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Abstract. In recent decades, the skinned multi-person linear model
(SMPL) is widely exploited in the image-based 3D body reconstruction.
This model, however, depends fully on the quality of the input image.
Degraded image case, such as the motion-blurred issue, downgrades the
quality of the reconstructed 3D body. This issue becomes severe as re-
cent motion deblurring methods mainly focused on solving the camera
motion case while ignoring the blur caused by human-articulated mo-
tion. In this work, we construct a localized adversarial framework that
solves both human-articulated and camera motion blurs. To achieve this,
we utilize the result of the restored image in a 3D body reconstruction
module and produces a localized map. The map is employed to guide the
adversarial modules on learning both the human body and scene regions.
Nevertheless, training these modules straight-away is impractical since
the recent blurry dataset is not supported by the 3D body predictor
module. To settle this issue, we generate a novel dataset that simulates
realistic blurry human motion while maintaining the presence of cam-
era motion. By engaging this dataset and the proposed framework, we
show that our deblurring results are superior among the state-of-the-art
algorithms in both quantitative and qualitative performances.

1 Introduction

The task of restoring sharp and blur-free imaging becomes fundamental in com-
puter vision works for the sake of ameliorating recent high-level tasks such as
recognition or detection. The restoration of scene and object motion-blurred
images are widely known as deblurring. This motion is represented by discrete
representations of point-spread-function (PSF). The PSF is stored in a certain
spatial window, known as blur kernel, for deconvolving the blurry image to its
sharper version. The simplest way to do deblurring is to treat the scene motion
as uniform. Krishnan et al. [1] introduce automatic regularization to estimate
the correct blur kernel for optimization. However, in the real-world case, motion
blurs variate along spatial region on the image. This happens due to the presence
of objects that are located at different depths on a scene. To solve this issue,
Kim et al. [2] utilizes optical flow to obtain specific blur location to be restored
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Fig. 1. Blurry images caused by both human and camera motions are restored using
our approach.

accordingly. Since the rise of deep learning, the works of non-uniform deblurring
are widely exploited. State-of-the-art work of Nah et al. [3] restored deblurred
image directly without blur kernel estimation. Recently, the work of deblurring
pursed inward with the goals of specific object restoration. The work of Shen et
al. [4] introduces a semantic face mask to locally train the discriminators. The
masks are generated from each specific human face part, such as eyes, nose, and
mouth. Ren et al. [5] utilize human face prior for providing sharper deblurred
face results. The human face prior is utilized in the deblurring layers by plugging
the face identity and projected 3D rendered face directly in the network. On the
other hand, Shen et al. [6] initiate the work of human deblurring. Their approach
relies on the network’s ability to recognize the rectangular human region that is
provided from a sharp ground truth dataset.

In this work, we opt to focus on solving motion blur caused by human ar-
ticulated and camera motions. Our work is amplified with the adversarial net-
work that takes humans prior to focus on both human and scene regions them-
selves. To our best knowledge, this work is the first to apply such prior when it
comes to deblurring. Training the network with recent human blur datasets [3, 6]
seems ineffective with our goal since they are mostly affected by camera motions.
Therefore, we take the challenge of providing a novel blurry human dataset that
considers both human and camera motions constraints. Human motion blur is
mostly non-uniform since the articulated human motion is different between hu-
man joints. Thus, we provide a newly blurry human dataset that is generated
from both camera and human motions. Then, we crafted the deblurring network
that is joined with the 3D body reconstruction in an end-to-end fashion. The
output of this generator, namely: the deblurred image and 3D reconstructed
body, are utilized in the localized adversarial modules. This is learned via our
generated attentional map that is part of our contribution.

In the experiments, we demonstrate our framework’s performance using the
blurry human dataset and achieve significant improvement in both quantitative
and qualitative aspects. Visual results of our approach are demonstrated in Fig-
ure 1. With the success of our work, we show that using the additional dataset
and utilization of human prior in the deblurring modules, are learnable with
generative adversarial network (GAN) approach. In summary, we describe our
contributions as follows:

– We provide a learning based deblurring algorithm that utilizes human prior
information from the remarkable body statistical model of SMPL [7].
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– We propose, to our best knowledge, the first adversarial-based framework
that is trained using localized regions that are extracted from humans and
the scene’s blurry locations.

– We present a novel way to synthesize blurry human motion dataset.

2 Related Works

Motion Deblurring Early deblurring algorithms utilize the traditional way of
firstly estimating the blur kernel. The kernel is used to deconvolve the blurry
input in order to restore it back to a sharp image. Various regularization priors
have been utilized for improving this approach [1, 8]. These approaches further
targeted multi-view imagings, such as the works of [9] in stereo and [10, 11] in
light field imaging. With the advancement of deep learning, various approaches
are introduced. Nah et al. [3] proposes a multi-scale deep framework that shows
deblurring robustness under various scales. Recently, the generative adversarial
network (GAN) approach by [12] takes a particular interest in the deblurring
field. State-of-the-art GAN deblurring is introduced by [13] that utilizes con-
ditional GAN [14] with similar architecture to domain translation work [15].
This work is improved with the addition of multi-scale discriminators with more
compact layers [16]. Recently, the work of human deblurring is introduced by [6],
where a convolutional neural network is learned with the capability to find the
human region in an image. However, they train the network by providing a
non-precise human region since it is defined under a rectangular box.
Attention Modelling The work of attention modeling is pioneered by [17] that
provides a spatial transformer network to spatially warps specific feature regions
during classification tasks. This study shows that localized attention is beneficial
for a specific learning task. Pioneer work of [18] utilizes global and local regions
in a GAN based framework to solve the traditional image inpainting method.
Recently, the work of face de-occlusion that has the task of removing specific
objects with inpainted pixels is done with the utilization of a local region of
the human face in the discriminator [19]. Furthermore, face motion deblurring
is shown to be improved when local face regions, such as forehead, eyes, nose,
and mouth, are learned in the discriminators [4, 5]. Following these trends, we
introduced the utilization of the local human region to restore blurry images.
3D Body Reconstruction In order to generate the human body region, a
sophisticated model is needed. In recent years, a statistical model is introduced
to represent a 3D virtual human body that is extracted from a single image. This
state-of-the-art model is designed by [7] and widely known as SMPL. This model
is constructed by mainly 2 parameters, namely: body pose (β) and shape (θ). The
predicted outputs of SMPL are body vertices and joints. Kanazawa et al. [20]
utilized deep learning approach that regresses image features for predicting those
outputs. An additional discriminative network is added for distinguishing real
human and non-human body during learning. Their improved version of this
work is done in the multi-frames (video) domain [21]. Recent work of [22] utilizes
2 images of the same person with different poses and views to generate the human
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Fig. 2. The main architecture of our end-to-end framework. Blurry RGB image is
fed through deblurring module where its output is processed through the 3D body
reconstruction module to produce human body. Multiple discriminators improved the
deblurring and predicted 3D body location results.

body with colored textures. Both images are passed through the model of [20],
and the textures from each view is used to complement each other.

Based on these works, we are motivated to utilize the body reconstruction
model to generate our localized attention map. More precisely, this map defines
the region of humans and its nearby blurry pixels. This map is regarded as prior
information for the localization procedure in our adversarial framework.

3 Human and Scene Deblurring

Human articulated motion blur is a challenging task since the non-uniform blur
differs much in certain parts of the human body in an image. This problem
becomes severe with the addition of a camera motion blur. To tackle these is-
sues, we define a framework that is constructed by generator and discriminator
networks, as shown in Figure 2. The generator is built with a concatenation of
our deblurring model and the state-of-the-art 3D body prediction model. The
key model of our framework is located in the discriminators, where they directly
target the alleviation process of human and scene motion blur. Blur caused by
human motion leaves distinguished trails on the blurry image. These trails are
mostly located nearby the human region itself. Inversely, blurry scene regions
can be captured outside the human region. This information is utilized in our
discriminator modules. We elaborate on the details of our proposed generator
and discriminator modules as follows.
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3.1 Generator

The generator module of our framework has 2 main tasks, namely: predicting
the deblurred image and estimating the 3D body vertices and joints. These tasks
are described in the following modules: deblurring and 3D body reconstruction.

Deblurring Module In the first scheme, an input of RGB blurry image, IB ,
is fed into the deblurring model. As shown in Figure 2, the network receives
an input of RGB blurry image, IB . The image is initially passed through 3
convolutional blocks. The convolutional block is presented by a sequence of con-
volutional layer followed by instance normalization (IN ) and ReLU activation
(CONV → IN → ReLU ). The stride of the first 2 and last 2 convolutional layers
are 2. Thus the intermediate feature is downscaled to 4 times. This feature is
propagated through 9 modified Residual Net blocks (ResBlocks) of [23]. Each
block contains CONV → IN → ReLU → CONV → IN with the final addition
with input at the last layer without any dropout function. More details about
the deblurring module architecture is informed in the supplementary material.
The output of this deblurring module is a residual image and it is added with
input image, IB , to generate final deblurred output, ID.

3D Body Reconstruction Module 3D body prediction module is performed
as an intermediator between the deblurring and the discriminative networks.
This module benefits the performance of state-of-the-art work of [20] that uses a
statistical model to predict the 3D human body. The statistic model is dubbed
as SMPL [7] and is known for its capability to provide a high anatomic repre-
sentation of the human body. With this model, a human body is defined by the
shape (β) and pose (θ) parameters. Plugging these parameters into an SMPL
function produces a renderable human body that contains 6890 vertices and 24
body joints. We utilize this model without its discriminator as in the original
version [20] to balance our framework that has multiple adversarial modules.
This module is utilized directly using the recent sophisticated weight of [20]. In
our implementation, ID is passed through a ResNet-50 feature extraction model
and the regressor will generate features for predicting the SMPL output.

3.2 Discriminator

Besides the deblurring, our key contribution in the framework is the utilization
of humans prior in the adversarial (discriminator) module. Our discriminator
is trained to focus on learning a localized region. This is done by providing a
specific attentional map that has the constraint of finding the local human region
and its neighboring blurry region. We describe our approach in the following.

Human-based Attention Map An attention map is an approach of finding
the local region of an image that provides useful information for the algorithm
to learn. In this work, we show that omitting un-resourceful information such
as the non-blurry region is beneficial. This information is penalized by a simple
binary map with a value of 0. Instead of a generator, we utilized the map in the
discriminator module as opposed to the approach of [6]. Our idea is motivated
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Fig. 3. First-3: attention map from rendered shape. Last-3: localized attention map
that is obtained from connected body joints and blurry-sharp edge differences. The
application of localized map fully covers human’s and its nearby blurry region. Subse-
quently, its reversed version covers the non-human region.

by several prevailing works such as as [4, 19] that utilizes face region from a 3D
statistical face model [24]. Applying a similar idea by using the output of the 3D
body reconstruction module seems like a direct application. However, it is worthy
to wisely choose which information should be propagated. As known above, 2
main information is provided from the 3D body module, namely: Body vertices
and joints. Utilizing body vertices have a major disadvantage as predicted shape
might not fully cover the blurry human region as depicted in the first 3 columns
of Figure 3. This condition leaves us to the body joint prior option. First, the
joint information from the predicted model contains only 24 coordinates that
are far less than the vertices (6890), which is faster for training. Secondly, the
body joint map can be connected to indicates favorable regions. Thus, we opt to
connect the 24 body joint coordinates to visualize the human region. The result
of this approach is dubbed as a line-joint (Mj) map and shown in the fourth
column of Figure 4. While connected body joint implies good exploration, the
blurry region on the human body may not fully be covered. This is expressed in
the first 3 columns of Figure 3. We elaborate on the improvement of Mj to fully
cover the blurry human region in the next region.

Localized Attention Map To solve the previous issue, Mj is augmented with
the difference of IS and IB maps. Since this approach is run on discriminator,
IS can be utilized. Following the basic computer vision technic, we firstly obtain
the edges difference between IS and IB in both horizontal and vertical directions
by a 3 × 3 Sobel filter, as shown in first and second columns of Figure 4. The
difference between horizontal and vertical edge maps is combined to produce
the final map, Mb, of blurry edges, as shown in the third column of Figure 4.
However, Mb might appear in all regions on the image, although it is not nearby
the human body. Thus,Mb is spatially limited with the position that corresponds
to most-top, -bottom, -left, and -right of body joint. After cropped, the map is
convolved with Maxpool function to do the hole-filling. Finally, this map is added
with Mj to produce the combined map, Mc, which is shown in the fifth column
of Figure 4. As shown in the fourth column of Figure 3, this map covers blur
inside and the nearby human body. Mc is termed as a localized attention map as
it utilizes both human prior and blurry scene information. Scene’s blurry region
located outside Mc is also provided by reversing its value as 1−Mc.
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Fig. 4. First-3: Edge difference between blurry input and sharp ground truth in
horizontal-vertical directions, and combined edge map from both directions. Last-3:
Line joint map (Mj), localized map (Mc) for the body region, and reverse localized
map (1−Mc) for the scene region.

Multiple Discriminator Networks The discriminator networks act as the
counter-learning process to the deblurring network in the generator scheme.
Therefore, additional input, such as sharp (un-blurred) ground truth image, is
utilized. In this module, deblurred and sharp ground truth images act as fake and
real data distribution. Our adversarial networks are constructed by 4 discrim-
inator modules, namely: global, body, scene, and patch discriminators, where
each of them is assigned to solve specific tasks. Global and patch discriminators
are utilized as a base framework that indicates no human prior. The utilization
of Mc and 1 − Mc maps in the body and scene discriminators are regarded as
our contribution to human prior. Discriminator networks’ settings are provided
in the supplementary material.

4 Optimization

In the initial stage, only the deblurring network is being trained without the
human prior. Thus, only global and patch discriminators are included. During
learning, the energy function is utilized to find the difference between the deblur
output (ID) and sharp ground truth image (IS). At the first stage, we utilize
perceptual loss that is calculated from L2 error between features of (ID) and
(IS). These features are obtained from the convolution process of pre-trained
VGG-19 network [25] until conv3.3 layer. This approach is written in the fol-
lowing manner

LDeb =
1

b

b∑

i

γ‖Φ(ISi )− Φ(IDi )‖2 + (1− γ)‖ISi − IDi ‖ (1)

where Φ is the conv3.3 function of VGG network and i represents each pixel in
a set of batch multiplied by images spatial and channel size together (b). The γ

value is a binary value. γ is set to 0 for final refinement using the L1 loss. For
adversarial loss, we opt to utilize Least-squares GAN (LSGAN) [26]. The real
and fake data probability losses are calculated by the average of discriminator
scores upon real and fake results from the global and patch data, as:

LReal =
0.5

b

b∑

i

(ΠGlob(I
S
i ) +ΠPatch(P

S
i )); (2)
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LFake =
0.5

b

b∑

i

(ΠGlob(I
D
i ) +ΠPatch(P

D
i )), (3)

whereΠ(·) represents the discriminator function. Combining the equations above,
the base LSGAN function of the discriminators and generator are defined by:

LDisc = 0.5× (‖LReal − 1‖2 + ‖LFake‖
2); (4)

LGen = 100× LDeb + 0.5× (‖LFake − 1‖2). (5)

In the next stage, we include the set of our contributions, namely: the body
and scene discriminators. These discriminators are being trained with input data
that is penalized by the generated mask from the 3D body predictor model. Thus,
we define additional adversarial losses for the new discriminators. The real and
fake data losses for the body and scene discriminators are calculated as follows:

L∗

Real =
0.5

b

b∑

i

(ΠBody(Mc ⊙ ISi ) +ΠScene((1−Mc)⊙ ISi )); (6)

L∗

Fake =
0.5

b

b∑

i

(ΠBody(Mc ⊙ IDi ) +ΠScene((1−Mc)⊙ IDi )), (7)

where Mc and (1 − Mc) represent the body and scene masks that are used to
piece-wisely penalized the images, respectively. This extension means that the
total loss between real and fake data are calculated together, and written as:

LTot
Real = 0.5× (LReal + L∗

Real);L
Tot
Fake = 0.5× (LFake + L∗

Fake). (8)

Thus, the final discriminator and generator losses using 4 adversarial networks
are simplified as:

LTot
Disc = 0.5× (‖LTot

Real − 1‖2 + ‖LTot
Fake‖

2), (9)

LTot
Gen = 100× LDeb + 0.5× (‖LTot

Fake − 1‖2). (10)

The constant parameters of 100 in LDeb is used to balance the error score in
generator while the value of 0.5 is an average constant for each LSGAN loss.

5 Experiment Procedure

Another key factor of robust deep learning based algorithm is the quality of its
datasets. As mentioned before, to handle the lack of a blurry human dataset, we
propose our method. Our method generates a new human image with a new pose
(ISk ) at time-stamp k from the given initial image (IS

0
). ISk is extracted by em-

ploying the algorithm of [27]. We provide additional foreground discriminator, as
shown in the left column of Figure 5, to solve the unrealistic ISk result. This fore-
ground prior information is obtained by the gaussian-based segmentation map to
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Fig. 5. Synthesizing the same human with a new pose is obtained by a neural network
based algorithm. We provide additional discriminator to mask the human region for
obtaining the sharp output of the synthesized pose. This process is done sequentially
to produce multiple frames to be averaged for final blurry output.

distinguish the human body and background pixels. This map is different from
our approach as it is extracted from the sharp image IS

0
. For producing a blurry

image, IB , N frames of ISk are extracted and averaged. Each ISk has different
pre-defined human pose θk. This pose is varied differently from θ0 according to
the change parameters, δk. The scene background is also translated to simu-
lates camera motion. General visualization of our dataset generation approach
is shown on the right column of Figure 5. Details about the change parameters,
synthesizer network, and its discriminators are provided in the supplementary
material. Note that, our synthesized dataset is only used for training purpose
and the images are collected from Leeds Sport Pose dataset [28]. The testing
case of blurry human dataset are attained by averaging real blurry videos of
InstaVariety dataset [21].

Before running the full experiments, an ablation study is performed to obtain
the finest weight of our deblurring module. We divide the ablation procedure by
3 schemes: partial, full, and refined schemes. The partial scheme only includes
Eqs. (1) for generator with γ = 1, (4), and (5) for the discriminators. The
full scheme includes whole equations with 4 discriminators in the discriminative
modules. Both partial and full-schemes utilize the learning rate of 10−4. The
refined scheme has equal structures with the full scheme; however, the learning
rate is reduced to 10−5 and γ is set to 0 to train on the L1 loss in Eq. (1). Each
scheme is initially trained using GoPro dataset until 20K iterations and then our
blurry human dataset is included until 65K iterations. Spatial augmentation is
done during training with a size of 224 × 224. The Patch discriminator cropped
the fake and real images into 80 × 80. Batch is set to 8 and the network is
backpropagated using ADAM optimizer. The training is done in a TITAN RTX
GPU for around 2.5 days for each scheme. Whole implementations are scripted
using TensorFlow [29] framework.
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Fig. 6. Visual ablation results between our methods: Ours-P, Ours-F, and Ours-R.

Table 1. Quantitative comparisons on our blurry human test set between the deblur-
ring algorithms. Ablation study is included to show the improvement of our methods.
Last row indicates the performance of Ours-R approach.

Methods [13] [30] [16] Ours-P Ours-F Ours-R

SSIM 0.869 0.901 0.899 0.803 0.840 0.891
PSNR 33.29 34.93 35.25 33.07 34.56 36.04

6 Experimental Results

In the experiment section, we provide a comparison using our blurry human
test set and general deblurring datasets. The general datasets are obtained from
the test collections of GoPro [3] and recent HIDE [6] dataset. For comparison,
we utilize recent state-of-the-art deblurring algorithms, precisely: DeblurGAN-
V1 [13], Deep Hierarchical Multi Patch (DHMP) [30], and DeblurGAN-V2 [16],
that are publicly available. The metric of peak signal to noise ratio (PSNR) and
structural similarity index (SSIM) are used in the calculation.

In the initial step, we provide ablation study on our approaches: partial
(Ours-P), full (Ours-F ), and refined (Ours-R) schemes. These schemes are tested
in our blurry human test cases. The quantitative scores are shown in the last 3
columns of Table 1. Without the body prior, our method suffers from restoring
the blurry region caused by human motion, as shown in the first column of
Figure 6. By providing full-scheme approach, that includes body prior, blurry
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Fig. 7. Qualitative results between deblurring methods on our human blurry test set.
Magnified images signify large motion blur on human region. Last row represents our
refined (Ours-R) approach.

human motion on the second column of Figure 6 can be restored. However, this
approach leaves artifact on the deblurred region caused by the mismatched size
of deconvolution filter size when VGG loss is used. Thus, we refine this approach
using L1 loss as described in Sec. 4. This strategy successfully restores the blurry
human motion without artifact as shown in the third column of Figure 6.

In the second step, we perform a comparison using the state-of-the-art meth-
ods using our blurry human dataset. The first 3 columns of Table 1 show the
result of other methods. For fairness’ sake, those algorithms are fine-tuned us-
ing our blurry human training set. It is clearly seen from Figure 7 that our
approach provides better visual results compared to others. Significant human
motion blur, such in the case of the sixth column of Figure 7, is hardly restored
by other state-of-the-art methods. The main reason is that their methods are
trained for deblurring camera motion cases only. However, in our case, we em-
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Fig. 8. Qualitative results between deblurring methods on GoPro [3] test set. Last row
represents our refined (Ours-R) approach.

ploy localized body prior information to train the deblurring network. This prior
lets the network learn the blur caused by articulated human motion, which is
different from general camera motion. Therefore, our method achieves superior
performance in terms of qualitative. These results are also reflected in Table 1
as our approach (Ours-R) achieves the highest PSNR. Our method achieves a
competitive SSIM score compared to the non-GAN method [30] since the GAN
approach produces synthesized pixels during restoration.

In third step, we compare the deblurring algorithms with the GoPro dataset [3]
that is widely known for benchmarking. In this case the GoPro dataset contains
scene with and without humans and the total test set is 1111 images. The results
in Table 2 show that our network able to outperforms previous deblurring meth-
ods. Note that our localized approach is done on image with single human in the
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Table 2. Quantitative comparisons on GoPro test set [3] between the deblurring algo-
rithms. Our method with refined approach (Ours-R) is used for the experiment.

Methods [13] [30] [16] Ours-R

SSIM 0.958 0.940 0.9340 0.805
PSNR 28.70 31.20 29.55 32.51

Table 3. Quantitative comparisons on HIDE test set [6] between the deblurring algo-
rithms. Our method with refined approach (Ours-R) is used for the experiment.

Methods [13] [30] [6] [16] Ours-R

SSIM 0.871 0.924 0.931 0.875 0.778
PSNR 24.51 29.09 28.89 26.61 32.76

middle during training. However, our deblurring network is fully-convolutional.
Thus, multiple humans that present in the GoPro dataset, are well-deblurred
using our method. Table 2 shows new record as Ours-R achieves the best score
in terms of PSNR. Qualitative results are shown in Figure 8. Our deblurring
method that is trained for both camera and human motion blurs handles the
blurry region eloquently by restoring some blurry scene’s edges. Other methods
show similar performance except in the case of restoring large blurry human mo-
tion. Second and fourth columns of Figure 8 show magnified results of the blurry
case when people are walking. These results clearly show that the articulated
human motion is solved by our method with the more faithful result compared
to others. Moreover, the blurry non-human region is also restored similarly com-
pared to other state-of-the-art methods. This is achieved by our network as it
is guided by the non-human region (1 − Mc) during the optimization proce-
dure. Best quantitative performance using this dataset is also achieved by our
method, as shown in Table 2. For our final step, we also compare using the
recent blurry dataset, known as HIDE [6], as they provide whole images with
the presence of humans. Note that the HIDE dataset of [6] contains long-shot
and close-up blurry human images, and most of the blur is caused by the scene
motion. Our approach achieves the highest score in terms of PSNR compared
to other methods, as shown in Table 3. Additional visual results are included in
the supplementary material.

From these experiments, our method achieves state-of-the-art performance
as it solves both camera and human articulated motion blurs. The human prior
works well on guiding the discriminator, which eventually trains the deblurring
generator on distinguishing human and non-human blurry regions.
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7 Conclusion

While current deblurring methods perform well, most of them only focus on
scene motion blur case. Human motion deblurring plays a crucial role in the
recent computer vision’s 3D body reconstruction task. In this paper, we explore
several methods to handle human motion deblurring, specifically: we introduce
localized body prior that guide the network to give more attention on the human
region; we introduce adversarial framework from human prior that helps network
on restoring blurred human and scene regions; and finally, we also introduce syn-
thetic human motion blur dataset to train on the network. From experimental
results, we show that our approach is able to reach state-of-the-art performance
on both human and scene motion deblurring. We believe this exploration can be
applied to various human-based image processing tasks.
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