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Abstract. A number of techniques for interpretability have been pre-
sented for deep learning in computer vision, typically with the goal of
understanding what the networks have based their classification on. How-
ever, interpretability for deep video architectures is still in its infancy and
we do not yet have a clear concept of how to decode spatiotemporal fea-
tures. In this paper, we present a study comparing how 3D convolutional
networks and convolutional LSTM networks learn features across tempo-
rally dependent frames. This is the first comparison of two video models
that both convolve to learn spatial features but have principally differ-
ent methods of modeling time. Additionally, we extend the concept of
meaningful perturbation introduced by [1] to the temporal dimension, to
identify the temporal part of a sequence most meaningful to the network
for a classification decision. Our findings indicate that the 3D convolu-
tional model concentrates on shorter events in the input sequence, and
places its spatial focus on fewer, contiguous areas.

1 Introduction

Two standard approaches to deep learning for sequential image data are 3D
convolutional neural networks (3D CNNs), e.g., the I3D model [2], and recur-
rent neural networks (RNNs). Among the RNNs, the convolutional long short-
term memory network (hereon, C-LSTM) [3] is especially suited for sequences
of images, since it learns both spatial and temporal dependencies simultane-
ously. Although both methods can capture aspects of the semantics pertaining
to the temporal dependencies in a video clip, there is a fundamental difference
in how 3D CNNs treat time compared to C-LSTMs. In 3D CNNs, the time axis
is treated just like a third spatial axis, whereas C-LSTMs only allow for infor-
mation flow in the direction of increasing time, complying with the second law
of thermodynamics. More concretely, C-LSTMs maintain a hidden state that
is continuously updated when forward-traversing the input video sequence, and
are able to model non-linear transitions in time. 3D CNNs, on the other hand,
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convolve (i.e., take weighted averages) over both the temporal and spatial di-
mensions of the sequence.

The question investigated in this paper is whether this difference has conse-
quences for how the two models compute spatiotemporal features. We present
a study of how 3D CNNs and C-LSTMs respectively compute video features:
what do they learn, and how do they differ from one another?

As outlined in Section 2, there is a large body of work on evaluating video
architectures on spatial and temporal correlations, but significantly fewer inves-
tigations of what parts of the data the networks have used and what semantics
relating to the temporal dependencies they have extracted from them. Deep neu-
ral networks are known to be large computational models, whose inner workings
are difficult to overview for a human. For video models, the number of param-
eters is typically significantly higher due to the added dimension, which makes
their interpretability all the more pressing.

We will evaluate these two types of models (3D CNN and C-LSTM) on tasks
where temporal order is crucial. The 20BN-Something-something-V2 dataset [4]
(hereon, Something-something) will be central to our investigations; it contains
time-critical classes, agnostic to object appearance, such as move something from

left to right or move something from right to left. We additionally evaluate the
models on the smaller KTH actions dataset [5].

Our contributions are listed as follows.

– We present the first comparison of 3D CNNs and C-LSTMs in terms of
temporal modeling abilities. We point to essential differences between their
assumptions concerning temporal dependencies in the data through qualita-
tive and quantitative experiments.

– We extend the concept of meaningful perturbation introduced by [1] to the
temporal dimension, to search for the most critical part of a sequence used
by the networks for classification.

2 Related Work

The field of interpretability in deep learning is still young but has made consid-
erable progress for single-image networks, owing to works such as [6–9]. One can
distinguish between data centric and network centric methods for interpretabil-
ity. Activity maximization, first coined by [10], is network centric in the sense
that specific units of the network are studied. By maximizing the activation of
a given unit by gradient ascent with reference to the input, one can compute its
optimal input. In data centric methods, the focus is instead on the input to the
network in order to reveal which patterns of the data the network has discerned.

Grad-CAM [11] and the meaningful perturbations explored in the work by [1]
(Section 3), which form the basis for our experiments, belong to the data centric
category. Layer-wise relevance propagation [9] (LRP) and Excitation backprop
[12] are two other examples of data centric backpropagation techniques designed
for interpretability, where Excitation backprop follows from a simpler parameter
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setting of LRP. In Excitation backprop, saliency maps are produced without
the use of gradients. Instead, products of forward weights and activations are
normalized in order to be used as conditional probabilities, which are back-
propagated. Building on Excitation backprop, [13] produce saliency maps for
video RNNs. In our experiments, we produce spatial saliency maps using Grad-
CAM, since it is efficient, easy to implement, widely used, and one of the saliency
methods in [14] that passes the article’s sanity checks.

Few works have been published with their focus on interpretability for video
models [13, 15–18]. Other works have treated it, but with less extensive ex-
perimentation [19], while mainly presenting a new spatiotemporal architecture
[20, 21]. We build on the work by [18], where the aim is to measure a network’s
ability to model video time directly, and not via the proxy task of action classi-
fication, which is most commonly seen. Three defining properties of video time
are defined in the paper: temporal symmetry, temporal continuity and temporal
causality, each accompanied by a measurable task. The third property is mea-
sured using the classification accuracy on Something-something. An important
contribution of ours is that we compare 3D CNNs and C-LSTMs, whereas [18]
compare 3D CNNs to standard LSTMs. Their comparison can be argued as
slightly unfair, as standard LSTM layers only take 1D input, and thus need
to vectorize each frame, which removes some spatial dependencies in the pixel
grid. [20,22,23] all use variants of convolutional RNNs, but train them on CNN
features. To the best of our knowledge, there has been no published convolu-
tional RNNs trained on raw image data. This is crucial since information is lost
when downsampling an image into CNN features, and we want to study networks
having sufficient degrees of freedom to learn temporal patterns from scratch.

Similar to our work, [20] investigate the temporal modeling capabilities of
convolutional gated recurrent units (ConvGRUs) trained on Something-something.
The authors find that recurrent models perform well for the task, and present a
qualitative analysis of the trained model’s learned hidden states. For each class
of the dataset, they obtain the hidden states of the network corresponding to the
frames of one clip and display its nearest neighbors from other clips’ per-frame
hidden state representations. These hidden states had encoded information about
the relevant frame ordering for the classes. [16] examine video architectures and
datasets on a number of qualitative attributes. [17] investigate how much the
motion contributes to the classification performance of a video architecture. To
measure this, they vary the number of sub-sampled frames per clip and examine
how much the accuracy changes as a result.

In a search-based precursor to our temporal mask experiments, [24] crop se-
quences temporally to obtain the most discriminative sub-sequence for a certain
class. The crop corresponding to the highest classification confidence is selected
as the most discriminative sub-sequence. This selection is done using an exhaus-
tive search for crops across all frames, which increases in complexity with the

sequence length according to |f |2

2 , where |f | is the number of frames. Our pro-
posed method, however, is gradient-descent based and has a fixed number of
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iterations regardless of sequence length. Furthermore, our approach can identify
more than one temporal sub-region in the sequence, in contrast to [24].

[15] present the first network centric interpretability work for video mod-
els. The authors investigate spatiotemporal features using activity maximiza-
tion. [21] introduce the Temporal Relational Network (TRN), which learns tem-
poral dependencies between frames through sampling the semantically relevant
frames for a particular action class. The TRN module is put on top of a con-
volutional layer and consists of a fully connected network between the sampled
frame features and the output. Similar to [20], they perform temporal alignment
of clips from the same class, using the frames considered most representative
for the clip by the network. They verify the conclusion previously made by [25],
that temporal order is crucial on Something-something and also investigate for
which classes it is most important.

3 Approach

3.1 Temporal Masks

The proposed temporal mask method aims to extend the interpretability of deep
networks into the temporal dimension, utilizing meaningful perturbation of the
input, as shown effective in the spatial dimension by [1]. When adopting this ap-
proach, it is necessary to define what constitutes a meaningful perturbation. In
the mentioned paper, a mask that blurs the input as little as possible is learned
for a single image, while still maximizing the decrease in class score. Our pro-
posed method applies this concept of a learned mask to the temporal dimension.
The perturbation, in this setting, is a noise mask approximating either a ’freeze’
operation, which removes motion data through time, or a ’reverse’ operation
that inverses the sequential order of the frames. This way, we aim to identify
which frames are most critical for the network’s classification decision.

The temporal mask is defined as a vector of real numbers on the interval [0,1]
with the same length as the input sequence. For the ’freeze’ type mask, a value
of 1 for a frame at index t duplicates the value from the previous frame at t− 1
onto the input sequence at t. The pseudo-code for this procedure is given below.

for i in maskIndicesExceptFirst do

originalComponent := (1-mask[i])*originalInput[i]

perturbedComponent := mask[i]*perturbedInput[i-1]

perturbedInput[i] := originalComponent + perturbedComponent

end for

For the ’reverse’ mask type, all indices of the mask m that are activated are
first identified (threshold 0.1). These indices are then looped through to find all
contiguous sections, which are treated as sub-masks, mi. For each sub-mask, the
frames at the active indices in the sub-mask are reversed. For example (binary
for clarity), an input indexed as t1:16 perturbed with a mask with the value
[0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0] results in the sequence with frame indices
[1, 2, 3, 8, 7, 6, 5, 4, 9, 10, 11, 12, 13, 15, 14, 16].
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In order to learn the mask, we define a loss function (Eq. 1) to be minimized
using gradient descent, similar to the approach in [1].

L = λ1‖m‖11 + λ2‖m‖ββ + Fc, (1)

where m is the mask expressed as a vector m ∈ [0, 1]t, ‖·‖11 is the L1 norm,

‖·‖ββ is the Total Variation (TV) norm, λ1,2 are weighting factors, and Fc is the

class score given by the model for the perturbed input. The L1 norm punishes
long masks, in order to identify only the most important frames in the sequence.
The TV norm penalizes masks that are not contiguous. This approach allows
our method to automatically learn masks that identify one or several contiguous
sequences in the input. The mask is initialized centered in the middle of the
sequence. To keep the perturbed input class score differentiable with respect
to the mask, the optimizer operates on a real-valued mask vector. A sigmoid
function is applied to the mask before using it for the perturbing operation in
order to keep its values in the [0,1] range. The ADAM optimizer is then used to
learn the mask through 300 iterations of gradient descent. After the mask has
converged, its sigmoidal representation is thresholded for visualisation purposes.

3.2 Grad-CAM

Grad-CAM [11] is a method for producing visual explanations in the form of
class-specific saliency maps for CNNs. One saliency map, Lc

t , is produced for each
image input based on the activations from k filters, Ak

ij , at the final convolutional
layer. In order to adapt the method to sequences of images, the activations for
all timesteps t in the sequences are considered (Eq. 2).

Lc
ijt =

∑

k

wc
ktA

k
ijt ; wc

kt =
1

Z

∑

ij

∂F c

∂Ak
ijt

, (2)

where Z is a normalizing constant and F c is the network output for the class
c. By up-sampling these saliency maps to the resolution of the original input
image, the aim is to examine what spatial data in specific frames contributed
most to the predicted class.

4 Experiments

4.1 Datasets

Something-something [4] contains over 220,000 sequences from 174 classes with
a duration of more than 200 hours. The videos are recorded against varying
backgrounds from different perspectives. The classes are action-oriented and
object-agnostic. Each class is defined as performing some action with one or
several arbitrary objects, such as closing something or folding something. This
encourages the classifier to learn the action templates, since object recognition
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does not give enough information for the classifying task. We train and validate
according to the provided split, and use a frame resolution of 224x224.

The KTH Actions dataset [5] consists of 25 subjects performing six actions
(boxing, waving, clapping, walking, jogging, running) in four different settings,
resulting in 2391 sequences, and a duration of almost three hours (160x120 pixels
at 25 fps). They are filmed against a homogeneous background with the different
settings exhibiting varying lighting, distance to the subject and clothing of the
participants. For this dataset, we train on subjects 1-16 and evaluate on 17-25.

Both datasets have sequences varying from one to almost ten seconds. As
3D CNNs require input of fixed sequence length, all input sequences from both
datasets are sub-sampled to cover the entire sequence in 16 frames (Something-
something) and 32 frames (KTH Actions). The same set of sub-sampled frames
is then used as input for both architectures.

4.2 Architecture Details

Both models were trained from scratch on each dataset, to ensure that the
learned models were specific to the relevant task. Pre-training on Kinetics can
increase performance, but for our experiments, the models should be trained on
the temporal tasks presented by the Something-something dataset specifically.
It can be noted that our I3D model reached comparable performance to another
I3D trained from scratch on Something-something presented in the work of [25].
Hyperparameters are listed on the project webpage. Any remaining settings can
be found in the public code repository.

I3D consists of three 3D convolutional layers, nine Inception modules and
four max pooling layers (Fig. 1). In the original setting, the temporal dimension
of the input is down-sampled to L/8 frames by the final Inception module, where
L is the original sequence length. In order to achieve a higher temporal resolution
in the produced Grad-CAM images, the strides of the first convolutional layer
and the second max pooling layer are reduced to 1x2x2 in our code, producing
L/2 activations in the temporal dimension. The Grad-CAM images are produced
from the gradients of the class scores with respect to the final Inception module.

We have not found any published C-LSTMs trained on raw pixels, and thus
conducted our own hyperparameter search for this model. The model was se-
lected solely based on classification performance; all feature investigations were
conducted after this selection. The C-LSTM used for Something-something con-
sists of three C-LSTM layers (two for KTH) with 32 filters, each followed by
batch normalization and max pooling layers. The convolutional kernels used for
each layer had size 5x5 and stride 2x2. The C-LSTM layers return the entire
transformed sequence as input to the next layer. When calculating the Grad-
CAM maps for the C-LSTM, the final C-LSTM layer was used.

There is a substantial difference in the number of parameters for each model,
with 12, 465, 614 for I3D and 1, 324, 014 for the three-layer C-LSTM. Other vari-
ants of the C-LSTM with a larger number of parameters (up to five layers) were
evaluated as well, but no significant increase in performance was observed. Also,
due to the computational complexity of back-propagation through time (BPTT),

https://interpreting-video-features.github.io/
https://github.com/interpreting-video-features/interpreting-video-features
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the C-LSTM variants were significantly more time demanding to train than their
I3D counterparts.

4.3 Comparison Method

To study the differences in the learned spatiotemporal features of the two models,
we first compute spatial saliency maps using Grad-CAM and temporal masks
using the proposed method. Once these are obtained for each model and dataset,
we both examine them qualitatively and compute the quantitative metrics listed
below. A ’blob’ is defined as a contiguous patch within the Grad-CAM saliency
map for one frame. The blobs were computed using the blob detection tool from
OpenCV [26]. OS, FS and RS are the softmax scores for one class resulting from
the original input, and from the freeze and reverse perturbed input, respectively.

– Blob count: The average number of blobs (salient spatial areas, as produced
by the Grad-CAM method), per frame.

– Blob size: The average size of one salient spatial area (blob), in pixels,
computed across all detected blobs.

– Center distance: The average distance in pixels to the center of the frame
for one blob, computed across all detected blobs.

– Mask length: The average number of salient frames per sequence, as pro-
duced by the temporal mask method.

– Drop ratio: The average ratio between the drop in classification score using
the freeze and reverse perturbations, defined as OS−FS

OS−RS , across all sequences.
– Drop difference: The average difference between the drop in classification

score using the freeze and reverse perturbations, defined as (OS − FS) −
(OS− RS) (and equivalent to RS− FS), across all sequences.

We consider the difference and ratio between the freeze and reverse drops
as the most relevant measures of how sensitive one model was for the reverse
perturbation. FS and RS should not be compared in absolute numbers, since they
depend on OS which might have been different for the two models. Moreover,
using the same number of iterations for the optimization of the temporal mask,
the two models typically reached different final losses (generally lower for I3D).

5 Results

For reference, the global validation F1-scores for both architectures and datasets
are shown in Table 1. To emphasize the importance of temporal direction be-
tween the datasets, we first conduct a test where all the input validation se-
quences are entirely reversed. On Something-something, both C-LSTM and I3D
were affected drastically, while on KTH, both performed well. Likely, this is
because KTH’s classes have distinct spatial features. As expected, Something-
something is more time-critical than KTH. Overall, this shows that both models
are indeed globally sensitive to temporal direction, when they need to be. In
Sections 5.1-5.2, we examine in detail which spatiotemporal features are learned
by the two models, and how they differ from one another.
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Fig. 1: I3D network (figure from [2]) and C-LSTM network (right).

Table 1: Validation F1-score per model on the two datasets. ’Rev.’ indicates that
the validation sequences were reversed at test time.

Model KTH Actions (Top-1) Smth-Smth (Top-1) Smth-Smth (Top-5)

C-LSTM 0.84 0.23 0.48
C-LSTM (rev.) 0.78 0.05 0.17

I3D 0.86 0.43 0.73
I3D (rev.) 0.80 0.09 0.27

5.1 Interpretability Results on Something-something

The less widely used C-LSTM architecture could not reach the same global
performance as the state-of-the-art I3D (Table 1), which also has an order of
magnitude more parameters. The models were only compared on sequences from
classes for which they had similar performance (Table 2). We include a variety
of per-class F1-scores, ranging from approximately 0.1 to 0.9. All are, however,
well above the random chance performance of 1/174 ≈ 0.006. The reason to
include a variety of performance levels when studying the extracted features is
to control for the general competence of the model. A well performing model
might extract different features than a poor one.

In this section, we present an analysis of the Grad-CAM saliency maps and
temporal masks generated for each architecture on the eleven classes. We eval-
uated the models on all validation sequences from these classes (1575 sequences
in total). Quantitative results from the feature analysis are shown in Tables 3-4
and in Fig. 4. We display eight sample sequences in Figs. 2-3, but more on the
project webpage.

Trends Regarding the Spatial Focus of the Two Models. We observe
that the I3D generally focuses on contiguous, centered blobs, while the C-LSTM
attempts to find relevant spatial features in multiple smaller areas (Table 3).
Figs. 2a and 2c show examples of this, where I3D focuses on a single region
covering both objects, while the C-LSTM has separate activations for the two
objects, hands and the surface affected by the movement.

https://interpreting-video-features.github.io/
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Table 2: F1-score per class and model on the Something-something dataset.

Class I3D C-LSTM

burying something in something 0.1 0.06

moving something and something away from each other 0.76 0.58

moving something and something closer to each other 0.77 0.57

moving something and something so they collide with each other 0.16 0.03

moving something and something so they pass each other 0.37 0.31

moving something up 0.43 0.40

pretending to take something from somewhere 0.10 0.07

turning the camera downwards while filming something 0.67 0.56

turning the camera left while filming something 0.94 0.79

turning the camera right while filming something 0.91 0.8

turning the camera upwards while filming something 0.81 0.73

Table 3: Statistics for the Grad-CAM maps for each model on eleven classes
from the validation set of Something-something (1575 sequences, 16 frames per
sequence) and the whole test set of the KTH dataset (863 sequences, 32 frames
per sequence). The ’blobs’, i.e., the contiguous patches within each Grad-CAM
map, were computed per frame, using the blob detection tool from OpenCV [26].

Model (Dataset) Blob count Blob size Center distance

I3D (Smth-smth) 1.6± 0.97 33.7± 19.6 54.4± 33.6
C-LSTM (Smth-smth) 3.6± 1.9 26.7± 24.5 96.8± 34.9

I3D (KTH) 1.1± 0.5 44.0± 18.7 44.6± 19.4
C-LSTM (KTH) 32.6± 15.1 5.8± 7.0 49.9± 22.4

We further find that the I3D has a bias of starting its focus around the middle
of the frame (Figs. 2-3), often even before the motion starts. This trend persists
throughout the sequence, as the average distance to the center of the image for
each blob in each frame is shorter for I3D (Table 3). The typical behavior for
the C-LSTM is instead to remain agnostic until the action actually starts (e.g.,
Fig. 3a). In Fig. 3a, the I3D maintains its foveal focus even after the green,
round object is out of frame. In Fig. 3b, the focus splits midway to cover both
the moped and some features on the wall, while the C-LSTM focuses mainly on
numerous features along the wall, as it usually does in classes where the camera
turns. The C-LSTM also seems to pay more attention to hands appearing in
the clips, rather than objects (Figs. 2a and 2c-e). Fig. 4 shows the normalized
histograms of these spatial features. The distributions for the two models differ
significantly for all three measures.

Trends of the Temporal Masks of the Two Models. The quantitative
results from the temporal mask experiments are shown in Table 4⋆. We first

⋆ For the drop ratio, if the denominator OS-RS ≤ 0.001, the sample was filtered
out since its ratio would explode. The OS-FS ≤ 0.001 were also excluded for bal-
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Table 4: Statistics for the temporal masks of both models for both datasets (1575
sequences for Something-something and 863 sequences for KTH).

Model (Dataset) Mask length Drop ratio Drop diff.

I3D (Smth-smth) 6.2± 3.3 8.4± 47 0.2± 0.3
C-LSTM (Smth-smth) 9.9± 4.1 2.6± 6.9 0.08± 0.2

I3D (KTH) 10.6± 8.5 81.4± 174 0.57± 0.34
C-LSTM (KTH) 15.2± 5.7 17.4± 45.2 0.22± 0.18

note that the average temporal mask is shorter for the I3D. This suggests that
it has learned to react to short, specific events in the sequences. As an example,
its temporal mask in Fig. 2c is active only on the frames where the objects first
pass each other, and in Fig. 2b, it is active on the frames leading to the objects
touching (further discussed in Section 5.3). Second, we note that the drop ratio
and drop difference are generally higher for the I3D compared to C-LSTM (Table
4), suggesting that I3D is less sensitive to the reverse perturbation.

The normalized histograms of the three measures are shown in Fig. 4. The
mask length distributions clearly have different means. For drop ratio and drop
difference, the distributions have more overlap. A t-test conducted in Scipy [27] of
the difference in mean between the two models assuming unequal variance gives
a p-value < 10−6 for both measures. We conclude that there is a significant
difference in mean between the two models for drop ratio and drop difference.

Class Ambiguity of the Something-something Dataset. The Something-
something classes can be ambiguous (one class may contain another class) and,
arguably, for some samples, incorrectly labeled. Examining the spatiotemporal
features may give insight as to how the models handle these ambiguities. Fig.
2e shows a case of understandable confusion, where I3D answers taking one

of many similar things on the table. The surface seen in the image is a tiled
floor, and the object is a transparent ruler. Once the temporal mask activates
during the lifting motion in the last four frames, the Grad-CAM images show the
model also focusing on two lines on the floor. These could be considered similar
to the outline of the ruler, which could explain the incorrect classification. An
example of ambiguous labeling can be seen for example in Fig. 2b, where I3D’s
classification is moving something and something so they collide with each other

and the C-LSTM predicts pushing something with something. Although the two
objects in the sequence do move closer to each other, they also touch at the end,
making both predictions technically correct.

5.2 Interpretability Results on the KTH Actions Dataset

For the KTH dataset, we make similar observations regarding temporal and
spatial features. In Fig. 5a, we observe results for the class ’handclapping’. In-

ance. When using 10−9 as threshold instead, the drop ratio results for Something-
something were 215± 6346 (I3D) and 4.9± 47.6 (C-LSTM).
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OS: 0.994
FS: 0.083
RS: 0.856

(a) Moving something and something away from each other.

OS: 0.312
FS: 0.186
RS: 0.125

OS: 0.547
FS: 0.028
RS: 0.053
CS: 0.186
P: 38 (b) Moving something and something closer to each other.

OS: 0.257
FS: 0.079
RS: 0.122
CS: 0.002

P: 135

OS: 0.999
FS: 0.002
RS: 0.414

(c) Moving something and something so they pass each other.

OS: 0.788
FS: 0.392
RS: 0.537

OS: 0.804
FS: 0.016
RS: 0.667

(d) Moving something up.

OS: 0.546
FS: 0.121
RS: 0.764

OS: 0.685
FS: 0.003
RS: 0.048
CS: 0.001
P: 146 (e) Moving something up.

OS: 0.221
FS: 0.182
RS: 0.350
CS: 0.005

P: 100

OS: 0.284
FS: 0.003
RS: 0.006

(f) Pretending to take something from somewhere.

OS: 0.600
FS: 0.167
RS: 0.088
CS: 0.004

P: 27

Fig. 2: Best displayed in Adobe Reader where the figures can be played

as videos, or on the project webpage. I3D (left) and C-LSTM (right) results
for validation sequences from Something-something. The three columns show,
from left to right, the original input, the Grad-CAM result, and the input as
perturbed by the temporal freeze mask. The third column also visualizes when
the mask is on (red) or off (green), with the current frame highlighted. OS :
original score (softmax output) for the guessed class, FS : freeze score, RS : reverse
score, CS : score for the ground truth class when there was a misclassification
and P : predicted label, if different from ground truth.

https://interpreting-video-features.github.io/
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OS: 1.000
FS: 0.001
RS: 0.011

(a) Turning the camera downwards while filming something.

OS: 0.158
FS: 0.063
RS: 0.093

OS: 0.990
FS: 0.001
RS: 0.000

(b) Turning the camera upwards while filming something.

OS: 0.806
FS: 0.177
RS: 0.181

Fig. 3: Best displayed in Adobe Reader where the figures can be played

as videos. Same structure as Fig. 2.

Fig. 4: Normalized histogram results for the Grad-CAM and temporal mask anal-
ysis for the I3D (orange) and C-LSTM (blue) networks. The histograms corre-
spond to the results in Tables 3-4.
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terestingly, the mask of each model covers at least one entire cycle of the action.
The reverse perturbation affects both models very little since one action cycle is
symmetrical in time. For the ’running’ class (Fig. 5b), we see that the temporal
mask identifies the frames in which the subject is in-frame as the most salient
for both models, with I3D placing more focus on the subject’s legs.

OS: 0.999
FS: 0.026
RS: 0.999 (a) Handclapping, subject 18.

OS: 0.996
FS: 0.997
RS: 0.996

OS: 0.993
FS: 0.208
RS: 0.999 (b) Running, subject 25.

OS: 0.669
FS: 0.339
RS: 0.605

Fig. 5: The figures can be displayed as videos in Adobe Reader. Same
structure as Fig. 2.

5.3 Discussion

As stated in Section 1, 3D CNNs and C-LSTMs have fundamentally different
ways of modeling time. In the following, we discuss two related observations: the
shorter temporal masks of I3D and the fact that the classification scores after the
freeze and reverse perturbations often are lower for I3D than for the C-LSTM.

For the I3D, all dimensions including the temporal axis of the input are pro-
gressively compressed through either convolutional strides or max pooling. The
general understanding of CNNs are that later layers encode higher level features.
In the deep video network examined in the work by [15], it is shown that the
later layer units activate maximally for higher level actions. The representation
that is input to the prediction layer in a 3D CNN has compressed high level
motions or spatial relations through time to a shorter representation. The classi-
fication is then dependent on the presence or absence of these high level features
in this representation. If perturbing the input would alter these critical high level
features, the resulting prediction might be drastically affected.

For the C-LSTM, however, hidden states resulting from the entire input
sequence are sent to the prediction layer. Ultimately, this means that it has a
more temporally fine-grained feature space than its 3D CNN counterpart. We
hypothesize that this is related to the two observed results. Due to this fine-
grained and enveloping temporal feature space, the perturbation must remove
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larger sub-sequences from the data to obscure enough information through time
to cause a large change in prediction score, possibly accounting for the longer
temporal masks observed for C-LSTM. Furthermore, as we penalize the length
of the mask during optimization, the resulting converged mask is often too short
to fully bring down the classification score of the C-LSTM method. Examples
of where the freeze score is brought close to, or below, 0.1 are when the mask is
nearly or fully active, as seen in Figs. 2b, 2d and 3a.

6 Conclusions and Future Work

We have presented the first comparison of the spatiotemporal information used
by 3D CNN and C-LSTM based models in action recognition. We have presented
indications that the difference in temporal modeling has consequences for what
features the two models learn. Using the proposed temporal mask method, we
presented empirical evidence that I3D on average focuses on shorter and more
specific sequences than the C-LSTM. On average, our experiments showed that
I3D also tends to focus on fewer or a single contiguous spatial patch closer to
the center of the image, instead of smaller areas on several objects like the C-
LSTM. Also, when comparing the effect of reversing the most salient frames or
removing motion through ’freezing’ them, the C-LSTM experiences a relatively
larger decrease in prediction confidence than I3D upon reversal. We have also
seen that the temporal mask is capable of identifying salient frames in sequences,
such as one cycle of a repeated motion.

There is still much to explore in the patterns lying in temporal dependencies.
It would be of interest to extend the study to other datasets where temporal
information is important, e.g., Charades [28]. Other possible future work includes
evaluating the effect of other noise types beyond ’freeze’ and ’reverse’. We hope
that this empirical study can guide future development and understanding of
deep video models.

It is desirable that a model can be trained with as little data as possible. 3D
CNNs do not represent video (time) in a physically sound way, treating it as a
third spatial dimension. In our view, this is often made up for using large amounts
of data and brute-force learning of its correlations, as most state-of-the-art video
CNNs are from industry, trained on hundreds of GPUs, e.g., SlowFast [29]. For
efficiency, it is important that the representation learned by the model should
correspond to the world, and that variables that are uncorrelated in the world
remain so in the model. With our evaluation framework it will be possible to gain
further insight into what state-of-the-art video models have actually learned.
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