
Adversarial Semi-Supervised

Multi-Domain Tracking

Kourosh Meshgi1 and Maryam Sadat Mirzaei1

RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
{kourosh.meshgi, maryam.mirzaei}@riken.jp

Abstract. Neural networks for multi-domain learning empowers an ef-
fective combination of information from different domains by sharing and
co-learning the parameters. In visual tracking, the emerging features in
shared layers of a multi-domain tracker, trained on various sequences,
are crucial for tracking in unseen videos. Yet, in a fully shared architec-
ture, some of the emerging features are useful only in a specific domain,
reducing the generalization of the learned feature representation. We pro-
pose a semi-supervised learning scheme to separate domain-invariant and
domain-specific features using adversarial learning, to encourage mutual
exclusion between them, and to leverage self-supervised learning for en-
hancing the shared features using the unlabeled reservoir. By employing
these features and training dedicated layers for each sequence, we build
a tracker that performs exceptionally on different types of videos. . . .

1 Introduction

Multi-task learning (MTL) is a branch of supervised learning that strives to
improve the generalization of the regression or classification task by leveraging
the domain-specific information contained in the training signals of related tasks
[1]. MTL has been investigated in various applications of machine learning, from
natural language processing [2] and speech recognition [3] to computer vision [4].
The tasks can be defined as applying the same model on different data (aka
multi-domain learning, MDL) [5, 6], or on various problems [7]. In NN-based
MDL, different domains share a set of parameters, which means more training
data for the shared feature space, faster training, and better generalization by
averaging inherent noise of different domains [8].

MDNet [5] introduced this form of learning into a visual tracking prob-
lem, in which different video sequences are considered as different domains to
learn from, and the task is defined as a foreground-background separation. This
method, however, suffers from several setbacks: (i) this model captures domain-
independent representation from different domains with a fully-shared (FS) net-
work (Figure 1(a)). Such an architecture is unable to exclude the domain-specific
features from the shared space, and either ignores them (underfit) or includes
them in shared representation (overfit). In the former case, the training tries to
compensate by non-optimally change the shared feature space. In contrast, in
the latter, the learned feature in the shared space is merely useful for one or

2 K. Meshgi & M.S. Mirzaei

(a) FS MDL (b) PS MDL (c) ASPS MDL

Fig. 1. Different methods for obtaining shared representations using multi-domain
learning (MDL). Panel (c) depicts our proposed architecture, Adversarial Semi-
supervised Private-Shared (ASPS) MTL including adversarial, mutual exclusion, and
self-supervised signals that promote the learning task.

a few domains, wasting the model capacity for an inferior representation learn-
ing [9]. Therefore, training on one domain inevitably hurts other domains and
hinders the emergence of diverse shared features; (ii) a shallow network is se-
lected to avoid vanishing gradients, enabling training with limited number of
annotated videos, assuming that tracking is relatively easier than object classi-
fication and requires less number of layers, and (iii) the learned representation
does not consider the patterns of the target motion.

To address these issues, we proposed a private-shared (PS) MDL architec-
ture that separates the domain-specific and domain-invariant (shared) features
to disentangle the training on different domains and allow for learning an ef-
fective, shared feature representation (Figure 1(b)). However, experiments show
that PS architecture by itself is not enough to prevent domain-specific features
from creeping into the share space [10]. Therefore, we proposed to have a vir-
tual discriminator to predict which domain introduces the feature to the shared
space. In a GAN-style optimization, we encourage the shared space to have only
domain-independent features. We also introduced a regularization term to pe-
nalize redundancy in different feature spaces. To deal with the limited number
of annotated video sequences, we employ self-supervised learning in which an-
other virtual classifier using shared feature space is constructed to detect the
playback direction (i.e., playing forward and backward) to enforce shared fea-
ture space to learn low-level features as well as semantics (Figure 1(c)). The use
of both supervised and unsupervised videos improves the discriminative power
of shared feature space, as shown with the experiments. Further, we employed
ST-ResNets [11] to learn spatiotemporal features, addressing the vanishing gra-
dients, and separating domain-specific motion patterns from the shared ones.
Finally, the learned features are used in a custom-made tracking-by-detection
method to asses its transferability and effectiveness. In general we (i) propose
deep private-shared (PS) MTL architecture for tracking, (ii) propose adversarial
training for PS-MTL, (iii) integrate semi-supervised and self-supervised train-
ing in a single MTL framework, (iv) enforce learning spatiotemporal features in
multi-domain tracking, using self-supervision and a backbone network capable
of doing that, and (v) propose SUS-based hard negative batch mining, and (vi)
conducted extensive ablation, design choice, and performance experiments.

Adversarial Semi-Supervised MDL 3

The problem at hand is closely similar to [12], which tries to perform domain
adaptation, leverage multiple datasets with overlapping but distinct class sets,
and tries to separate labeled and non-labeled data using multi-domain adver-
sarial learning. However, we explicitly divide features into shared and specific
groups, to obtain features that generalize well and push out the specific features
that reveal the originating domain in a GAN-style setup.

2 Related Works

Deep Visual Tracking. Early studies in the use of deep learning in track-
ing utilized features from autoencoders [13, 14] and fully-connected layers of
pre-trained (CNN-based) object detector [15]. Still, later the CNN layers them-
selves were used to serve as features that balance the abstraction level needed
to localize the target [16], to provide a spatiotemporal relationship between the
target and its background [17], to combine spatial and temporal aspects of track-
ing [18, 19], and to generate probability maps for the tracker [20]. Recently the
tracking studies pay attention to other deep learning approaches including the
use of R-CNN for tracking-by-segmentation [21], Siamese Networks for similarity
measuring [22–25] and GANs to augment positive samples [26, 27].

Most of the current CNN-based techniques use architectures with 2D con-
volutions to achieve different invariances to the variations of the images. Mean-
while, the invariance to transformations in time is of paramount importance for
video analysis [28]. Modeling temporal information in CNNs has been tackled
by applying CNNs on optical flow images [29], reformulating R-CNNs to exploit
the temporal context of the images [30] or by the use of separate information
pathways for spatial and temporal pathways [31, 32]. Motion-based CNNs typ-
ically outperform CNN representations learned from images for tasks dealing
with dynamic target, e.g., action recognition [28]. In these approaches, a CNN
is applied on a 3-channel optical flow image [33], and different layers of such
network provide different variances toward speed and the direction of the tar-
get’s motion [34]. In visual tracking, deep motion features provide promising
results [35], which requires the tracker to fuse the information from two different
CNN networks, a temporal and a spatial [32]. However, due to the difficulties in
fusing these two streams, some researchers use only the motion features [35].
Deep Multi-Task/Domain Learning. When used with deep learning, MTL
models tend to share the learned parameters across different tasks either by (i)
hard parameter sharing [1] that the hidden layers are shared between all tasks,
while task-specific ones are fine-tuned for each task, or by (ii) soft parameter
sharing, where each task has its parameters, and the distance between the pa-
rameters of the model is then regularized to encourage the parameters to be
similar using, e.g., ℓ1 norm [36] or trace norm [37].

In the hard parameter sharing architectures, shared parameters provide a
global feature representation, while task-specific layers further process these fea-
tures or provide a complementary set of features suitable for a specific task. Some
MTL approaches are based on the intuition that learning easy tasks is the prereq-

4 K. Meshgi & M.S. Mirzaei

Fig. 2. Some of features in MDNet are activated for a few sequences containing a par-
ticular motion pattern or appearance and and wastes the capacity of shared feature
space. Domain-specific features emerged in shared space (left) motion features maxi-
mally activated by motion pattern in Joggling (right) appearance feature maximally
activated by FaceOcc1 due to the book cover (visualized using [34] and [52]).

uisite for learning more complex ones [8], hence put tasks in hierarchies [38–40] or
try to automatically group similar tasks to dynamically form shared layers [41].
When training a multi-task learner, training each task normally increases the
task’s accuracy (fine-tuning) and, at the same time, provides more information
for the shared representation that affects the accuracy of the rest of the tasks
(generalization). Balancing the fine-tuning-generalization trade-off has been the
subject of several studies. Kendall et al. [42] adjusts tasks’ relative weights in
the loss function in proportion to the task uncertainty, [43] divides the feature
space into task-specific and shared spaces and later employs adversarial learn-
ing to encourage shared feature space to contain more common and less task-
specific information [6], and [44] proposed orthogonality constraints to punish
redundancy between shared and task layers. In line with this, learning through
hints [45] trains a network to predict the most important features. To leverage
correlations of different problems in MTL, the tasks could be adversarial [10],
provide hints or attention for a main task [46, 47], use a shared memory [48],
explicitly perform representation learning for a more complex task [49], facilitate
training for a quickly-plateauing main task [50], or learn a shared unsupervised
representation [51]. It can be helpful to learn the relations between tasks to
enable efficient transfer learning between them [7].

Self-Supervised Learning. Self-supervised learning refers to a learning prob-
lem from unlabeled that is framed as a supervised learning problem by using
proxy tasks on behalf of the main learning objective. Supervised learning al-
gorithms are used to solve an alternate or pretext task, the result of which is
a model or representation that can be used in the solution of the original (ac-
tual) modeling problem [53], e.g., by masking a known word in a sentence and
trying to predict it [54]. Common examples of self-supervised learning in com-
puter vision is to make colorful images grayscale and have a model to predict a
color representation (colorization) [55], removing blocks of the image and have
a to model predict the missing parts (inpainting) [56], or rotating an image by
random multiples of 90◦ and predict if the image has the correct rotation [57].
Self-supervised learning extracts additional information from video sequences
by exploiting the natural structure in them to use as labels for proxy learning
problems. Such information may derive from low-level physics (e.g., gravity),
high-level events (e.g., shooting the ball in a soccer match), and artificial cues

Adversarial Semi-Supervised MDL 5

(e.g., camera motion) [56, 58]. The video sequence order [59], video coloriza-
tion [60], and video direction [58] have been explored as the pretext task to
learn video representations. For this purpose, CNNs are more suitable to learn
representations compared to autoencoders [61].

3 Proposed Tracker

This section describes the architecture of the proposed Adversarial Semi-supervised
Multi-Domain (ASMD) tracker. We consider multi-domain (domain:=video) learn-
ing to share the acquired knowledge from one sequence to another. First, we
explore the private-shared MDL framework that provides both domain-specific
and shared features for the tracking-by-detection. The network architecture of
private and shared modules to capture spatiotemporal features and their training
is discussed next. To avoid redundancy and loss of generalization in the shared
layers, we introduce adversarial regularization and orthogonality constraint into
the MDL training (Fig. 3). Further, to boost the performance of the MDL, the
shared representation is intermittently trained using unlabeled videos (Fig. 4).

3.1 Private-Shared Multi-Domain Learning

In FS-MDL (Figure 1(a)), all of the domains share the features extracted by a
shared set of layers. Such an idea has been explored in MDNet tracker [5], which
assume that all features extracted for one domain is useful for other domains.
This model ignores that some features are domain-dependent and may not be
useful for other domains. Such features are maximally activated for one or very
few domains (i.e., video sequences) while having low activation for others. Figure
2 illustrates some examples of such domain-specific features. On the other hand,
PS-MDL [6] divides the feature space of each domain into a domain-invariant
part that is shared among all domains, and a domain-specific part. As Figure
1(b) depicts, each domain has its own set of features, that together with the
shared features (i.e., concatenated with them), forms the domain features.

3.2 Network Architecture

We used a modified Spatiotemporal ResNet [11] for our private and shared net-
works. The first layer of motion stream is altered to have 2L = 10 filter channels
to operate on the horizontal and vertical optical flow stack of 5 frames. To es-
tablish the correspondence between the object and its motion, a residual link
connects two streams for each ResNet block. The network receives 224×224 in-
put and reduces it to 7×7 via global average pooling (GAP) (Figure 3). The
depth of the networks in MDNet [5] is kept low, however, with the use of ResNet
blocks instead of ConvNet here, the network can be significantly deeper.

For each domain the shared features (i.e., concatenation of appearance and
motion streams of shared layer) are concatenated with the domain-specific fea-
tures, followed by two fully connected layers with 128 units and a binary clas-
sification fully-connected layer with softmax cross-entropy loss. The network is

6 K. Meshgi & M.S. Mirzaei

Fig. 3. The architecture of the proposed Private-Shared Multi-Domain Network, which
consists of one shared and K modified ST-ResNet domain-specific. For domain k ∈
{1..K}, the feature space consists of shared features and the corresponding domain-
specific features, and the final fully connected layer calculated the classification score
of the input patch from video k for a foreground-background classification.

trained to minimize the cross-entropy of the predicted label and the true label
of all target candidates for all domains. The loss is computed as:

Ldom =

K
∑

k=1

αkLtrack

(

ŷ(k), y(k)
)

(1)

where αk is the weight of domain k and Ltrack

(

ŷ(k), y(k)
)

is defined in eq(6).

3.3 Adversarial Representation Learning

PS-MDL dissects the representation for each domain into a domain-specific and
shared feature spaces but does not guarantee that shared feature space does
not include domain-specific features and vice versa. To encourage the shared
feature space to include more common information between domains yet has
no domain-specific ones, we proposed to use adversarial training. Adversarial
training became very popular after the seminal work of Goodfellow et al. [62].
This approach sets up a min-max between networks in which a network G tries
to fool the other (D) by generating better samples (i.e., closer to real data
distribution), and the other excels in distinguishing the generated data (PG)
from the real ones (Pdata), by optimizing

ℓ = min
G

max
D

(

Ex∼Pdata
[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]

)

(2)

We propose an adversarial loss function for our MDL-based tracking. The
goal is to encourage the shared space to be free from domain-specific knowledge.

Adversarial Semi-Supervised MDL 7

Therefore, we introduce a discriminator D that predicts the domain k only from
the features that emerged in shared representation. The discriminator in each
iteration is created from the learned shared ST-ResNet followed by three fully
connected layers, each having 512 units and ReLU activation, and a K unit
softmax output layer. The multi-class adversarial loss [6] can be formulated as

Ladv = min
θs

(

max
θD

(K
∑

k=1

Nk
∑

i=1

δki log
[

DθD

(

E(x(k))
)]

)

)

(3)

in which θD and θS are the parameters of the discriminator D and shared layer
respectively, δki indicates the domain of the current input i, and E(x) denotes
shared representation of x followed by 2 fully connected layers and just before
the discriminator layer. The intuition here is that given a sample from domain
k, the shared feature space tries to alter its representation to better discriminate
the sample, while the discriminator guesses which domain is the sample from.
If the learned feature helps the discriminator to find the domain, it includes
some domain-specific knowledge [63], and the defined loss Ladv punishes this
representation. It should be noted that Ladv ignores the label y(k) of the input
x(k), allowing for unsupervised training of the shared layer, which is essential to
realize the semi-supervised training of the network .

A drawback of the PS-MDL is that the domain-specific and shared feature
space may not be mutually exclusive, and redundant domain-invariant features
may emerge in both [64]. To alleviate this, inspired by [44], we compare the acti-
vations of the private and shared networks, and penalize the high co-activations
of the corresponding neurons that are likely to encode a similar latent feature,

Ldif =
K
∑

k=1

∥

∥(fs)T fk
∥

∥

2

F
(4)

in which fs and fk are shared and domain-specific feature vectors (i.e., last layer
neuron activations) for a given input and ‖.‖2F denoted the Frobenius norm.

3.4 Self-Supervised Representation Learning

To enrich the share representation, we want to leverage the structure of the video
data to use them as labels for closely related proxy problems that can be solved
with the current shared architecture. We select the video direction (forward or
backward) as a proxy learning task that is compatible with this architecture.

The order of the frames in a natural video contains spatiotemporal clues
about the way objects move. The order of the frames can provide a trivial label
for a proxy classification task: to classify if the movie as played in the natural
direction or backward. During this task, the network learns spatiotemporal fea-
tures, which is useful for other tasks such as video understanding, action recog-
nition, and object tracking. Therefore, we select random clips from our dataset,
randomly invert the order of some of them, and give them to our network to
classify. This helps the features to emerge in the shared layers of our network.

8 K. Meshgi & M.S. Mirzaei

Fig. 4. Self-supervised network using shared ST-ResNet layers, a global average pooling
layer, and an output layer to classify “arrow of time” in the 10-frame input clip.

To pull out this task, we draw 10-frame samples from annotated sequences as
well as numerous unlabeled videos in YouTubeBB [65] dataset, randomly reverse
their order (to augment the data with negative samples), and feed them to the
shared ST-ResNet. The extracted features are then aggregated similar to [58]
using a GAP layer, and a binary cross-entropy output layer computes the final
arrow-of-time loss Laot for the forward-backward classification (Figure 4).

3.5 Semi-Supervised MDL Training

The final loss function of the tracker can be written as

L = Ldom + λ1Ladv + λ2Ldif + λ3Laot (5)

in which λ1, λ2, λ3 are hyper-parameters. This network is periodically trained
on labeled and unlabeled videos such that after every 100 supervised iterations,
1000 unsupervised iterations are conducted.
Supervised. For the supervised multi-domain learning, we collect 50 positive
samples and 200 negative samples for each frame such that each positive sample
has at least 70% overlap with the target (IoU ≥ 0.7), and negative samples have
IoU ≤ 0.5). For multi-domain representation learning, the network is trained for
1M iterations with learning rate 0.0001 for ST-ResNets and 0.001 for FC layers
on GOT10K dataset [66] and its grayscale version. The networks are trained
using backpropagation through gradient reversal layer [10] to assist the minimax
optimization. For each iteration, five random 10-frame clip and another five with
reversed frame-order are extracted for Laot.
Unsupervised.We also conduct 10M iteration of unsupervised training on 240k
videos of the YouTubeBB dataset. Again in each iteration, five random 10-frame
clips and another five reversed one is extracted from the input video to provide
the Laot, and the learning rate for ST-ResNet is set to 0.00001.

4 Online Tracking

After learning the shared features, the private branches are discarded, and 3 new
FC layers and a binary softmax output layer is used for every new sequence.
During tracking (test time), no domain-specific network is used/trained. All of

Adversarial Semi-Supervised MDL 9

FC layers (after shared features) are randomly initialized and trained on-the-fly.
The goal of private networks is to capture features that are not captured by the
shared network (by trying to overfit the input sequence), introduce them to the
feature pool, and receive the features that are pushed out of the shared pool.

4.1 Tracking-by-Detection

For each test sequence, the final FC layers convert the domain-specific and shared
feature for all n samples of each Tk frame of video sequence k into classification
score ŷ ∈ [0, 1], trained by minimizing the cross-entropy of the sample’s label
y ∈ {0, 1} and the score, by applying SGD on the loss

Ltrack(ŷ
(k), y(k)) = −

1

nTk

Tk
∑

t=1

n
∑

j=1

y
j(k)
t log

(

ŷ
j(k)
t

)

(6)

while the shared layers are kept frozen during tracking. This is important to
avoid over-fitting to the video sequence [5] and for computational efficiency. After
training on the first annotated frame of the sequence, n samples are extracted
from each frame t following a Gaussian distribution around the last known target
position. The samples are classified using the shared features and dedicated FC
layers, and the sample with highest classification score is considered as the new
target location. To find a tight bounding box around the target, the target
candidates (i.e., score > 0.5) are used in bounding box regression similar to [67].

To update the tracker, a dual-memory [68] is employed in which the network
is updated every ∆s frames (short-memory) with all positive and selected neg-
ative samples between t and t − ∆s. In the long run, the network is likely to
forget the initial samples (especially those obtained from user), thus the network
is updated every ∆l frames (∆l ≫ ∆s) with the all previous target estimations
(if score > 0.5) and the most uncertain negative sample (score → 0.5).

4.2 Stochastic Universal Negative Mining

In visual tracking, negative examples (samples) comes from (i) background, or
(ii) occluders, distractors and patches that has small overlap with the target.
To identify such negative examples, hard negative mining [69] explicitly predict
examples’ labels and selects misclassified examples (i.e., false positives). Hard
minibatch mining [5] selects random subsets of negative examples and selects
ones with the lowest classification score as the negative training examples with-
out the need to the examples’ labels.

To keep the focus on the hard negatives while keeping the diversity of the
negative samples, we borrowed a stochastic universal sampling (SUS) technique
[70] from genetic algorithms to select negative training examples via repeated
random sampling based on the classification score of the example (Figure 5). This
technique gives weaker members of the negative example pool (according to their
score) a chance to be chosen to represent different parts of the background in
the classifier.

10 K. Meshgi & M.S. Mirzaei

Fig. 5. Stochastic universal sampling to select negative examples for retraining. Using
a comb-like ruler, SUS starts from a random real number, and chooses next candidates
from the rest of negative examples, preventing the examples with the highest scores to
saturate the selection space. S is the sum of negative samples’ classification scores.

4.3 Implementation Details

This framework contains several sets of parameters. The tracking parameters
including the number of positive and negative samples during train and test
time, the covariance of the sampling from each frame, and the parameters of the
bounding box regression are kept similar to MDNet [5]. The update intervals are
set to ∆s = 15 and ∆l = 50. On the MDL side, all domains are equally weighted
αk = 1/K, and regularization hyper-parameters are tuned on GOT10K and
YouTubeBB datasets via a grid search in λi ∈ [0.01, 0.1] and kept fixed through
test-time trackings/experiments. Final values are 0.08,0.01,0.6 for λ1..3.

The FC layers of tracker during the test are trained on the first (annotated)
frame for 30 iterations with the learning rate of 0.0001 for hidden layers and
0.001 for the softmax layer. To update the classifier, the learning rate is in-
creased to 0.0003 and 0.003 for hidden and output FC layers for ten iterations,
with mini-batches composed of 32 positive and 96 SUS-sampled negatives out of
1024 available negative examples. The tracker is implemented in Matlab using
MatConvNet [72] and ST-ResNet Github Repos, and runs around 5.18 fps on
Intel Core i7 @ 4.00GHz with Nvidia V100 GPU.

5 Experiment

In a series of experiments using OTB50 dataset [73], the effect of the MDL
architecture and the network used in it, and the proposed negative minibatch
mining are investigated. An ablation study is conducted to clarify the contribu-
tions of each component in the tracker. Finally, the performance of the tracker
on recent challenging datasets such as OTB-100 [74], LaSOT [75], UAV123 [76],
TrackingNet [77], and VOT-2018 [78] is benchmarked against the state-of-the-
art trackers. For this comparison, we have used success and precision plots,
where their area under curve provides a robust metric for comparing tracker
performances [73]. We also compare all the trackers by the success rate at the

Adversarial Semi-Supervised MDL 11

conventional thresholds of 0.50 (IoU > 1
2) [73]. For the state-of-the-art com-

parisons, the results are averaged for five different runs using the original semi-
supervised training (cf Section 3.5). The tracker is compared with latest track-
ers (DiMP [79], ATOM [80], STResCF [81], CBCW [82]), those with bounding
box regression (SiamRPN [24], SiamRPN++ [25]), those performing adversar-
ial learning (VITAL [27], SINT++ [26]), and those using MTL (MDNet [5],
RT-MDNet [83]) as well as other popular trackers.

Multi-Domain Learning Model. Moving from FS-MDL in MDNet [5] to PS-
MDL enables the model to separate the domain-invariant features from domain-
specific ones. Adversarial and mutual-exclusion regularizations encourage this
effect. The proposed adversarial training cannot operate on the fully-shared ar-
chitecture of MDNet. Additionally, MDNet’s backbone (VGG-M) is unable to
learn spatiotemporal features, thus ineffective for our self-supervised learning.

Table 1 presents five variations for the MDL architecture (i) vanilla FS (dif-
ferent from MDNet), that uses only a fully shared ST-ResNet, (ii) PS, that
uses a task-specific ST-ResNet for each domain on top of the shared ST-ResNet,
(iii) PS+dif, that adds Ldif to the PS variation, (iv) APS-, that adds Ladv to
the PS variation, and (v) APS that uses both Ladv and Ldif for the network.
All variations are only trained with supervised data for 200k iterations, and
regularization weights are tuned by 5-fold cross-validation for each case. Using
PS-MDL without regularizations is not always beneficial, but using both in APS
significantly improves the learning performance.

Table 1. Comparison of MDL models with 200k iterations of supervised training on
GOT10K [66] and tested OTB-50. We also retrained MDNet on this dataset for the
same number of iterations (⋆). The first, second and third best methods are highlighted.

FS MDNet⋆ PS PS+dif APS- APS

Average Success 0.62 0.67 0.59 0.41 0.71 0.73

Average Precision 0.73 0.76 0.70 0.55 0.80 0.81

IoU >
1

2
0.67 0.71 0.61 0.45 0.74 0.76

Backbone Network. We tested our tracker with different backbone architec-
ture such as MDNet-style VGG-M, Two Stream ConvNets with convolutional
fusion [84], TwoStream ResNets with late fusion, Spatiotemporal ConvNet [85]
and SpatioTemporal ResNets [11]. Table 2 shows that similar to the action recog-
nition domain [11], Spatiotemporal ResNets yields the best results for our in-
tended tasks using to residual connections that enables learning the difference
of sequences [54]. Notice the big jump between single-stream and two-stream
architectures that is partly because the arrow-of-time self-supervised training is
mostly beneficial to train the motion stream.

Negative Minibatch Selection. To select representative negative samples
from the pool, and to avoid model drift by insufficiently sampling from criti-
cal distractors and occluder, we proposed stochastic universal negative mining
(SUNM). Table 3 shows the effectiveness of this method compared to a random

12 K. Meshgi & M.S. Mirzaei

Table 2. Comparison of backbone networks with 200k iterations of supervised training
on OTB-50 (1S: single stream, 2S: two-stream, ST: spatiotemporal).

1S Conv [5] 2S Conv [84] 2S Res ST Conv [85] ST Res [11]

Avg Succ 0.64 0.69 0.67 0.63 0.73

Avg Prec 0.71 0.77 0.77 0.71 0.81

IoU >
1

2
0.66 0.70 0.69 0.66 0.76

Table 3. Comparison of negative minibatch selection for tracking on OTB-50.

RAND GRDY HMM [5] SUNM (ours)

Average Success 0.72 0.61 0.77 0.80

Average Precision 0.81 0.69 0.89 0.88

IoU >
1

2
0.75 0.67 0.87 0.93

Table 4. Comparison of the transferability of learned representations with different
versions of the proposed framework as well as the pre-training on ILSRVC-2012 action
recognition task for leave-one-out evaluation. For each video sequence of OTB50, 49
is used for semi-supervised training, and the remaining video is used for tracking, and
the average of the success and precision of the tracker is reported in the table.

PRE LOO-FS LOO-PS LOO-APS LOO-ASPS

Avg Succ 0.41 0.70 0.67 0.72 0.78

Avg Prec 0.52 0.76 0.72 0.80 0.85

IoU >
1

2
0.46 0.79 0.70 0.79 0.87

selection of negative samples (RAND), hard minibatch mining (HMM) [5], and
a greedy selection of the most uncertain negative examples (GRDY).

Shared Knowledge Transfer. To test the transferability of the learned rep-
resentation, we design a leave-on-out experiment on OTB50 dataset, in which
out of 50 unique sequences in this dataset, we train the MDL on 49 of them
for training, and the remaining one for testing. We use only 100k supervised
and 10M unsupervised iterations, and the shared layer is frozen during tracking
(LOO-ASPS). This process is repeated for three ablated versions of the proposed
model, (i) with fully-shared architecture (LOO-FS), (ii) with the private-shared
model with no regularization (LOO-PS), and (iii) without unsupervised itera-
tions (LOO-APS), all trained with 100k supervised iterations. We also set the
parameters of shared layers with the ILSRVC-2012 pre-trained network (PRE).
Table 4 shows that even FS-MDL in the LOO setting outperforms the tracker
made with pre-training for the action recognition task. PS-MDL with regulariza-
tion but without unsupervised iterations outperform FS-MDL, however, when
unsupervised training is used, such distinction becomes more apparent. In sum-
mary, it is shown that the full treatment yields better results due to multi-task
learning (PRE<LOO-FS), adversarial training (LOO-PS<LOO-FS<LOO-SPS),
and self-supervised training (LOO-APS<LOO-ASPS).

Tracking Challenges Analysis. Table 5 presents the performance of the pro-
posed tracker under challenging subsets of OTB50. The results reveal that using
proposed PS-MTL architecture as well as the semi-supervised training scheme
almost improved every aspect of the tracker compared to the baseline (MDNet).

Adversarial Semi-Supervised MDL 13

Table 5. Quantitative evaluation of trackers under different visual tracking challenges
of OTB50 [73] using AUC of success plot and their overall precision.

Attribute TLD STRK TGPR MEEM MUSTer STAPLE CMT SRDCF CCOT MDNet Ours
[86] [87] [88] [89] [90] [91] [92] [93] [94] [5]

Illumination Variation 0.48 0.53 0.54 0.62 0.73 0.68 0.73 0.70 0.75 0.76 0.80
Deformation 0.38 0.51 0.61 0.62 0.69 0.70 0.69 0.67 0.69 0.73 0.74
Occlusion 0.46 0.50 0.51 0.61 0.69 0.69 0.69 0.70 0.76 0.75 0.81
Scale Variation 0.49 0.51 0.50 0.58 0.71 0.68 0.72 0.71 0.76 0.78 0.82
In-plane Rotation 0.50 0.54 0.56 0.58 0.69 0.69 0.74 0.70 0.72 0.75 0.78
Out-of-plane Rotation 0.48 0.53 0.54 0.62 0.70 0.67 0.73 0.69 0.74 0.76 0.80
Out-of-View (Shear) 0.54 0.52 0.44 0.68 0.73 0.62 0.71 0.66 0.79 0.79 0.84
Low Resolution 0.36 0.33 0.38 0.43 0.50 0.47 0.55 0.58 0.70 0.72 0.71
Background Clutter 0.39 0.52 0.57 0.67 0.72 0.67 0.69 0.70 0.70 0.76 0.77
Fast Motion 0.45 0.52 0.46 0.65 0.65 0.56 0.70 0.63 0.72 0.73 0.78
Motion Blur 0.41 0.47 0.44 0.63 0.65 0.61 0.65 0.69 0.72 0.72 0.78

Avg. Succ 0.49 0.55 0.56 0.62 0.72 0.69 0.72 0.70 0.75 0.76 0.80
Avg. Prec 0.60 0.66 0.68 0.74 0.82 0.76 0.83 0.78 0.84 0.85 0.88
IoU > 0.5 0.59 0.64 0.66 0.75 0.86 0.82 0.83 0.83 0.90 0.93 0.93

Table 6. Quantitative evaluation on OTB100 using success rate and precision.

dSRDCF CCOT BACF dSTRCF STResCF CBCW ECO SiamRPN SiamRPN++ SINT++ VITAL MDNet RT-MDNet ATOM DiMP Ours

[95] [94] [96] [97] [81] [82] [98] [24] [25] [26] [27] [5] [83] [80] [79]

Avg. Succ↑ 0.69 0.68 0.62 0.68 0.59 0.61 0.69 0.63 0.69 0.57 0.68 0.67 0.65 0.66 0.68 0.73

Avg. Prec↑ 0.81 0.85 0.82 - 0.83 0.81 0.91 0.85 0.91 0.76 0.91 0.90 0.88 - 0.89 0.91

IoU >
1

2
0.78 0.88 0.77 0.77 0.76 0.76 - 0.80 0.83 0.78 0.75 0.80 0.79 0.86 0.87 0.88

Table 7. Evaluation on VOT2018 by expected avg overlap, robustness and accuracy.

STURCK MEEM STAPLE SRDCF CCOT SiamFC ECO SiamRPN SiamRPN++ ATOM DiMP Ours

[87] [89] [91] [93] [94] [23] [98] [24] [25] [80] [79]

EAO↑ 0.097 0.192 0.169 0.119 0.267 0.188 0.280 0.383 0.414 0.401 0.440 0.427

Acc↑ 0.418 0.463 0.530 0.490 0.494 0.503 0.484 0.586 0.600 0.590 0.597 0.604

Rob↓ 1.297 0.534 0.688 0.974 0.318 0.585 0.276 0.276 0.234 0.204 0.153 0.169

This improvement is more significant for occlusions, out-of-view and motion
challenges due to the usage of spatiotemporal features in the tracker.

Evaluation on OTB-100. We benchmarked the tracker against the competing
trackers on OTB100 [74] as presented in Table 6. In comparison with trackers
who perform BB regression, those using adversarial learning, and the state-of-
the-art in the tracking, our proposed tracker shows beter performance.

Evaluation on VOT-2018. Table 7 shows the comparison of our method with
the competing algorithms on 60 challenging videos of VOT-2018 [78].

Evaluation on LaSOT [75]. In phase I, our tracker is trained on the GOT10K
dataset for 1M supervised iterations and on YouTubeBB [65] for 10M unsuper-
vised iterations. As showed in table 8, our proposed algorithm obtained the best
results compared to state-of-the-art trackers when tested on all 1400 video se-
quences of LaSOT. Protocol II brings an even more interesting challenge, that
limits the training data to the given 1120 videos, and test the trained trackers
on the remaining 280 sequences of the dataset. Using the given training videos,
we conduct 1M supervised and 10M unsupervised training. The shared layer
obtained a significant improvement compared to the MDNet and the state-of-
the-art, which can be attributed to the abundance of labeled data, and the close
distributions of training and test data, essential for unsupervised training.

14 K. Meshgi & M.S. Mirzaei

Table 8. Evaluation on LaSOT with protocol I (testing on all videos) and protocol II
(training on given videos and testing on the rest). We get better results with dataset’s
own videos as training due to large training set and matching domain.

STAPLE SRDCF SiamFC SINT ECO BACF SiamRPN++ VITAL MDNet ATOM DiMP Ours

[91] [93] [23] [22] [98] [96] [25] [27] [5] [80] [79]

(I) Acc↑ 0.266 0.271 0.358 0.339 0.340 0.277 0.496 0.412 0.413 0.515 0.569 0.554

(I) Rob↑ 0.231 0.227 0.341 0.229 0.298 0.239 - 0.372 0.374 - - 0.487

(II)Acc↑ 0.243 0.245 0.336 0.314 0.324 0.259 - 0.390 0.397 - - 0.499

(II)Rob↑ 0.239 0.219 0.339 0.295 0.301 0.239 - 0.360 0.373 - - 0.495

Table 9. Evaluation on UAV123 by success rate and precision.

STRUCK MEEM STAPLE SRDCF MUSTer ECO CCOT SiamRPN SiamRPN++ MDNet RT-MDNet ATOM DiMP Ours

[87] [89] [91] [93] [90] [98] [94] [24] [25] [5] [83] [80] [79]

Succ↑ 0.387 0.398 0.453 0.473 0.517 0.522 0.513 0.527 0.613 0.528 0.528 0.643 0.654 0.655

Prec↑ 0.578 0.627 0.666 0.676 0.391 0.591 - 0.748 0.807 - 0.772 0.856 0.858 0.793

Table 10. Evaluation on TrackingNet by precision, normalized precision, and success.

ECO SiamFC CFNet MDNet DaSiam-RPN ATOM SiamRPN++ DiMP Ours

[98] [23] [5] [99] [80] [25] [79]

Precision 0.492 0.533 0.533 0.565 0.591 0.648 0.694 0.687 0.687

Norm. Prec. 0.618 0.666 0.654 0.705 0.733 0.771 0.800 0.801 0.802

Success (AUC) 0.554 0.571 0.578 0.606 0.638 0.703 0.733 0.740 0.741

Evaluation on UAV123. The result in table 9 suggest that the shared fea-
ture space is good enough to surpass the state-of-the-art trackers for tracking
in this dataset, but not good enough to obtain a high success score. In this
regard, we conducted an additional experiment by 5-fold cross validating the
network trained for 100K supervised iterations and 1M unsupervised iteration
for each fold (we ensured that each fold has exactly 4 of the 20 longer videos of
the dataset, called UAV20L subset). The average success score for this task on
UAV123 reaches 0.655 that is almost 7.8% improvement compared to the gen-
erally trained version of the proposed tracker (on GOT10K and YouTubeBB).

Evaluation on TrackingNet. Table 10 shows our results on the TrackingNet
test set [77] (511 videosh) that is comparable to the SOTA approaches.

6 Conclusion

We proposed a semi-supervised private-shared MDL to learn the domain-invariant
and domain-specific features, push the domain-specific features out of the shared
feature space using an adversarial regularization, and use the direction of video
playing as a proxy learning task to further train the shared representation using
unannotated videos. We then proposed a tracker that classifies the target from
the background for each video that uses the learned feature representation. The
results of the demonstrate the superior performance of the proposed tracker com-
pared to the state-of-the-art. Our next step is to tailor our adversarial learning
and global search for long-term tracking as proposed in [100,101].

Adversarial Semi-Supervised MDL 15

References

1. Caruana, R.: Multitask learning: A knowledge-based source of inductive bias.
(1993) 1, 3

2. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: ICML’08, ACM (2008) 160–167
1

3. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning
for speech recognition and related applications: An overview. In: ICASSP’13,
IEEE (2013) 8599–8603 1

4. Girshick, R.: Fast R-CNN. In: ICCV’15. (2015) 1440–1448 1

5. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual
tracking. (In: CVPR’16) 1, 5, 9, 10, 11, 12, 13, 14

6. Liu, P., Qiu, X., Huang, X.: Adversarial multi-task learning for text classification.
In: ACL’17. (2017) 1–10 1, 4, 5, 7

7. Roshan Zamir, A., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskon-
omy: Disentangling task transfer learning. In: CVPR’18. (2018) 3712–3722 1, 4

8. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv
preprint arXiv:1706.05098 (2017) 1, 4

9. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new
perspectives. PAMI (2013) 2

10. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: ICML’15. (2015) 1180–1189 2, 4, 8

11. Feichtenhofer, C., Pinz, A., Wildes, R.: Spatiotemporal residual networks for
video action recognition. In: NIPS’16. (2016) 3468–3476 2, 5, 11, 12

12. Sebag, A.S., Heinrich, L., Schoenauer, M., Sebag, M., Wu, L., Altschuler, S.:
Multi-domain adversarial learning. In: ICLR’2019. (2019) 3

13. Wang, N., Yeung, D.Y.: Learning a deep compact image representation for visual
tracking. In: NIPS. (2013) 809–817 3

14. Zhou, X., Xie, L., Zhang, P., Zhang, Y.: An ensemble of deep neural networks for
object tracking. In: Image Processing (ICIP), 2014 IEEE International Conference
on, IEEE (2014) 843–847 3

15. Fan, J., Xu, W., Wu, Y., Gong, Y.: Human tracking using convolutional neural
networks. IEEE Transactions on Neural Networks 21 (2010) 1610–1623 3

16. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features
for visual tracking. In: ICCV’15. (2015) 3074–3082 3

17. Zhang, K., Liu, Q., Wu, Y., Yang, M.: Robust visual tracking via convolutional
networks without training. IEEE TIP 25 (2016) 1779–1792 3

18. Zhu, Z., Huang, G., Zou, W., Du, D., Huang, C.: Uct: learning unified convo-
lutional networks for real-time visual tracking. In: ICCVw. (2017) 1973–1982
3

19. Chen, K., Tao, W.: Once for all: a two-flow convolutional neural network for
visual tracking. IEEE CSVT (2018) 1–1 3

20. Wang, N., Li, S., Gupta, A., Yeung, D.Y.: Transferring rich feature hierarchies
for robust visual tracking. arXiv (2015) 3

21. Drayer, B., Brox, T.: Object detection, tracking, and motion segmentation for
object-level video segmentation. arXiv preprint arXiv:1608.03066 (2016) 3

22. Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In:
CVPR. (2016) 1420–1429 3, 14

16 K. Meshgi & M.S. Mirzaei

23. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-
convolutional siamese networks for object tracking. In: ECCV, Springer (2016)
850–865 3, 13, 14

24. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with
siamese region proposal network. In: CVPR’18. (2018) 3, 11, 13, 14

25. Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: Siamrpn++: Evolution
of siamese visual tracking with very deep networks. In: CVPR’19. (2019) 3, 11,
13, 14

26. Wang, X., Li, C., Luo, B., Tang, J.: Sint++: Robust visual tracking via adversarial
positive instance generation. In: CVPR’18. (2018) 3, 11, 13

27. Song, Y., Ma, C., Wu, X., Gong, L., Bao, L., Zuo, W., Shen, C., Rynson, L.,
Yang, M.H.: Vital: Visual tracking via adversarial learning. In: CVPR. (2018) 3,
11, 13, 14

28. Varol, G., Laptev, I., Schmid, C.: Long-term temporal convolutions for action
recognition. PAMI 40 (2018) 1510–1517 3

29. Gkioxari, G., Malik, J.: Finding action tubes. In: CVPR. (2015) 759–768 3
30. Chao, Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar,

R.: Rethinking the faster R-CNN architecture for temporal action localization.
In: CVPR’18. (2018) 1130–1139 3

31. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action
recognition in videos. In: NIPS. (2014) 568–576 3

32. Zhu, Z., Wu, W., Zou, W., Yan, J.: End-to-end flow correlation tracking with
spatial-temporal attention. CVPR 42 (2017) 20 3

33. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van
Der Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with con-
volutional networks. In: ICCV’15. (2015) 2758–2766 3

34. Feichtenhofer, C., Pinz, A., Wildes, R.P., Zisserman, A.: What have we learned
from deep representations for action recognition? connections 19 (2018) 29 3, 4

35. Gladh, S., Danelljan, M., Khan, F.S., Felsberg, M.: Deep motion features for
visual tracking. In: ICPR, IEEE (2016) 1243–1248 3

36. Duong, L., Cohn, T., Bird, S., Cook, P.: Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser. In: ACL-IJCNLP’15. (2015)
845–850 3

37. Yang, Y., Hospedales, T.M.: Trace norm regularised deep multi-task learning.
ICLR’2017 (2017) 3

38. Søgaard, A., Goldberg, Y.: Deep multi-task learning with low level tasks super-
vised at lower layers. In: ACL’16. (2016) 231–235 4

39. Hashimoto, K., Tsuruoka, Y., Socher, R., et al.: A joint many-task model: Grow-
ing a neural network for multiple nlp tasks. In: EMNLP’17. (2017) 1923–1933
4

40. Sanh, V., Wolf, T., Ruder, S.: A hierarchical multi-task approach for learning
embeddings from semantic tasks. In: AAAI’19. Volume 33. (2019) 6949–6956 4

41. Liu, S., Pan, S.J., Ho, Q.: Distributed multi-task relationship learning. In: ACM
SIGKDD’17, ACM (2017) 937–946 4

42. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. In: CVPR’18. (2018) 7482–7491 4

43. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with
multi-task learning. arXiv preprint arXiv:1605.05101 (2016) 4

44. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain
separation networks. In: NIPS’16. (2016) 343–351 4, 7

Adversarial Semi-Supervised MDL 17

45. Abu-Mostafa, Y.S.: Learning from hints in neural networks. Journal of Complex-
ity 6 (1990) 192–198 4

46. Yu, J., Jiang, J.: Learning sentence embeddings with auxiliary tasks for cross-
domain sentiment classification. In: EMNLP’16. (2016) 236–246 4

47. Caruana, R.: Multitask learning. Machine learning 28 (1997) 41–75 4
48. Liu, P., Qiu, X., Huang, X.: Deep multi-task learning with shared memory for

text classification. In: EMNLP’2016. (2016) 4
49. Rei, M.: Semi-supervised multitask learning for sequence labeling. In: ACL’17.

(2017) 2121–2130 4
50. Bingel, J., Søgaard, A.: Identifying beneficial task relations for multi-task learning

in deep neural networks. In: ACL’15. (2017) 164–169 4
51. Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. In:

ICCV’17. (2017) 2051–2060 4
52. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.

In: ECCV, Springer (2014) 818–833 4
53. Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representa-

tion learning. arXiv preprint arXiv:1901.09005 (2019) 4
54. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018) 4, 11

55. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV’2016,
Springer (2016) 4

56. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning
by context prediction. In: ICCV’15. (2015) 1422–1430 4, 5

57. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728 (2018) 4

58. Wei, D., Lim, J.J., Zisserman, A., Freeman, W.T.: Learning and using the arrow
of time. In: CVPR’18. (2018) 8052–8060 5, 8

59. Misra, I., Zitnick, C.L., Hebert, M.: Shuffle and learn: unsupervised learning using
temporal order verification. In: ECCV’16, Springer (2016) 527–544 5

60. Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking
emerges by colorizing videos. In: ECCV’18. (2018) 391–408 5

61. Li, H., Li, Y., Porikli, F.: Deeptrack: Learning discriminative feature representa-
tions online for robust visual tracking. IEEE TIP 25 (2016) 1834–1848 5

62. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS’14. (2014)
2672–2680 6

63. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.:
A theory of learning from different domains. (Machine learning) 7

64. Jia, Y., Salzmann, M., Darrell, T.: Factorized latent spaces with structured spar-
sity. In: NIPS’10. (2010) 982–990 7

65. Real, E., Shlens, J., Mazzocchi, S., Pan, X., Vanhoucke, V.: Youtube-
boundingboxes: A large high-precision human-annotated data set for object de-
tection in video. In: CVPR’17. (2017) 5296–5305 8, 13

66. Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for
generic object tracking in the wild. PAMI (2019) 8, 11

67. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for
accurate object detection and semantic segmentation. In: CVPR’14. (2014) 580–
587 9

68. Meshgi, K., Oba, S., Ishii, S.: Efficient diverse ensemble for discriminative co-
tracking: Supplementary material. CVPR (2018) 9

18 K. Meshgi & M.S. Mirzaei

69. Sung, K.K., Poggio, T.: Example-based learning for view-based human face de-
tection. PAMI (1998) 9

70. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Pro-
ceedings of the second international conference on genetic algorithms. (1987) 9

71. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learn-
ing. In: ICML’94. (1994) 148–156 10

72. Vedaldi, A., Lenc, K.: Matconvnet: Convolutional neural networks for matlab.
In: Proceedings of the 23rd ACM international conference on Multimedia, ACM
(2015) 689–692 10

73. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: CVPR’13,
IEEE (2013) 2411–2418 10, 11, 13

74. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. PAMI 37 (2015)
1834–1848 11, 13

75. Fan, H., et al.: LaSOT: A high-quality benchmark for large-scale single object
tracking. CVPR’19 (2019) 11, 13

76. Mueller, M., et al.: A benchmark and simulator for uav tracking. In: ECCV’16.
(2016) 11

77. Muller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: Trackingnet: A
large-scale dataset and benchmark for object tracking in the wild. In: ECCV’2018.
(2018) 11, 14

78. Kristan, M., et al.: The sixth visual object tracking vot2018 challenge results. In:
ECCV’18. (2018) 11, 13

79. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model
prediction for tracking. In: ICCV’2019. (2019) 11, 13, 14

80. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Atom: Accurate tracking by
overlap maximization. In: CVPR’19. (2019) 11, 13, 14

81. Zhu, Z., et al.: STResNet cf tracker: The deep spatiotemporal features learning
for correlation filter based robust visual object tracking. IEEE Access (2019) 11,
13

82. Zhou, Y., et al.: Efficient correlation tracking via center-biased spatial regular-
ization. (TIP) 11, 13

83. Jung, I., Son, J., Baek, M., Han, B.: Real-time mdnet. In: ECCV. (2018) 11, 13,
14

84. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network
fusion for video action recognition. In: CVPR’16. (2016) 11, 12

85. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.:
Large-scale video classification with convolutional neural networks. In: CVPR’14.
(2014) 11, 12

86. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. PAMI 34

(2012) 1409–1422 13

87. Hare, S., Saffari, A., Torr, P.H.: Struck: Structured output tracking with kernels.
In: ICCV’11. (2011) 13, 14

88. Gao, J., Ling, H., Hu, W., Xing, J.: Transfer learning based visual tracking with
gaussian processes regression. In: ECCV’14. Springer (2014) 188–203 13

89. Zhang, J., Ma, S., Sclaroff, S.: Meem: Robust tracking via multiple experts using
entropy minimization. (In: ECCV’14) 13, 14

90. Hong, Z., Chen, Z., Wang, C., Mei, X., Prokhorov, D., Tao, D.: Multi-store
tracker (muster): a cognitive psychology inspired approach to object tracking.
(In: CVPR’15) 13, 14

Adversarial Semi-Supervised MDL 19

91. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.: Staple: Com-
plementary learners for real-time tracking. In: CVPR’16. (2016) 1401–1409 13,
14

92. Meshgi, K., Oba, S., Ishii, S.: Active discriminative tracking using collective
memory. (In: MVA’17) 13

93. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially
regularized correlation filters for visual tracking. In: ICCV’15. (2015) 4310–4318
13, 14

94. Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters:
Learning continuous convolution operators for visual tracking. (In: ECCV’16) 13,
14

95. Danelljan, M., Hager, G., Shahbaz Khan, F., Felsberg, M.: Convolutional features
for correlation filter based visual tracking. In: ICCVw. (2015) 58–66 13

96. Kiani Galoogahi, H., Fagg, A., Lucey, S.: Learning background-aware correlation
filters for visual tracking. (In: ICCV’17) 13, 14

97. Li, F., et al.: Learning spatial-temporal regularized correlation filters for visual
tracking. In: CVPR’18. (2018) 13

98. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Eco: Efficient convolution
operators for tracking. In: CVPR. (2017) 13, 14

99. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese
networks for visual object tracking. In: ECCV’2018. (2018) 14

100. Wang, X., Yang, R., Sun, T., Luo, B.: Learning target-aware attention for robust
tracking with conditional adversarial network. In: BMVC. (2019) 131 15

101. Huang, L., Zhao, X., Huang, K.: Globaltrack: A simple and strong baseline for
long-term tracking. AAAI (2020) 15

