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Abstract. We consider the problem of tracking an unknown small tar-
get from aerial videos of medium to high altitudes. This is a challenging
problem, which is even more pronounced in unavoidable scenarios of
drastic camera motion and high density. To address this problem, we
introduce a context-aware IoU-guided tracker (COMET) that exploits a
multitask two-stream network and an offline reference proposal genera-
tion strategy. The proposed network fully exploits target-related informa-
tion by multi-scale feature learning and attention modules. The proposed
strategy introduces an efficient sampling strategy to generalize the net-
work on the target and its parts without imposing extra computational
complexity during online tracking. These strategies contribute consider-
ably in handling significant occlusions and viewpoint changes. Empiri-
cally, COMET outperforms the state-of-the-arts in a range of aerial view
datasets that focusing on tracking small objects. Specifically, COMET
outperforms the celebrated ATOM tracker by an average margin of 6.2%
(and 7%) in precision (and success) score on challenging benchmarks of
UAVDT, VisDrone-2019, and Small-90.

1 Introduction

Aerial object tracking in real-world scenarios [1,2,3] aims to accurately localize a
model-free target, while robustly estimating a fitted bounding box on the target
region. Given the wide variety of applications [4,5], vision-based methods for fly-
ing robots demand robust aerial visual trackers [6,7]. Generally speaking, aerial
visual tracking can be categorized into videos captured from low-altitudes and
medium/high-altitudes. Low-altitude aerial scenarios look at medium or large
objects in surveillance videos with limited viewing angles. However, tracking a
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Fig. 1: Examples to compare low-altitudes and medium/high-altitudes aerial tracking.
The first row represents the size of most targets in UAV-123 [10] dataset, which cap-
tured from 10∼30 meters. However, some examples of small object tracking scenarios in
UAVDT [2], VisDrone-2019 [1], and Small-90 [11] datasets are shown in last two rows.
Note that Small-90 has been incorporated small object videos of different datasets such
as UAV-123 [10], OTB [12], and TC-128 [13].

target in aerial videos captured from medium- (30∼70 meters) and high-altitudes
(>70 meters) has recently introduced extra challenges, including tiny objects,
dense cluttered background, weather condition, wide aerial view, severe cam-
era/object motion, drastic camera rotation, and significant viewpoint change
[8,1,2,9]. In most cases, it is arduous even for humans to track tiny objects in
the presence of complex background as a consequence of limited pixels of objects.
Fig. 1 compares the two main categories of aerial visual tracking. Most objects in
the first category (captured from low-altitude aerial views (10∼30 meters)) are
medium/large-sized and provide sufficient information for appearance modeling.
The second one aims to track targets with few pixels involving complicated sce-
narios.

Recent state-of-the-art trackers cannot provide satisfactory results for small
object tracking since strategies to handle its challenges have not been consid-
ered. Besides, although various approaches have been proposed for small object
detection [14,15,16], there are limited methods to focus on aerial view tracking.
These trackers [17,18,19,20,21] are based on the discriminative correlation fil-

ters (DCF) that have inherent limitations (e.g., boundary effect problem), and
their performances are not competitive with modern trackers. Besides, they can-
not consider aspect ratio change despite being a critical characteristic for aerial
view tracking. Therefore, the proposed method will narrow the gap between
modern visual trackers with aerial ones. Tracking small objects involves ma-
jor difficulties comprising lacking sufficient target information to distinguish it
from background or distractors, much more possibility of locations (i.e., accurate
localization requirement), and limited knowledge according to previous efforts.
Motivated by the issues and also recent advances in small object detection, this
paper proposes a Context-aware iOu-guided network for sMall objEct Tracking

(COMET). It exploits a multitask two-stream network to process target-relevant
information at various scales and focuses on salient areas via attention modules.
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Given a rough estimation of target location by an online classification network
[22], the proposed network simultaneously predicts intersection-over-union (IoU)
and normalized center location error (CLE) between the estimated bounding

boxes (BBs) and target. Moreover, an effective proposal generation strategy is
proposed, which helps the network to learn contextual information. By using
this strategy, the proposed network effectively exploits the representations of a
target and its parts. It also leads to a better generalization of the proposed net-
work to handle occlusion and viewpoint change for small object tracking from
medium- and high-altitude aerial views.

The contributions of the paper are summarized as the following two folds.
1) Offline Proposal Generation Strategy: In offline training, the pro-

posed method generates limited high-quality proposals from the reference frame.
The proposed strategy provides context information and helps the network to
learn target and its parts. Therefore, it successfully handles large occlusions and
viewpoint changes in challenging aerial scenarios. Furthermore, it is just used in
offline training to impose no extra computational complexity for online tracking.

2) Multitask Two-Stream Network: COMET utilizes a multitask two-
stream network to deal with challenges in small object tracking. First, the net-
work fuses aggregated multi-scale spatial features with semantic ones to provide
rich features. Second, it utilizes lightweight spatial and channel attention mod-
ules to focus on more relevant information for small object tracking. Third, the
network optimizes a proposed multitask loss function to consider both accuracy
and robustness.

Extensive experimental analyses are performed to compare the proposed
tracker with state-of-the-art methods on the well-known benchmarks, namely,
UAVDT [2], VisDrone-2019 [1], Small-90 [11], and UAV-123 [10]. The results
demonstrate the effectiveness of COMET for small object tracking purposes.

The rest of the paper is organized as follows. In Section 2, an overview of
related works is briefly outlined. In Section 3 and Section 4, our approach and
empirical evaluation are presented. Finally, the conclusion is summarized in Sec-
tion 5.

2 Related Work

In this section, focusing on two-stream neural networks, modern visual trackers
are briefly described. Also, aerial visual trackers and some small object detection
methods are summarized.

2.1 Generic Object Tracking on Surveillance Videos

Two-stream networks (a generalized form of Siamese neural networks (SNNs))
for visual tracking were interested in generic object tracking using regression net-

works (GOTURN) [23], which utilizes offline training of a network without any
online fine-tuning during tracking. This idea continued by fully-convolutional

Siamese networks (SiamFC) [24], which defined the visual tracking as a general
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similarity learning problem to address limited labeled data issues. To exploit
both the efficiency of the correlation filter (CF) and CNN features, CFNet [25]
provides a closed-form solution for end-to-end training of a CF layer. The work
of [26] applies triplet loss on exemplar, positive instance, and negative instance
to strengthen the feedback of back-propagation and provide powerful features.
These methods could not achieve competitive performance compared with well-
known DCF methods (e.g., [27,28]) since they are prone to drift problems; How-
ever, these methods provide beyond real-time speed.

As the baseline of the well-known Siamese trackers (e.g., [29,30,31,32,33]),
the Siamese region proposal network (SiamRPN) [34] formulates generic object
tracking as local one-shot learning with bounding box refinement. Distractor-

aware Siamese RPNs (DaSiamRPN) [29] exploits semantic backgrounds, dis-
tractor suppression, and local-to-global search region to learn robust features
and address occlusion and out-of-view. To design deeper and wider networks,
the SiamDW [30] has investigated various units and backbone networks to take
full advantage of state-of-the-art network architectures. Siamese cascaded RPN

(CRPN) [31] consists of multiple RPNs that perform stage-by-stage classification
and localization. SiamRPN++ method [33] proposes a ResNet-driven Siamese
tracker that not only exploits layer-wise and depth-wise aggregations but also
uses a spatial-aware sampling strategy to train a deeper network successfully.
SiamMask tracker [32] benefits bounding box refinement and class agnostic bi-
nary segmentation to improve the estimated target region.

Although the mentioned trackers provide both desirable performance and
computational efficiency, they mostly do not consider background information
and suffer from poor generalization due to lacking online training and update
strategy. The ATOM tracker [22] performs classification and target estimation
tasks with the aid of an online classifier and an offline IoU-predictor, respectively.
First, it discriminates a target from its background, and then, an IoU-predictor
refines the generated proposals around the estimated location. Similarly and
based on a model prediction network, the DiMP tracker [35] learns a robust
target model by employing a discriminative loss function and an iterative opti-
mization strategy with a few steps.

Despite considerable achievements on surveillance videos, the performance
of modern trackers is dramatically decreased on videos captured from medium-
and high-altitude aerial views; The main reason is lacking any strategies to deal
with small object tracking challenges. For instance, the limited information of
a tiny target, dense distribution of distractors, or significant viewpoint change
leads to tracking failures of conventional trackers.

2.2 Detection/Tracking of Small Objects from Aerial View

In this subsection, recent advances for small object detection and also aerial view
trackers will be briefly described.

Various approaches have been proposed to overcome shortcomings for small
object detection [14]. For instance, single shot multi-box detector (SSD) [36] uses
low-level features for small object detection and high-level ones for larger objects.
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Deconvolutional single shot detector (DSSD) [37] increases the resolution of fea-
ture maps using deconvolution layers to consider context information for small
object detection. Multi-scale deconvolutional single shot detector for small ob-

jects (MDSDD) [38] utilizes several multi-scale deconvolution fusion modules to
enhance the performance of small object detection. Also, [39] utilizes multi-scale
feature concatenation and attention mechanisms to enhance small object de-
tection using context information. SCRDet method [40] introduces SF-Net and
MDA-Net for feature fusion and highlighting object information using attention
modules, respectively. Furthermore, other well-known detectors (e.g., YOLO-v3
[41]) exploit the same ideas, such as multi-scale feature pyramid networks, to
alleviate their poor accuracy for small objects.

On the other hand, developing specific methods for small object tracking
from aerial view is still in progress, and there are limited algorithms for solving
existing challenges. Current trackers are based on discriminative correlation fil-

ters (DCFs), which provide satisfactory computational complexity and intrinsic
limitations such as the inability to handle aspect ratio changes of targets. For
instance, aberrance repressed correlation filter [17] (ARCF) proposes a cropping
matrix and regularization terms to restrict the alteration rate of response map.
To tackle boundary effects and improve tracking robustness, boundary effect-

aware visual tracker (BEVT) [18] penalizes the object regarding its location,
learns background information, and compares the scores of following response
maps. Keyfilter-aware tracker [20] learns context information and avoids filter
corruption by generating key-filters and enforcing a temporal restriction. To im-
prove the quality of training set, time slot-based distillation algorithm [19] (TSD)
adaptively scores historical samples by a cooperative energy minimization func-
tion. It also accelerates this process by discarding low-score samples. Finally, the
AutoTrack [21] aims to learn a spatio-temporal regularization term automati-
cally. It exploits local-global response variation to focus on trustworthy target
parts and determine its learning rate. The results of these trackers are not com-
petitive to the state-of-the-art visual trackers (e.g., Siam-based trackers [33,32],
ATOM [22], and DiMP [35]). Therefore, the proposed method aims to narrow the
gap between modern visual trackers and aerial view tracking methods, exploring
small object detection advances.

3 Our Approach

A key motivation of COMET is to solve the issues discussed in Sec. 1 and Sec. 2
by adapting small object detection schemes into the network architecture for
tracking purposes. The graphical abstract of proposed offline training and on-
line tracking is shown in Fig. 2. The proposed framework mainly consists of an
offline proposal generation strategy and a two-stream multitask network, which
consists of lightweight individual modules for small object tracking. Also, the
proposed proposal generation strategy helps the network to learn a generalized
target model, handle occlusion, and viewpoint change with the aid of context in-
formation. This strategy is just applied to offline training of the network to avoid
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extra computational burden in online tracking. This section presents an overview
of the proposed method and a detailed description of the main contributions.

3.1 Offline Proposal Generation Strategy

The eventual goal of proposal generation strategies is to provide a set of candi-
date detection regions, which are possible locations of objects. There are various
category-dependent strategies for proposal generation [42,36,43]. For instance,
the IoU-Net [43] augments the ground-truth instead of using region proposal

networks (RPNs) to provide better performance and robustness to the network.
Also, the ATOM [22] uses a proposal generation strategy similar to [43] with a
modulation vector to integrate target-specific information into its network.

Motivated by IoU-Net [43] & ATOM [22], an offline proposal generation
strategy is proposed to extract context information of target from the reference
frame. The ATOM tracker generates N target proposals from the test frame
(Pt+ζ), given the target location in that frame (Gt+ζ). Jittered ground-truth
locations in offline training produce the target proposals. But, the estimated
locations achieved by a simple two-layer classification network will be jittered
in online tracking. The test proposals are generated according to IoUGt+ζ ,
IoU(Gt+ζ ,Pt+ζ) > T1. Then, a network is trained to predict IoU values (IoUpred)
between Pt+ζ and object, given the BB of the target in the reference frame (Gt).
Finally, the designed network in the ATOM minimizes the mean square error of
IoUGt+ζ

and IoUpred.
In this work, the proposed strategy also provides target patches with back-

ground supporters from the reference frame (denoted as Pt) to solve the challeng-
ing problems of small object tracking. Besides Gt, the proposed method exploits
Pt just in offline training. Using context features and target parts will assist
the proposed network (Sec. 3.2) in handling occlusion and viewpoint change
problems for small objects. For simplicity, we will describe the proposed offline
proposal generation strategy with the process of IoU-prediction. However, the
proposed network predicts both IoU and center location error (CLE) of test
proposals with target, simultaneously.

An overview of the process of offline proposal generation for IoU-prediction is
shown in Algorithm 1. The proposed strategy generates (N/2)−1 target propos-
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Fig. 2: Overview of proposed method in offline training and online tracking phases.
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Algorithm 1 : Offline Proposal Generation
Notations: Bounding box B (Gt+ζ for a test frame or Gt for a reference frame), IoU threshold T (T1
for a test frame or T2 for a reference frame), Number of proposals N (N for a test frame or (N/2)−1
for a reference frame), Iteration number (ii), Maximum iteration (maxii), A Gaussian distribution
with zero-mean (µ = 0) and randomly selected variance Σr (N ), Bounding box proposals generated
by a Gaussian jittering P (Pt+ζ for a test frame or Pt for a reference frame)
Input: B, T , N, Σr, maxii

Output: P
for i = 1 : N do

ii = 0,
do
P[i] = B +N (µ,Σr),
ii = ii + 1,

while (IoU(B,P[i]) < T ) and (ii < maxii);

end

return P

als from the reference frame, which are generated as IoUGt , IoU(Gt,Pt) > T2.
Note that it considers T2 > T1 to prevent drift toward visual distractors. The
proposed tracker exploits this information (especially in challenging scenarios in-
volving occlusion and viewpoint change) to avoid confusion during target track-
ing. The Pt and Gt are passed through the reference branch of the proposed
network, simultaneously (Sec. 3.2). In this work, an extended modulation vector
has been introduced to provide the representations of the target and its parts
into the network. That is a set of modulation vectors that each vector encoded
the information of one reference proposal. To compute IoU-prediction, the fea-
tures of the test patch should be modulated by the features of the target and its
parts. It means that the IoU-prediction of N test proposals is computed per each
reference proposal. Thus, there will be N2/2 IoU predictions. Instead of com-
puting N/2 times of N IoU-predictions, the extended modulation vector allows
the computation of N/2 groups of N IoU-predictions at once. Therefore, the
network predicts N/2 groups of IoU-predictions by minimizing the mean square
error of each group compared to IoUGt+ζ . During online tracking, COMET does
not generate Pt and just uses the Gt to predict one group of IoU-predictions for
generated Pt+ζ . Therefore, the proposed strategy will not impose extra compu-
tational complexity in online tracking.

3.2 Multitask Two-Stream Network

Tracking small objects from aerial view involves extra difficulties such as clarity
of target appearance, fast viewpoint change, or drastic rotations besides existing
tracking challenges. This part aims to design an architecture that handles the
problems of small object tracking by considering recent advances in small object
detection. Inspired by [43,22,40,44,45], a two-stream network is proposed (see
Fig. 3), which consists of multi-scale processing and aggregation of features, the
fusion of hierarchical information, spatial attention module, and channel atten-
tion module. Also, the proposed network seeks to maximize the IoU between
estimated BBs and the object while it minimizes their location distance. Hence,
it exploits a multitask loss function, which is optimized to consider both the
accuracy and robustness of the estimated BBs. In the following, the proposed
architecture and the role of the main components are described.
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Fig. 3: Overview of proposed two-stream network. MSAF denotes multi-scale aggrega-
tion and fusion module, which utilizes the InceptionV3 module in its top branch. For
deconvolution block, a 3×3 kernel with a stride of 2, input padding of 1, dilation value
of 1, and output padding of 1 is used. After each convolution/fully-connected block,
batch normalization and leaky ReLU are applied. Extended modulation vector allows
COMET to learn targets and their parts in offline training. Also, the fully-connected
block, global average pooling block, and linear layer are denoted as the FC, GAP, and
linear, respectively.

The proposed network has adopted ResNet-50 [46] to provide backbone fea-
tures for reference and test branches. Following small object detection methods,
features from block3 and block4 of ResNet-50 are just extracted to exploit both
spatial and semantic features while controlling the number of parameters [14,40].
Then, the proposed network employs a multi-scale aggregation and fusion mod-

ule (MSAF). It processes spatial information via the InceptionV3 module [47]
to perform factorized asymmetric convolutions on target regions. This low-cost
multi-scale processing helps the network to approximate optimal filters that are
proper for small object tracking. Also, semantic features are passed through the
convolution and deconvolution layers to be refined and resized for feature fusion.
The resulted hierarchical information is fused by an element-wise addition of the
spatial and semantic feature maps. After feature fusion, the number of channels
is reduced by 1×1 convolution layers to limit the network parameters. Exploring
multi-scale features helps the COMET for small objects that may contain less
than 0.01% pixels of a frame.

Next, the proposed network utilizes the bottleneck attention module (BAM)
[45], which has a lightweight and simple architecture. It emphasizes target-
related spatial and channel information and suppresses distractors and redun-
dant information, which are common in aerial images [40]. The BAM includes
channel attention, spatial attention, and identity shortcut connection branches.
In this work, the SENet [48] is employed as the channel attention branch, which
uses global average pooling (GAP) and a multi-layer perceptron to find the op-
timal combination of channels. The spatial attention module utilizes dilated
convolutions to increase the receptive field. Lastly, the identity shortcut connec-
tion helps for better gradient flow.

After that, the proposed method generates proposals from the test frame.
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Also, it uses the proposed proposal generation strategy to extract the BBs from
the target and its parts from the reference frame in offline training. These gener-
ated BBs are applied to the resulted feature maps and fed into a precise region of

interest (PrRoI) pooling layer [43], which is differentiable w.r.t. BB coordinates.
The network uses a convolutional layer with a 3×3 kernel to convert the PrRoI
output to target appearance coefficients. Target coefficients are expanded and
multiplied with the features of a test patch to merge the information of the target
and its parts into the test branch. That is, applying target-specific information
into the test branch by the extended modulation vector. Then, the test proposals
(Pt+ζ) are applied to the features of the test branch and fed to a 5×5 PrRoI
pooling. Finally, the proposed network simultaneously predicts IoU and CLE of
test proposals by optimizing a multitask loss function as LNet = LIoU +λLCLE ,
where the LIoU , LCLE , and λ represent the loss function for IoU-prediction head,
loss function for the CLE-prediction head, and balancing hyper-parameter for
loss functions, respectively. By denoting i-th IoU- and CLE-prediction values as
IoU (i) and CLE(i), the loss functions are defined as

LIoU =
1

N

N
∑

i=1

(IoU
(i)
Gt+ζ

− IoU
(i)
pred)

2, (1)

LCLE =

{

1
N

∑N

i=1
1
2
(CLE

(i)
Gt+ζ

− CLE
(i)
pred)

2
|(CLE

(i)
Gt+ζ

− CLE
(i)
pred| < 1

1
N

∑N

i=1 |(CLE
(i)
Gt+ζ

− CLE
(i)
pred)| −

1
2

otherwise
, (2)

where the CLEGt+ζ
= (∆xGt+ζ

/widthGt+ζ
, ∆yGt+ζ

/heightGt+ζ
) is the normal-

ized distance between the center location of Pt+ζ and Gt+ζ . For example, ∆xGt+ζ

is calculated as xGt+ζ
− xPt+ζ

. Also, the CLEpred (and IoUpred) represents the
predicted CLE (and the predicted IoU) between BB estimations (Gt+ζ) and tar-
get, given an initial BB in the reference frame. In offline training, the proposed
network optimizes the loss function to learn how to predict the target BB from
the pattern of proposals generation.

In online tracking, the target BB from the first frame (similar to [34,32,33,22])
and also target proposals in the test frame passes through the network. As a
result, there is just one group of CLE-prediction as well as IoU-prediction to
avoid more computational complexity. In this phase, the aim is to maximize the
IoU-prediction of test proposals using the gradient ascent algorithm and also to
minimize its CLE-prediction using the gradient descent algorithm. Algorithm 2
describes the process of online tracking in detail. This algorithm shows how the
inputs are passed through the network, and BB coordinates are updated based
on scaled back-propagated gradients. While the IoU-gradients are scaled up with
BB sizes to optimize in a log-scaled domain, just x and y coordinates of test BBs
are scaled up for CLE-gradients. It experimentally achieved better results com-
pared to the scaling process for IoU-gradients. The intuitive reason is that the
network has learned the normalized location differences between BB estimations
and target BB. That is, the CLE-prediction is responsible for accurate localiza-
tion, whereas the IoU-prediction determines the BB aspect ratio. After refining
the test proposals (N = 10 for online phase) for n = 5 times, the proposed
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Algorithm 2 : Online Tracking
Notations: Input sequence (S), Sequence length (T ), Current frame (t), Rough estimation of bound-
ing box (Be

t ), Generated test proposals (Bp
t ), Concatenated bounding boxes (Bc

t ), Bounding box pre-

diction (Bpred
t ), Step size (β), Number of refinements (n), Online classification network (◆❡tATOM

online ),
Scale and center jittering (Jitt) with random factors, Network predictions (IoU and CLE)
Input: S = {I0, I1, ..., IT }, B0 = {x0, y0, w0, h0}

Output: Bpred
t , t ∈ {1, ..., T}

for t = 1 : T do

Be
t = ◆❡t

ATOM
online (It)

Bp
t = Jitt(Be

t )
Bc

t = Concat(Be
t , B

p
t )

for i = 1 : n do
IoU , CLE = FeedForward(I0, It, B0, B

c
t )

gradIoU
Bc
t

= [ ∂IoU
∂x

, ∂IoU
∂y

, ∂IoU
∂w

, ∂IoU
∂h

]

Bc
t ← B

c
t + β × [ ∂IoU

∂x
.w, ∂IoU

∂y
.h, ∂IoU

∂w
.w, ∂IoU

∂h
.h]

gradCLE
Bc
t

= [ ∂CLE
∂x

, ∂CLE
∂y

, ∂CLE
∂w

, ∂CLE
∂h

]

Bc
t ← B

c
t − β × [ ∂CLE

∂x
.w, ∂CLE

∂y
.h, ∂CLE

∂w
, ∂CLE

∂h
]

end

BK×4
t ← Select K best Bc

t w.r.t. IoU-scores

Bpred
t = Avg(BK×4

t )
end

return Bpred
t

method selects the K = 3 best BBs and uses the average of these predictions
based on IoU-scores as the final target BB.

4 Empirical Evaluation

In this section, first, the proposed method is compared with the baseline ATOM
[22] on the test sets of large-scale LaSOT [49] and GOT-10k [50] datasets. Then,
as the main aim, the proposed tracker is evaluated on state-of-the-art bench-
marks for small object tracking from aerial view: VisDrone-2019-test-dev [1],
UAVDT [2], and Small-90 [11]. Although the Small-90 dataset includes the chal-
lenging videos of the UAV-123 dataset with small objects, the experimental
results on the UAV-123 [10] dataset (low-altitude UAV dataset (10∼30 meters))
are also presented. However, the UAV-123 dataset lacks varieties in small objects,
camera motions, and real scenes [9]. Moreover, traditional tracking datasets do
not consist of challenges such as tiny objects, significant viewpoint changes, cam-
era motion, and high density from aerial views. For these reasons and our focus
on tracking small objects on videos captured from medium- & high-altitudes, the
proposed tracker (COMET) is evaluated on related benchmarks to demonstrate
the motivation and major effectiveness for small object tracking.

The employed datasets include various attributes, namely background clutter

(BC), illumination variation (IV), scale variation (SV), camera motion (CM),
object motion (OM), small object (SO), object blur (OB), large occlusion (LO),
long-term tracking (LT), aspect ratio change (ARC), fast motion (FM), partial
occlusion (POC), full occlusion (FOC), low resolution (LR), out-of-view (OV),
similar objects (SOB), deformation (DEF), motion blur (MB), rotation (ROT),
and viewpoint change (VC). Experiments have been conducted three times, and
the average results are reported. The trackers are compared in terms of pre-
cision [12], success (or success rate (SR)) [12,50], normalized area-under-curve
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Table 1: Ablation analysis of COMET considering different components and feature
fusion operations on UAVDT dataset.

Metric COMET A1 A2 A3 A4 A5

Precision 88.7 87.2 85.2 83.6 88 85.3
Success 81 78 76.9 73.5 80.4 77.2

(AUC), and average overlap (AO) [50] metrics by standard benchmarks with
default thresholds. Also, codes & experimental results are publicly available on
github.com/VisualTrackingVLL. In the following, implementation details, abla-
tion analyses, and state-of-the-art comparisons are presented.

4.1 Implementation Details

For offline proposal generation, hyper-parameters are set to N = 16 (test pro-
posals number, (N/2) = 8 (seven reference proposal numbers plus reference
ground-truth)), T1 = 0.1, T2 = 0.8, λ = 4, and image sample pairs randomly
selected from videos with a maximum gap of 50 frames (ζ = 50). Flipping and
color jittering are used for data augmentation of the reference patch. The values
for IoU and CLE are normalized to the range of [−1, 1].

The maximum iteration number maxii for proposal generation is 200 for
reference proposals and 20 for test proposals. The weights of the backbone net-
work are frozen, and other weights are initialized using [51]. The training splits
are extracted from the official training set (protocol II) of LaSOT [49], training
set of GOT-10K [50], NfS [52], and training set of VisDrone-2019 [1] datasets.
Moreover, the validation splits of VisDrone-2019 and GOT-10K datasets have
been used in the training phase. To train in an end-to-end fashion, the ADAM
optimizer [53] is used with an initial learning rate of 10−4, weight decay of 10−5,
and decay factor 0.2 per 15 epochs. The proposed network trained for 60 epochs
with a batch size of 64 and 64000 sampled videos per epoch. Also, the proposed
tracker has been implemented using PyTorch, and the evaluations performed on
an Nvidia Tesla V100 GPU with 16 GB RAM. Finally, the parameters of the
online classification network are set as the ATOM [22].

4.2 Ablation Analysis

A systematic ablation study on individual components of the proposed tracker
has been conducted on the UAVDT dataset [9] (see Table 1). It includes three
different versions of the proposed network consisting of the networks without 1)
“CLE-head”, 2) “CLE-head and reference proposals generation”, and 3) “CLE-
head, reference proposals generation, and attention module”, referred to as A1,
A2, and A3, respectively. Moreover, two other different feature fusion operations

Table 2: Overall & attribute-based evaluations on the test sets of LaSOT & GOT-10k.

Tracker
LaSOT (AUC metric) GOT-10k

Overall IV POC DEF MB CM ROT BC V C SV FOC FM OV LR ARC AO SR0.5 SR0.75

COMET 54.2 57.8 50 56.2 53.2 57.5 53.5 48.7 51.1 53.9 46.3 44.2 46.2 46.8 52.2 59.6 70.6 44.9
ATOM 51.8 56.1 48.3 51.4 49.7 56.4 48.9 45.1 47.4 51.5 42.8 43.3 44.2 44.7 50.5 55.6 63.4 40.2

https://github.com/VisualTrackingVLL
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have been investigated, namely features multiplication (A4) and features con-
catenation (A5), compared to the element-wise addition of feature maps in the
MSAF module (see Fig 3).

These experiments demonstrate the effectiveness of each component on track-
ing performance, while the proposed method has achieved 88.7% and 81% in
terms of precision and success rates, respectively. According to these results,
the attention module, reference proposal generation strategy, and CLE-head
have improved the average of success and precision rates up to 2.5%, 1.55%,
and 2.25%, respectively. Besides, comparing results of feature fusion operations
demonstrate that the element-wise addition has provided the average of precision
and success rates up to 0.65% and 3.6% compared to A4 and A5, respectively.
Also, the benefit of feature addition previously has been proved in other meth-
ods such as [22]. Finally, the proposed tracker is compared with the baseline
tracker [22] on the test sets of two large-scale generic object tracking bench-
marks, namely LaSOT [49] and GOT-10k [50]. Table 2 demonstrates that the
COMET also considerably improves the performance of the ATOM [22] on tra-
ditional visual tracking datasets.

4.3 State-of-the-art Comparison

For quantitative comparison, COMET is compared with state-of-the-art visual
trackers including AutoTrack [21], ATOM [22], DiMP-50 [35], PrDiMP-50 [54],
Ocean-online [55], SiamRPN++ [33], SiamMask [32], DaSiamRPN [29], SiamDW
[30], CREST [56], MDNet [57], PTAV [58], ECO [28], and MCPF [59] on aerial
tracking datasets. Fig. 4 shows the achieved results in terms of precision and suc-
cess plots [12]. According to these results, COMET outperforms top-performing
visual trackers on three available challenging small object tracking datasets (i.e.,
UAVDT, VisDrone-2019-test-dev and Small-90) as well as the UAV-123 dataset.
For instance, COMET has outperformed the SiamRPN++ and DiMP-50 track-
ers by 4.4% and 3.2% in terms of average precision metric, and 3.3% and 3% in
terms of average success metric on all datasets, respectively. Besides, it outper-
forms the PrDiMP and Ocean-online up to 3.3% and 5.4% in average precision
metric, and 3.6% and 5.3% in average success metric on the small object tracking
datasets. Compared to the baseline ATOM tracker, COMET has improved the
average precision rate up to 10.6%, 7.2% and 0.8%, while it increased the average
success rate up to 11.2%, 7.1% and 2.9% on the UAVDT, VisDrone-2019-test-
dev and Small-90 datasets, respectively. Although COMET slightly outperforms
ATOM on the UAV-123 (see Fig. 1), it achieved up to 6.2% and 7% improve-
ments compared to it in terms of average precision and success metrics on small
object tracking datasets.

These results are mainly owed to the proposed proposal generation strategy
and effective modules, which makes the network focus on relevant target (and

Table 3: Average speed (FPS) of state-of-the-art trackers on UAVDT dataset.

COMET ATOM SiamRPN++ DiMP-50 SiamMask ECO PrDiMP-50

Speed 24 30 32 33 42 35 22
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Fig. 4: Overall precision and success comparisons of the proposed method (COMET)
with state-of-the-art tracking methods on UAVDT, VisDrone-2019-test-dev, Small-90,
and UAV-123 datasets.

Table 4: Attribute-based comparison in terms of accuracy metric on UAVDT dataset
[ First , second , and third methods are shown in color].

Tracker BC CM OM SO IV OB SV LO LT

COMET 83.8 86.1 90.6 90.9 88.5 87.7 90.2 79.6 96
ATOM 70.1 77.2 73.4 80.6 80.8 74.9 73 66 91.7

SiamRPN++ 74.9 75.9 80.4 83.5 89.7 89.4 80.1 66.6 84.9
SiamMask 71.6 76.7 77.8 86.7 86.4 86 77.3 60.1 93.8
DiMP-50 71.1 80.3 75.8 81.4 84.3 79 76.1 68.6 100

PrDiMP-50 74.4 79.7 82.7 84.1 83.8 83.1 84.7 98.6 73.2
Ocean-online 69.7 72.3 76.2 83.2 87.8 85.6 74.5 83.3 62.5

Table 5: Attribute-based comparison in terms of AUC metric on VisDrone-2019-test-
dev dataset [ First , second , and third methods are shown in color].

Tracker Overall ARC BC CM FM FOC IV LR OV POC SOB SV VC

COMET 64.5 64.2 43.4 62.6 64.9 56.7 65.5 41.8 75.9 62.1 42.8 65.8 70.4
ATOM 57.1 52.3 36.7 56.4 52.3 48.8 63.3 31.2 63 51.9 35.6 55.4 61.3

SiamRPN++ 59.9 58.9 41.2 58.7 61.8 55.1 63.5 36.4 69.3 58.8 39.6 59.9 67.8
DiMP-50 60.8 54.5 40.6 60.6 62 55.8 63.6 32.7 62.4 56.8 39.8 59.7 66
SiamMask 58.1 57.8 38.5 57.2 60.8 49 56.6 46.5 67.5 52.9 37 59.4 65.1
PrDiMP-50 59.8 58.6 41.1 58 57.5 57 64.2 31.8 67.7 61.2 37.4 58.3 66.8
Ocean-online 59.4 61.1 46.3 59.2 55.3 53 56.6 47.7 66.8 53.4 45.8 62.1 65.3

its parts) information and context information. Furthermore, COMET runs at
24 frame-per-second (FPS), while the average speeds of other trackers on the
referred machine are indicated in Table 3. This satisfactory speed has been
originated from considering different proposal generation strategies for offline
& online procedures and employing lightweight modules in the proposed ar-
chitecture. The COMET has been evaluated according to various attributes
of small object tracking scenarios to investigate its strengths and weaknesses.
Table 4 and Table 5 present the attribute-based comparison of visual trackers.
These tables demonstrate that the COMET can successfully handle challeng-
ing scenarios for small object tracking purposes. For instance, compared to the
DiMP-50, SiamRPN++, SiamMask, PrDiMP & Ocean-online, COMET achieves
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            SiamMask [35]                ATOM [25]               DiMP-50 [38]                  SiamRPN++ [36]                COMET 

 

Fig. 5: Qualitative comparison of proposed COMET tracker with state-of-the-art
tracking methods on S1202, S0602, and S0801 video sequences from UAVDT dataset
(top to bottom row, respectively).

improvements up to 9.5%, 7.4%, 4.5%, 1.8% & 7.7% for small object attribute,
and 4.4%, 2.6%, 5.3%, 3.6% & 5.1% for viewpoint change attribute, respectively.
While the performance still can be improved based on IV, OB, LR, LO, and LT
attributes, COMET outperforms the ATOM by a margin up to 7.7%, 12.8%,
10.6%, 13.6%, and 4.3% on these attributes, respectively.

The qualitative comparisons of visual trackers are shown in Fig. 5, in which
the videos have been selected for more clarity. According to the first row of
Fig. 5, COMET successfully models small objects on-the-fly considering compli-
cated aerial view scenarios. Also, it provides promising results when the aspect
ratio of target significantly changes. Examples of occurring out-of-view and oc-
clusion are shown in the next rows of Fig. 5. By considering target parts and
context information, COMET properly handles these problems existing potential
distractors.

5 Conclusion

A context-aware IoU-guided tracker proposed that includes an offline reference
proposal generation strategy and a two-stream multitask network. It aims to
track small objects in videos captured from medium- and high-altitude aerial
views. First, an introduced proposal generation strategy provides context infor-
mation for the proposed network to learn the target and its parts. This strategy
effectively helps the network to handle occlusion and viewpoint change in high-
density videos with a broad view angle in which only some parts of the target
are visible. Moreover, the proposed network exploits multi-scale feature aggre-
gation and attention modules to learn multi-scale features and prevent visual
distractors. Finally, the proposed multitask loss function accurately estimates
the target region by maximizing IoU and minimizing CLE between the pre-
dicted box and object. Experimental results on four state-of-the-art aerial view
tracking datasets and remarkable performance of the proposed tracker demon-
strate the motivation and effectiveness of proposed components for small object
tracking purposes.
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