value V by matrix multi-
plication with transforming matrix. The softmax layer will take the result of the
multiplication of Q and K, and produce the attention weights. Hence, the target
attention result is produced from the result of the final matrix multiplication of
softmax and the V .

Multi-Concept Visual Self-Attention for Video Summarization. To
observe both temporal and concept information from the input video frames
F = {fi}

T
i=1, we advance the idea of multi-head multi-layer self-attention as de-

scribed below. As depicted in Fig 3, we have the attention encoder comprise of
N self-attention modules (i.e., the head number equals N), and each of them is
developed to derive the attended feature each of N subspaces. We firstly trans-
form the input X into N subspace by the N projection layers Pn (Rdn

← R
d)

where n denotes the projection layer number (n = 1 ∼ N) and dn denotes the
subspace dimension.

To produce the finalized attended results from all of the N subspaces, we
introduce the linear projection layer MR to derive the final attended features
R = {ri}

T
i=1, where ri ∈ R

d (same dimention as Xi), for the original input
features X = {xi}

T
i=1, which can be formulated as:

R = MR · concat(O1:N ), (1)

where concat means we concatenate the outputs O1:N from all of the N self-
attention blocks in the subspace.
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Fig. 3: Illustration of multi-head multi-layer self-attention module of our atten-
tion encoder (note that only a single layer is shown for simplicity). With N

different single-head attention blocks (each with a projection matrix layer), self-
attention can be performed in different subspaces (dimension dn for each) for
capturing diverse visual concepts. We concatenate the outputs O1:N from all
attention blocks and obtain the joint attention result R at the output of the
final linear transform layer.

To extract rich information from video, we employ L layers in the attention
encoder as shown in Figure 2. Namely, the output of R′ at the first layer will
be passed to the second one to produce the fine-grained output R′′. Hence, the
finalized attention features Z = {zi}

T
i=1 is denoted as Z = R(L).

Later in our experiments, we will present example visual self-attention results
produced by different heads e.g., Figure 4 confirming that the attention encoder
exhibits sufficient capability in exploiting visual appearance variations across
video frames for attention.

3.4 Self-Learning of Video Semantic Consistency for Video

Summarization

The aforementioned attention mechanism can be viewed as a self-summarization
process, but lack the ability to ensure that the attended outputs produced by
the attention modules would preserve the information in the input video.

To alleviate this limitation, we apply a Siamese network based on a shared
LSTM encoder and a single decoder as illustrated in Figure 2. This shared LSTM
encoder aims at deriving the compressed latent vectors ez and ex for the attended
feature set Z and the original feature set X, while the LSTM decoder is to
recover the encoded representation for reconstruction purposes. Thus, we have
the reconstruction loss Lrec observe the output of this auto-encoder module:
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Lrec =

T∑

i=1

‖x̂i − xi‖
2
, (2)

where X̂ = {x̂i}
T
i=1 denotes the reconstructed feature set and x̂i indicates the

ith recovered video frame feature.
More importantly, to preserve visual concept consistency, we require the en-

coded vectors ez and ex to be close if they are from the same video input. As a
result, we enforce the visual concept consistency loss Lcon as follows:

Lcon = ‖ex − ez‖
2
. (3)

It is worth noting that, our reconstruction loss Lrec and consistency loss
Lcon are both computed without observing any ground-truth label. That is, the
introduction of this module allows training using unlabeled video. Together with
the labeled ones, our proposed framework can be learned in a semi-supervised
fashion. As later verified in our experiments, this would result in promising video
summarization performances when comparing against the state of the arts.

3.5 Full Objectives

As depicted in Figure 2, our proposed framework can be learned with fully
labeled video. That is, the classification layer takes the resulted attended feature
set Z = {zi}

T
i=1 to produce the final highlight potential score ŷi for each attended

feature zi. More precisely, we encourage the output highlight labels Ŷ = {ŷi}
T
i=1

produced by our method can be closed to the ground truth Y = {yi}
T
i=1 and the

binary cross-entropy classification loss Lcls is formulated as below:

Lcls = −
1

T

T∑

t=1

yt log(ŷt) + (1− yt) log(1− ŷt). (4)

Thus, the total loss L is summarized as:

L = Lcls + Lrec + Lcon, (5)

where Lcls is calculated by labeled data, while the Lrec and Lcon are derived by
both the labeled and unlabeled ones.

We note that, if there is no labeled video data is available during training,
Lcls in (5) cannot be computed. Following [9, 14], we train our MC-VSA in
such unsupervised setting and introduce a diversity loss Ldiv (6) to (5). This
modification would encourage MC-VSA to select informative yet distinct frames
with representative information in an unsupervised learning scenario.

Ldiv =

S∑

s=1

∑

xs∈cs

∑

xs′∈cs

xs 6=xs′

d(xs, xs′). (6)
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Table 1: Comparisons with existing supervised summarization methods on
SumMe and TvSum in differnt experimental settings. The numbers in bold and
under line indicate the best and the second result.

Method
SumMe TvSum

C A T C A T

Bi-LSTM [5] 37.6 41.6 40.7 54.2 57.9 56.9
DPP-LSTM [5] 38.6 42.9 41.8 54.7 59.6 58.7
GANsup [7] 41.7 43.6 - 56.3 61.2 -
DR-DSNsup [9] 42.1 43.9 42.6 58.1 59.8 58.9
SUM-FCN [14] 47.5 51.1 44.1 56.8 59.2 58.2
re-SEQ2SEQ [8] 44.9 - - 63.9 - -
UnpairedVSN [24] 47.5 - 41.6 55.6 - 55.7

H-RNN [12] 44.3 - - 62.1 - -
HSA-RNN [13] 44.1 - - 59.8 - -

M-AVS [16] 44.4 46.1 - 61.0 61.8 -
VASNet [17] 49.7 51.1 - 61.4 62.4 -

MC-VSA (Ours) 51.6 53.0 48.1 63.7 64.0 59.5

Table 2: Comparisons with recent unsupervised approaches for video summa-
rization using SumMe and TvSum. Note that * indicates the non deep-learning
based methods. The number in bold indicates the best performance.

DATASET [19]* [7] [14] [9] [24] MC-VSA (Ours)

SumMe 26.6 39.1 41.5 41.4 47.5 44.6

TvSum 50.0 51.7 52.7 57.6 55.6 58.0

4 Experiment

In this section, we first describe the datasets in Sec. 4.1, followed by the ex-
perimental protocols and implementation details in Sec. 4.2. For evaluating our
MC-VSA, we present quantitative results in Sec. 4.3 and Sec. 4.4. We also pro-
vide ablation studies in Sec. 4.6. Finally, we provide qualitative results and visual
analysis in Sec. 4.5.

4.1 Datasets

We evaluate our method on two public benchmark datasets SumMe [2] and
TvSum [19], and use the additional dataset: OVP and YouTube [9] in the Aug-
mented and Transfer settings:

SumMe. SumMe consists of 25 videos with several different topics such as
holidays and sports. Each video ranges from 1 to 6 minutes and annotated by 15
to 18 persons. Thus, there are multiple ground truth summaries for each video.
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Fig. 4: Visualization example of our MC-VSA for video summarization on Tv-
Sum. We visualize selected attention maps generated by the second layer in the
attention encoder, with ground truth (grey) and predicted outputs (orange) sum-
marization shown below. Note that the attention outputs bounded in different
colors (blue, red and purple) correspond to different multi visual concepts (e.g.,
burger, commentator, and chef) in this video.

TvSum. TvSum is a larger dataset with 50 videos and includes topics like
news and documentaries. The duration of each video is from 2 to 10 minutes.
Same as SumMe, TvSum dataset has 20 annotators providing frame-level im-
portance scores. Following [5] and [9], we convert important scores to shot-based
summaries for evaluation.

OVP and YouTube. Followed by [5] and [9], we consider two additional
challenging datasets released by [9]: OVP and YouTube, which contain 50 videos
and 39 videos in the augmented and transfer settings.

4.2 Protocols and Implementation Details

Evaluation protocols We follow the three settings adopted in [5, 9, 14] to eval-
uate our methods:

– Canonical: we use the standard supervised learning on the dataset, i.e., 80%
for training and the rest for testing following previous work [5, 7, 16, 9, 14].

– Augmented: we use the standard supervised training as the canonical setting
but augment the training data with OVP and YouTube datasets.

– Transfer: We use three datasets as the training data and a target dataset
(e.g. SumMe or TvSum) as the testing data to evaluate the transfer ability
of our model.

For a fair comparison, we follow the commonly adopted metric in previous
works [5, 9, 14], and computed F-score to assess the similarity between auto-
matic and ground-truth summaries. As for the training/testing data, we apply
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Table 3: Ablation studies and performance comparisons on TvSum dataset. We
take dppLSTM [5] and [9] for comparisons in Kendall’s τ , and Spearman’s ρ

evaluation protocol. The number in bold denotes the best performance.

Method
w/ knapsack algo. w/o knapsack algo.

F1 score Kendall’s τ Spearman’s ρ

dppLSTM 60.0 0.042 0.055
DR-DSNdpp 58.0 0.020 0.026
[26] 58.4 0.078 0.116

VASNet 61.4 - -
Ours (w/o attention) 59.7 0.005 0.006
Ours (1layer-1head) 60.1 0.065 0.079

Ours (3layers-24heads) 63.7 0.116 0.142

the same standard supervised learning setting as [5, 7, 16, 9, 14] where the train-
ing and testing are from the disjoint part of the same dataset. We report the
results at F-score in all of the settings. To avoid the shortage with F-score,
which is mentioned by [20], we additionally conduct the experiments using new
protocols [20] and make comparisons with state-of-the-arts as well in Table. 3.

Implementation details We downsample the video data into frame sequences
in 2 fps as previous work [5, 9]. For fair comparisons with [5, 14, 9, 16], we also
employ GoogleNet [25] pre-trained on ImageNet as backbone as our CNN for
extracting the video features while the output dimension d is 1024 (output of
pool5 layer of the GoogleNet). All of the attention modules are composed of
linear projection matrices as mentioned in Section 3. We set the number of
heads N as 24 while the dimension dn of each subspace features are set as
{64 |n = 1 ∼ 12} and {128 |n = 13 ∼ 24}. Our MC-VSA comprises of 3
multi-head attention layer, i.e., we set L as 3. The classifier is composed of
a fully connected layer followed by a sigmoid activation. The LSTM encoder
and decoder in our model contain 512 units. Besides, we set the learning rate as
1e−4 for all of our components. We use Adam optimizer to train the MC-VSA by
optimizing the objective loss. We produce the summary outputs by KNAPSACK
algorithm following [5, 14]

4.3 Comparison with Supervised Approaches

We compare our proposed MC-VSA with state-of-the-art methods on two bench-
mark datasets and summarize the results in Table 1. In canonical setting, we see
that our MC-VSA performed favorably against recent LSTM based approaches
(e.g., Bi-LSTM [5], DPP-LSTM [5], GANsup [7], and DR-DSNsup [9]), and
the CNN-based model (SUM-FCN [14]). Our model also achieves the improve-
ment over LSTM module Bi-LSTM [5], DPP-LSTM [5], GANsup [7], and DR-
DSNsup [9] ) by a large margin. For both augment and transfer settings, we
also observe similar trends and achieve improved performances against state-of-
the-art methods. It is worth noting that, though our model exhibit inferior to
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Fig. 5: Visualization for multi-head self-attention at the first layer of MC-VSA.
We show that this low-level attention layer not only implies shot-level attention,
visual concepts associated with similar objects are properly attended across video
frames (e.g., attention outputs bounded in difference colors).

re-SEQ2SEQ [8] by 0.2% at F-score on the TvSum dataset, our approach and
several competitors outperform [8] by a large margin on the SumMe dataset.

4.4 Comparisons with Unsupervised Approaches

We report our unsupervised learning results and comparisons in Table 2. With
training strategies presented in Sect. 3, we evaluate the effectiveness of our MC-
VAS in the unsupervised setting by comparing it with five existing unsupervised
summarization methods [7, 9, 14, 6]. As shown in Table 2, our MC-VAS was able
to achieve comparable results with the state-of-the-art did on both SumMe and
TvSum. Thus, even without any supervision, we can confirm that our model
takes advantage of multi-concept video self-attention with visual concept consis-
tency for video recovery and summarization.

4.5 Qualitative Results

To analyze the effectiveness of the self-attention module in MC-VSA, we present
visualization results in Fig. 4, in which the attention outputs were observed from
the second (high-level) layer in our model. In Fig. 4, the upper half part illustrates
frame-level attention weights for the selected 13 heads in our model. Note that
each row in the upper part of this figure represents a single head, in which the
darkness of the color indicates the importance of the associated frame. From this
example result, we see that the attention weights for different heads are quite
different, which confirms that our multi-head self-attention mechanism leads
to visual concept diversity. For example, by comparing the learned attention
weights and the corresponding frames (i.e., upper vs. lower parts of Fig. 4), we
see that one head in the blue rectangular box exhibits the semantic meaning of
hamburger, while the red one indicates the appearance of the food critic. And, as
confirmed by earlier quantitative experiments, these resulting attention weights
across different heads are indeed correlated with the summarization outputs.
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Fig. 6: Performance analysis of our model in semi-supervised settings on TvSum.
The x/y-axis indicate the percentage of labels in the training set and the F-
score, respectively. Results of recent supervised and unsupervised approaches
are depicted for comparison purposes. Note that Ours* denotes our MC-VSA
excluding the LSTM auto-encoder module while Ours represents the full model.

On the other hand, Fig. 5 illustrates the attention observed in the first layer
of our MC-VSA, which can be viewed as a low-level self-attention of multiple
heads from the input video. Take the entry of the ith column at the jth row, its
value reflects the attention for the corresponding frame pair. From this figure,
we see that the attention boundaries were visible and generally matched the
shot boundaries. In addition, we see that visual concepts with similar visual
appearances (e.g., wheel, car, etc.) were properly identified in particular video
segments, which reflect the concept-specific video shot information of this input
video. Guided by the classification and data recovery losses, this explains why
our proposed model is able to capture multiple representative visual information,
achieving satisfactory summarization outputs.

4.6 Ablation Studies

Semi-supervised settings. We first conduct a semi-supervised learning anal-
ysis of our proposed MC-VSA on the TvSum dataset. As illustrated in Figure 6,
the vertical axis indicates the F-score, and the horizontal axis represents the
percentage of the labeled data observed during training. For the completeness of
analysis, we compare our approach with 5 supervised or unsupervised summa-
rization methods in the same figure. From the results presented in the figure, we
see that our MC-VSA achieved improved performances over others. Moreover,
we see that our method was able to perform favorably against existing super-
vised approaches by a large margin, even when only 25% labels were observed
by our model during training. Furthermore, Figure 6 compares our model with
its variants in semi-supervised settings. Note that Ours* denotes our model ex-
cluding both reconstruction loss and visual concept consistency loss. Refer to
the semi-supervised analysis, the performance drop between Ours and Ours*
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confirms that such two loss terms are crucial when observing unlabeled data.
We note that in figure 6 for cases 100%, the performances achieved by ours and
ours* respectively are the same. This is because when we use the entire label set
in 100 %, the LSTM module only serves to train our model more stable instead
of achieving improved performance.

Fig. 7: Performance of our attention
model with varyingnumbers of layers (L)
and heads (N) (i.e., x-axis). We fix L=
3 and N = 24 for our model in all exper-
iments.

Network architecture design. We
now further discuss the design of our
model architecture. In Figure 7, we
show the performance of our multi-
head multi-layer attention model with
varying numbers of layers and heads
(x-axis). From this figure, we see that
while such hyperparameters need to
be determined in advance, the results
were not sensitive to their choices. In
other words, with a sufficient number
of heads and layers, multiple visual
concepts can be extracted for sum-
marization purposes as shown in our
supplementary video. As shown in Ta-
ble 3, we apply three evaluation pro-
tocols, including F1, Kendall’s τ , and
Spearman’s ρ, to evaluate our MC-VSA model. Kendall’s τ , and Spearman’s ρ

are proposed by [20] for impartial comparison. We compare our full model
(3layers-24heads) with other baseline models. To be more specific, we take the
VASNet [17] as the naive self-attention model baseline. Ours (w/o attention) rep-
resents the MC-VSA model consisting of the only classifier while ours (1layer-
1head) indicates a only single layer and head in the attention encoder. The
performance drop is observed when comparing ours with the above-mentioned
baseline models. We additionally report the performance provided by [5] and
[9] in [20] in Kendall’s τ and Spearman’s ρ evaluation protocol for benchmark
comparison.

5 Conclusion

We presented a novel deep learning framework multi-concept video self-attention
(MC-VSA) and consistency constraint between the input video and the out-
put summary for video summarization. The core technical novelty lies in the
unique design of multi-concept visual self-attention model, which jointly exploits
concept and temporal attention diversity in the input videos, while enforcing
the summarized outputs to have consistency with original video. Our proposed
framework not only generalized in supervised, semi-supervised and unsupervised
settings but also in both evaluation protocols. Also, our experiments and qual-
itative results confirmed the effectiveness of our proposed model and its ability
to identify certain informative visual concepts.
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