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Abstract. Depth completion aims to predict a dense depth map from a
sparse depth input. The acquisition of dense ground truth annotations
for depth completion settings can be difficult and, at the same time, a
significant domain gap between real LiDAR measurements and synthetic
data has prevented from successful training of models in virtual settings.
We propose a domain adaptation approach for sparse-to-dense depth
completion that is trained from synthetic data, without annotations in
the real domain or additional sensors. Our approach simulates the real
sensor noise in an RGB + LiDAR set-up, and consists of three modules:
simulating the real LiDAR input in the synthetic domain via projections,
filtering the real noisy LiDAR for supervision and adapting the synthetic
RGB image using a CycleGAN approach. We extensively evaluate these
modules against the state-of-the-art in the KITTI depth completion
benchmark, showing significant improvements.

1 Introduction

Motivation. Active sensors such as LiDAR determine the distance of objects
within a specified range via a sparse sampling of the environment whose density
decreases quadratically with the distance. RGB cameras densely capture their
field of view, however, monocular depth estimation from RGB is an ill-posed
problem that can be solved only up to a geometric scale. The combination of
RGB and depth modalities form a rich source for mutual improvements where
each sensor can benefit from the advantage of the other.

Many pipelines have been proposed for a fusion of these two inputs [1–6].
Ground truth annotations for this task, however, require elaborate techniques,
manual adjustments and are subject to hardware noise or costly and time-
consuming labeling. The most prominent publicly available data for this task [7]
creates a ground truth by aligning consecutive raw LiDAR scans that are cleaned
from measurement errors, occlusions, and motion artifacts in a post-processing
step involving classical stereo reconstruction. Even after the use of this additional
data and tedious processing, the signal is not noise-free as discussed in [7]. To
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(a) Overview of the problem (b) Multicamera set-up in CARLA

Fig. 1: We investigate the depth completion problem without ground truth in the
real domain, which contains paired noisy and sparse depth measurements and
RGB images. We highlight some noise present in the real data: see-through on
the tree trunk and bicycle, self-occlusion on the bicycle and missing points on
the van. We leverage synthetic data with multicamera dense depth and RGB
images. An overview of the multicamera set-up in CARLA used to simulate the
real projection LiDAR artifacts is included. The Depth Camera acts as a virtual
LiDAR and collects a dense depth, which is sparsified using real LiDAR binary
masks and projected to either the Left Camera or Right Camera reference frame.
Both the Left Camera and the Right Camera collect RGB information, used as
part of the input data, and a dense depth map, used for supervision.

avoid such annotations, some methods perform self-supervision [4, 5, 8], where
a photometric loss is employed with stereo or video data. The dependence on
additional data such as stereo or temporal sequences brings other problems such
as line-of-sight issues and motion artifacts from incoherently moving objects.
Modern 3D engines can render highly realistic virtual environments [9–11] with
perfect ground truth. However, a significant domain gap between real and virtual
scenes prevents from successful training on synthetic data only.

Contributions and Outline. In contrast to the self-supervised methods [4,5,8],
we propose to use a domain adaptation approach to address the depth completion
problem without real data ground truth as shown in Figure 1. We train our
method from the synthetic data generated with the driving simulator CARLA [11]
and evaluate it on the real KITTI depth completion benchmark [7]. The real
LiDAR data is noisy with the main source of noise being the see-through artifacts
that occur after projecting the LiDAR’s point cloud to the RGB cameras. We
aim to generate synthetic LiDAR data with a noise distribution similar to the
real LiDAR data. Hence, we propose an approach to simulate the see-through
artifacts by generating data in CARLA using a multicamera set-up, employing
random masks from the real LiDAR to sparsify the virtual LiDAR sensor, and
projecting from the virtual LiDAR camera to the RGB reference frame. We
further improve the model by filtering the noisy input in the real domain, thus
obtaining a set of reliable points that are used as supervision. Finally, to reduce
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the domain gap between the RGB images, we use a CycleGAN [12] to transfer
the image style from the real domain to the synthetic one.

We compare our approach to other state-of-the-art depth completion methods
and provide a detailed analysis of the proposed components. The proposed domain
adaptation for RGB-guided sparse-to-dense depth completion is a novel approach
for the task of depth completion, which leads to significant improvements as
demonstrated by the results. To this end, our main contributions are:

1. A novel domain adaptation method for depth completion that includes
geometric and data-driven sensor mimicking, noise filtering and image style
adaptation. We demonstrate that adapting the synthetic sparse depth is
crucial for improving the performance, whereas RGB adaptation is secondary.

2. An improvement of 6.4% RMSE, and 9.2% RMSE when combining our
pipeline with video self-supervision, over the state-of-the-art in the KITTI
depth completion benchmark amongst ground truth free methods.

2 Related Work

We first review related works on depth estimation using either RGB or LiDAR,
and then discuss depth completion methods from both RGB and LiDAR.

2.1 Unimodal Approaches

RGB Images. RGB based depth estimation has a long history [13–15] reaching
from temporal Structure from Motion (SfM) [16, 17] and SLAM [18–20] to
recent approaches that estimate depth from a static image [21–25]. Networks
are either trained with full supervision [21, 26] or use additional cameras to
exploit photometric consistency during training [22,27]. Some monocular depth
estimators leverage a pre-computation stage with an SfM pipeline to provide
supervision for both camera pose and depth [28, 29] or incorporate hints from
stereo algorthms [30]. These approaches are in general tailored for a specific use
case and suffer from domain shift errors, which has been addressed with stereo
proxies [23] or various publicly available pre-training sources [24].
Sparse Depth. While recent advantages in depth super-resolution [31, 32] show
good performance, they are not directly applicable to LiDAR data which is
sparsely and irregularly distributed within the image. Similar to super-resolution,
a rectangular grid for the sampling was assumed in [33]. The sampling grid of
the sparse depth signal is crucial for the depth completion task [7], which can
be provided as a mask to the network, thus helping to densify the input. While
classical image processing techniques are used in in [34], an encoder-decoder
architecture is applied for this task in [35]. Other approaches [36,37] design more
efficient architectures to improve the runtime performance.

2.2 Depth Completion from RGB and LiDAR

Most recent solutions to depth completion leverage deep neural networks. These
can be divided into supervised and self-supervised approaches.
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Supervision and Ground Truth. Usually, an encoder-decoder network is used
to encode the different input signals into a common latent space where feature
fusion is possible and a decoder reconstructs an output depth map [1–3, 6, 38].
Different additional random sampling strategies can increase the density of
the input signal [1] while fusing 2D and 3D representations [39] can improve
depth boundaries. The noise problem has been targeted with local and global
information in [2]. Other methods [3, 6] leverage different input modalities such
as surface normals to increase the amount of diversity in the input data. The
publicly available dataset KITTI [7,40] includes real driving scenes where a stereo
RGB camera system is fixed on the roof of a car along with a LiDAR scanner
that acquires data while the car is driving. A post-processing stage fuses several
LiDAR scans and filters outliers with the help of stereo vision to provide labeled
ground truth. While this process is intricate and time-consuming, further error is
accumulated from calibration and alignment [7].
Self-Supervised Approaches. Another view either from a second camera or
a video sequence can be used for self-supervision. Temporal information and
mutually predicted poses between RGB frames were used in [4] for self-supervision
with a photometric loss on the reprojected image. A probabilistic formulation was
proposed in [5] with a conditional prior within a maximum a posteriori (MAP)
estimation, which also leverages stereo information. A non-learning method was
used in [8] to form a spatially dense but coarse depth approximation from the
sparse points, where the coarse approximation was then refined using another
network. A photometric loss was also used in [8], where a separate network
predicted the poses between RGB frames obtained from a video sequence.
Synthetic Data. For monocular depth estimation, two domain adaptation
approaches used style-transfer methods [41,42]. Sparse-to-dense methods, however,
have used synthetic data without any adaptation [3, 5, 43] so far. Training on
synthetic data requires a high rendering quality [44]. To this end, synthesizing
driving scenarios has also been researched: SYNTHIA [9] provides synthetic
urban images together with semantic annotations, while Virtual KITTI [10] gives
synthetic renderings that closely match the videos of the KITTI dataset [40]
including semantic and depth ground truth. A LiDAR simulator using ray-casting
and a learning process to drop points was proposed in [45], which was tested
in detection and segmentation tasks, but is not publicly available. The CARLA
simulator [11] allows for photo-realistic simulations of driving scenarios, which we
utilize to generate realistic RGB images. While LiDAR scans can be simulated
with CARLA via ray-casting, the car shapes are approximated with cuboids, thus
losing detail. We leverage the simulator z-buffer to obtain fine-granular depth
and then sparsify the signal to simulate LiDAR scans.

3 Method

Our method, shown in Figure 2, consists of two main components that include
an adaptation of the synthetic data to make it similar to the real data, as well as
a retrieval of reliable supervision from the real but noisy LiDAR signal.
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Fig. 2: Overview of our method. We use a simulator with a multicamera set-up
and real LiDAR binary masks to transform the synthetic dense depth map into
a noisy and sparse depth map. We train in two steps: green blocks are used in
the 1st and 2nd step of training while blue blocks in the 2nd step only. In the
filtering block, green points are the reliable points Sp and red points are dropped.
The Image Translation network is pretrained using a CycleGAN approach [12].

3.1 Data Generation via Projections

Supervised depth completion methods strongly rely on the sparse depth input,
achieving good performance without RGB information [2,4]. To train a completion
model from synthetic data that works well in the real domain we need to generate
a synthetic sparse input that reflects the real domain distribution. Instead of
simulating a LiDAR via ray-casting, which is computationally expensive and
hard to implement [46], we leverage the z-buffer of our synthetic rendering engine
to provide a dense depth ground truth at first. Now, we aim to transform this
synthetic dense data into a sparse depth resembling a real LiDAR sparse input.

Previous approaches used synthetic sparse data to evaluate a model in indoor
scenes or synthetic outdoor scenes [5, 35, 47]. To sparsify the data a Bernoulli
distribution per pixel is used in some works [1,35,47] which, given a probability pB
and a dense depth image xD, samples each of the pixels xD,k by either keeping
the value xD,k with probability pB or setting its value to 0 with probability
(1− pB), thus generating the sparse depth xsB

D . We argue that a model trained
with xsB

D does not perform well in the real domain, and our results in Section 4
support this observation. There are two reasons for the drop of performance in
the real LiDAR data. Firstly, the distribution of the points xsB

D does not follow
the LiDAR sparse distribution. Secondly, there is no noise in the sampled points,
as we directly sample from the ground truth. We now address these two issues.
Mimicking LiDAR Sampling Distribution. To simulate a pattern similar
to a real LiDAR, we propose to sample at random the real LiDAR inputs xs

R,D

from the real domain similarly to [43]. We use xs
R,D to generate a binary mask

ML, which is 1 in ML,k if xs
R,D,k > 0 and 0 if xs

R,D,k = 0. We then apply the
masks to the dense synthetic depth data by xsM

D = ML ⊙ xD. This approach
adapts the synthetic data directly to the sparsity level in the real domain without
the need to tune it depending on the LiDAR used.
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Fig. 3: Left: Example of the generated projection artifacts in the simulator. The
zoomed-in areas marked with red rectangles correspond to xsM

D and the zoomed-in
areas marked with green rectangles to xsP

D , where we can see simulated projection
artifacts, e.g., see-through points on the left side of the motorcyclist. Right: We
reduce the domain gap in the RGB modality using a CycleGAN approach. We
show synthetic CARLA images and the resulting adapted images.

Generating Projection Artifacts. Previous works use noise-free sparse data to
pre-train [3] or evaluate a model [35] with synthetic data. However, simulating the
noise of real sparse data can reduce the domain gap and improve the adaptation
result. Real LiDAR depth contains noise from several sources including the
asynchronous acquisition due to the rotation of lasers, dropping of points due
to low surface reflectance and projection errors. Simulating a LiDAR sampling
process by modelling all of these noise sources can be costly and technically
difficult as a physics-based rendering engine with additional material properties
is necessary to simulate the photon reflections individually. We propose a more
pragmatic solution and use the z-buffer of a simulator by assuming that the
dominating noise is a consequence of the point cloud projection to the RGB
camera reference frame. For such a simulation, the error becomes twofold. Firstly,
the 3D points are not exactly projected on the pixel center which produces a minor
quantization error. Secondly, as we are projecting a sparse point cloud arising
from another viewpoint, we do not have a way to filter the overlapping points by
depth. This creates the see-through patterns that do not respect occlusions as
shown in Figure 3 which is also observed in the real domain [48]. Therefore, a
simple point drawing from a depth map at the RGB reference cannot recreate
this effect and such method does not perform well in the real domain.

To recreate this pattern, we use the CARLA simulator [11], which allows us to
capture multicamera synchronized synthetic data. Our CARLA set-up mimics the
camera distances in KITTI [40], as our benchmark is the KITTI depth completion
dataset [7]. Instead of a LiDAR, we use a virtual dense depth camera. The set-up
is illustrated in Figure 1. As the data is synthetic, the intrinsic and extrinsic
parameters needed for the projections are known. After obtaining the depth from
the virtual LiDAR camera, we sparsify it using the LiDAR masks resulting in
xsM
D , which is then projected onto the RGB reference with

xsP
D = KRGBP

L
RGBK

−1
L xsM

D (1)
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where KL, KRGB are the LiDAR and RGB camera intrinsics and PL
RGB is the

rigid transformation between the LiDAR and RGB reference frame. The resulting
xsP
D is the projected sparse input to either left or right camera.

3.2 RGB Adaptation

Similarly to domain adaptation for depth estimation methods [41, 42, 49], we
address the domain gap in the RGB modality with style translation from synthetic
to real images. Due to the complexity of adapting high-resolution images, we first
train a model to translate from synthetic to real using a CycleGAN [12] approach.
The generator is not further trained and is used to translate the synthetic images
to the style of real images, thus reducing the domain gap as shown in Figure 3.

3.3 Filtering Projection Artifacts for Supervision

In a depth completion setting, the given LiDAR depth can also be used as
supervision data, as in [4]. The approach in [4] did not take into account the noise
present in the data. The given real-domain LiDAR input is precise in most points
with an error of only a few centimeters. However, due to the noise present, some
points cannot be used for supervision, such as the see-through points, which have
errors in the order of meters. Another method [48] also used the sparse input
as guidance for LiDAR-stereo fusion while filtering the noisy points using stereo
data. We propose to filter the real-domain noisy input without using additional
data such as a stereo pair as this may not always be available.

Our goal is to find a set of reliable sparse points Sp, likely to be correct,
for supervision in the real-domain based on the assumption used in Section 3.1,
i.e., the main source of error are the see-through points after projection. We
assume that in any given local window there are two modes of depth distribution,
approximated by a closer and a further plane. We show an overview of the idea in
Figure 2. The points from the closer plane are more likely to be correct as part of
the occluding objects. To retrieve Sp we apply a minimum pooling with window
size wp yielding a minimum depth value dm per window. Then, we include in Sp

the points s ∈ [dm, dm + θ] where θ is a local thickness parameter of an object.
The number of noisy points not filtered out depends on the window wp and object
thickness θ, e.g., larger windows remove more points but the remaining points
are more reliable. We use the noise rate η, which is the fraction of noisy points as
introduced in noisy labels literature [50–52], to select wp and θ in the synthetic
validation set, thus not requiring any ground truth in the real domain. Section 4
shows that using a large object thickness parameter θ or a small window size wp

leads to a higher noise rate due to an increased tolerance of the filter.
After the filtering step, a certain number of false positives remains. The noisy

points in Sp are more likely to be further away from the dense depth prediction
ŷ, hence the Reverse Huber (BerHu) loss [53] used in the synthetic domain will
give more weight to those outliers. To provide extra robustness against these
false positives, we use in the real domain a Mean Absolute Error (MAE) loss, as
MAE weights all values equally, showing more robustness to the noise.
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3.4 Summary of Losses

Our proposed loss is
L = λSLS + λRLR (2)

where LS is the loss used for the synthetic data, LR the loss used for the real
data and λS and λR are hyperparameters.

We use a two-step training approach similar to past domain adaptation works
using pseudo-labels [54,55], aiming first for good performance in the synthetic
data before introducing noise in the labels. First, we set λS = 1.0 and λR = 0.0,
to train only from the synthetic data. For LS we use a Reverse Huber loss [53],
which works well for depth estimation problems [21]. Hence, we define LS as

LS =
1

bS

∑

i

1

ni

∑

k

Lbh(ŷk, yk) (3)

where bS is the synthetic batch size, ni the number of ground truth points in
image i, ŷ is the predicted dense depth, y is the ground truth depth and Lbh is
the Reverse Huber loss.

In the second step we set λS = 1.0 and λR = 1.0 as we introduce real domain
data into the training process using Sp for supervision. We define LR as

LR =
1

bR

∑

i

1

#(Sp,i)

∑

k

|ŷk − yk| (4)

where bR is the real domain batch size and #(Sp,i) is the cardinality of the set
of reliable points Sp for an image i.

4 Experiments

We use PyTorch 1.3.1 [56] and an NVIDIA 1080 Ti GPU, as well as the official
implementation of FusionNet [2] as our sparse-to-dense architecture. The batch
size is set to 4 and we use Adam [57] with a learning rate of 0.001. For the
synthetic data, we train by randomly projecting to the left or right camera with
the same probability. In the first step of training, we use only synthetic data
(i.e., λS = 1.0, λR = 0.0, bS = 4 and bR = 0) until performance plateaus in the
synthetic validation set. In the second step, we mix real and synthetic data setting
λS = 1.0, λR = 1.0, bS = 2, bR = 2, the filter’s window size to wp = 16 pixels,
the filter’s object thickness to θ = 0.5 m, and train for 40,000 iterations.

To test our approach, data from a real LiDAR+RGB set-up is needed as we
address the artifacts arising from projecting the LiDAR to the RGB camera.
There are no standard real LiDAR+RGB indoor depth completion datasets
available. In NYUv2 [58] the dense ground-truth is synthetically sparsified using
Bernoulli sampling, while VOID [8] provides sparse depth from visual inertial
odometry that contains no projection artifacts. Thus, the KITTI depth completion
benchmark [7] is our real domain dataset, as it provides paired real noisy LiDAR
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Table 1: Ablation study on the selected validation set. BerHu refers to using
BerHu for real data supervision. All of 2nd Step results use LiDAR Mask +
Proj + CycleGAN RGB. We use Bernoulli with pB=0.062 as the KITTI LiDAR
density for the crop used is approximately 6.2%. RMSE and MAE are reported
in mm, and iRMSE and iMAE in 1/km.

Model RMSE MAE iRMSE iMAE

1st Step: Only Synthetic Supervision
Syn. Baseline 1: Bernoulli (pB=0.062) 1735.59 392.81 7.68 1.73

+ Proj. 3617.98 1411.36 23.42 9.06
Syn. Baseline 2: LiDAR Mask 1608.32 386.49 7.13 1.76

+ Proj. 1335.00 342.16 5.41 1.55
+ Proj. + CycleGAN RGB 1247.53 308.08 4.54 1.34

2nd Step: Adding Real Data
No Filter 1315.74 315.40 4.70 1.40
Sp+BerHu 1328.76 320.23 4.25 1.33
Full Pipeline: Sp 1150.27 281.94 3.84 1.20

Real GT Supervision 802.49 214.04 2.24 0.91

depth with RGB images, along with denser depth ground truth for testing. We
evaluate our method in the selected validation set and test set, each containing
1,000 images. Following [2], we train using images of 1216x256 by cropping their
top part. We evaluate on the full resolution images of 1216x356. The metrics
used are Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),
reported in mm, and inverse RMSE (iRMSE) and inverse MAE (iMAE), in 1/km.
Synthetic Data. We employ CARLA 0.84 [11] to generate synthetic data using
the camera set-up in Figure 1. We collect images from 154 episodes resulting in
18,022 multicamera images for training and 3,800 for validation. An episode is
defined as an expert agent placed at random in the map and driving around while
collecting left and right depth+RGB images, as well as the virtual LiDAR depth.
We use for the virtual LiDAR camera a regular dense depth camera instead of the
provided LiDAR sensor in CARLA because the objects in the LiDAR view are
simplified (e.g., CARLA approximates the cars using cuboids). The resolution of
the images is 1392x1392 with a Field Of View of 90◦. To match the view and
image resolution in KITTI, we first crop the center 1216x356 of the image and
then the upper part of 1216x256. To adapt the synthetic RGB images, we train
the original implementation of CycleGAN [12] for 180,000 iterations.

4.1 Ablation Study

We include an ablation study in Table 1 using the validation set. For the result
of the whole pipeline, we average the results of three different runs to account for
training variability. All of the proposed modules provide an increase in accuracy.
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Table 2: Results in the validation set depending on the input type for the whole
pipeline. RMSE and MAE are reported in mm, and iRMSE and iMAE in 1/km.

Input Data RMSE MAE iRMSE iMAE

Only Sparse Depth 1175.54 290.51 4.11 1.27
+ RGB 1167.83 289.86 3.87 1.28
+ Img. Transfer from [42] 1184.39 306.66 3.99 1.36
+ CycleGAN RGB 1150.27 281.94 3.84 1.20

CARLA Adaptation. Table 1 shows that projecting the sparse depth is as
important as matching the LiDAR sampling pattern, decreasing the RMSE
by 23.1% when used jointly. Table 1 also shows that using Bernoulli sampling
and then projecting the sparse depth results in worse performance compared to
training only with Bernoulli sampling, showing that it is the combination of using
a LiDAR distribution of points and projection to another camera which reduces
the domain gap. Even though CycleGAN mostly adapts the brightness, contrast
and colors of the images as shown in Figure 3, using image translation further
reduces the RMSE by 6.6% when used jointly with real LiDAR masks sampling
and projections. Figure 4 includes some predictions for examples with projection
artifacts, showing that simulating the see-through artifacts via projections in the
synthetic images is crucial to deal with the noisy input in the real domain.
Introducing Real Domain Data. Using the reliable points Sp as supervision
in the real domain alongside the MAE loss function increases the performance
as Table 1 shows. If we use BerHu along with reliable points supervision, the
method deteriorates as the noisy points are likely to dominate the loss. Using
MAE without filtering also drops the performance due to the high noise rate η.
These results show that using the noisy LiDAR points for supervision as in [4, 8]
is detrimental to the performance. If we define a point to be noisy if its difference
with the ground-truth is more than 0.3 meters, the noise rate η for the unfiltered
depth is 5.8%, and with our filtering method is reduced to 1.7% while dropping
45.8% of input points. The results suggest that η in Sp is more important than
the total amount of points used for supervision. Supervising with real filtered
data (Full Pipeline) improves both synthetic baselines (Syn. Baseline) in Table 1.
Impact of RGB Modality. Contrary to self-supervised methods, which use
RGB information to compute a photometric loss, we do not require the RGB
image for good performance as shown in Table 2. Including RGB information
reduces the error by 0.7% in RMSE, and by using the CycleGAN RGB images the
RMSE is reduced by 2.1%. In a fully supervised manner the difference is 16.3% for
FusionNet [2], showing that methods aiming to further reduce the RGB domain
gap may increase the overall performance. Due to computational constraints, we
train the CycleGAN model in a separate step. To test an end-to-end approach,
we use the method in [42], which does not use cycle-consistency, but we obtained
lower-quality translated images and larger error as Table 2 shows.
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Table 3: Comparison of results in the KITTI selected validation set and the
official online test set. DA Base is our Domain Adaptation baseline formed by
CycleGAN [12] + LiDAR Masks. RMSE and MAE are reported in mm, and
iRMSE and iMAE in 1/km.

Validation Set Online Test Set

Model Param. RMSE MAE iRMSE iMAE RMSE MAE iRMSE iMAE

Unsuperv.
DDP [5] 18.8M 1325.79 355.86 - - 1285.14 353.16 3.69 1.37

Self-Sup.
SS-S2D [4] 27.8M 1384.85 358.92 4.32 1.60 1299.85 350.32 4.07 1.57
DDP+St. [5] 18.8M 1310.03 347.17 - - 1263.19 343.46 3.58 1.32
VOICED [8] 9.7M 1239.06 305.06 3.71 1.21 1169.97 299.41 3.56 1.20

Dom. Ada.
DA Base 2.6M 1630.31 423.70 6.64 1.98 - - - -
+ D. Out. 2.6M 1636.89 390.59 6.78 1.78 - - - -
+ D. Feat. 2.6M 1617.41 389.88 7.01 1.79 - - - -
Ours 2.6M 1150.27 281.94 3.84 1.20 1095.26 280.42 3.53 1.19
Ours-S2D 16.0M 1211.97 296.19 4.24 1.33 - - - -
+ Self-Sup.
Ours+SS [4] 2.6M 1112.83 268.79 3.27 1.12 1062.48 268.37 3.12 1.13

Supervised
S-S2D [4] 27.8M 878.56 260.90 3.25 1.34 814.73 249.95 2.80 1.21
FusionNet [2] 2.6M 802.49 214.04 2.24 0.91 772.87 215.02 2.19 0.93
DDP [5] 18.8M - - - - 836.00 205.40 2.12 0.86

4.2 Method Evaluation

Comparison to State-of-the-Art. In Table 3 we compare our method, Ours,
with the real domain GT-free state-of-the-art. In the test set our method decreases
the RMSE by 6.4%, the MAE by 6.3% and obtains better results for iRMSE and
iMAE compared to VOICED [8]. Note that these improvements upon previous
methods are obtained by using an architecture with fewer parameters. Table 1 and
Table 3 show that we achieve similar results to [8] by training only with synthetic
data, i.e., in the first training step, which validates the observation that the main
source of error to simulate are the see-through points. DDP [29] uses synthetic
ground truth from Virtual KITTI [10] for training, however no adaptation is
performed on the synthetic data, resulting in worse results compared to our
method even when using stereo pairs (DDP+St.). Both VOICED [8] and SS-
S2D [4] use, besides video self-supervision, the noisy sparse input as supervision
with no filtering, reducing the achievable performance as shown in Table 1 in
No Filter.
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Fig. 4: Qualitative results with different training methodologies. Bernoulli refers
to training using xsB

D , LiDAR Mask to training using xsM
D and Ours to our full

pipeline. Both rows show projection artifacts which we deal with correctly.

Table 4: Semi-supervised results in the selected validation set for different pre-
training strategies before finetuning on available annotations. S and I are the
number of annotated sequences and images respectively. For Only supervised,
the weights are randomly initialized. RMSE and MAE are reported in mm, and
iRMSE and iMAE in 1/km.

S:1 / I:196 S:3 / I:1508 S:5 / I:2690

Pretraining Strategy RMSE MAE RMSE MAE RMSE MAE

Only Supervised 2578.72 1175.78 1177.90 302.30 1042.75 295.73
DA Baseline 1130.79 310.68 1042.70 255.56 986.09 244.94
Ours 1106.30 262.29 996.28 247.00 949.63 242.61

Domain Adaptation Baselines. Following synthetic-to-real depth estimation
methods [41, 42], we use as a domain adaptation baseline a CycleGAN [12]
to adapt the images. To sparsify the synthetic depth, we use the real LiDAR
masks [43], shown in Table 1 to perform better than Bernoulli sampling. The
performance of this domain adaptation baseline is presented in Table 3 in DA
Base. We explore the use of adversarial approaches to match synthetic and real
distributions on top of the DA Base. DA Base + D. Out. in Table 3 uses an
output discriminator using the architecture in [59], with an adversarial loss weight
of 0.001 similarly to [60]. Following [42], we also tested a feature discriminator in
the model bottleneck in DA Base + D. Feat. with weight 0.01. Table 3 shows
that the use of discriminators has a small performance impact and that standard
domain adaptation pipelines are not capable of bridging the domain gap.

Semi-Supervised Learning. In some settings, a subset of the real data may
be annotated. Our full pipeline mimics the noise in the real sparse depth and
takes advantage of the unannotated data by using the filtered reliable points Sp

for supervision. This provides a good initialization for further finetuning with any
available annotations as Table 4 shows. Compared to pretraining using the DA
Baseline, our method achieves in all cases a better performance after finetuning.
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Fig. 5: Hyperparameter analysis. The two left images show the noise rate η vs.
wp (θ = 0.5 m) and θ (wp = 16 pixels). The right plot shows MAE vs. number of
training iterations in the second step, where we evaluate every 400 iterations, use
a moving average with window size 25 and average 3 runs to reduce the variance.

Fig. 6: Qualitative results in PandaSet [61] for our DA Baseline and full method
(Ours) trained in CARLA and KITTI. RGB images also show sparse depth input.

Hyper-Parameter Selection. We do not tune the loss weights λS and λR.
The projected points xsP

D in the synthetic validation set are used to choose the
filter window size wp and the filter object thickness θ by employing the noise rate
η in the reliable points Sp as the indicator for the filtering process performance.
Figure 5 shows the noise percentage depending on wp and θ, where we see that
curves for the noise rate η follow a similar pattern in both the synthetic and real
domain. We first select wp and then θ as the gain in performance is lower for θ.
The optimal values found are wp = 16 pixels and θ = 0.5 m. Figure 5 also shows
the MAE depending on the number of iterations in the second step. After 40,000
training iterations, we did not see any improvement.
Adding Self-Supervision. When real domain video data is available, our
approach can be combined with self-supervised methods [4, 8]. Ours+SS in
Table 3 adds the photometric loss λphLph from [4] to our pipeline during the
second step of training for the real data, with λph = 10 to have similar loss values
as LS + LR. Ours+SS further reduces the error in the test set and achieves,
compared to VOICED [8], a lower RMSE by 9.2% and a lower MAE by 10.4%.
Model Agnosticism. We chose FusionNet [2] as our main architecture, but we
test our approach with the 18-layers architecture from [4] to show our method
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Fig. 7: Failure cases of our method in KITTI, which cannot correct all types of
noise. The left side example shows a set of noisy inputs on the wall. The right
side example shows dropping of points due to low-reflectance black surfaces.

is robust to changes of architecture. Due to memory constraints we use the
18-layers architecture instead of the 34-layers model from [4], which accounts for
the different parameter count in Table 3 between Ours-S2D and SS-S2D. We set
the batch size to 2, increase the number of iterations in the second step to 90,000
(the last 20,000 iterations use a lower learning rate of 10−4), and freeze the batch
normalization statistics in the second step. The result is given in Table 3 in Ours
w/S2D arch., which achieves state-of-the-art RMSE and MAE.
Qualitative Results in PandaSet [61] are shown in Figure 6 for our full
method compared to the DA Baseline trained for CARLA and KITTI without
further tuning. PandaSet contains a different camera set-up and physical distances
compared to the one used in training, e.g., top row in Figure 6 corresponds to a
back camera not present in KITTI. Our method is still capable of better correcting
projection artifacts (top row and middle row) and completing the missing data
(bottom row) compared to the DA Baseline. PandaSet does not provide depth
completion ground-truth, thus no quantitative results can be computed.
Limitations. While we addressed see-through artifacts, other types of noise can
be present in the real sparse depth as Figure 7 shows. The left side example shows
a set of noisy inputs on the wall that is not corrected. The right side example
shows missing points in the prediction due to the lack of data in the black hood
surface. The fully supervised model deals properly with these cases, suggesting
that approaches focused on other types of noise could further decrease the error.

5 Conclusions

We proposed a domain adaptation method for sparse depth completion using
data-driven masking and projections to imitate real noisy and sparse depth in
synthetic data. The main source of noise in a joint RGB + LiDAR set-up was
assumed to be the see-through artifacts due to projection from the LiDAR to the
RGB reference frame. We also found a set of reliable points in the real data that
are used for additional supervision, which helped to reduce the domain gap and to
improve the performance of our model. A promising direction is to investigate the
use of orthogonal domain adaptation techniques capable of leveraging the RGB
inputs even more to correct also other types of error in the LiDAR co-modality.
Acknowledgements. This research was supported by UK EPSRC IPALM
project EP/S032398/1.
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