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Abstract. Virtual clothing try-on, transferring a clothing image onto a
target person image, is drawing industrial and research attention. Both
2D image-based and 3D model-based methods proposed recently have
their benefits and limitations. Whereas 3D model-based methods provide
realistic deformations of the clothing, it needs a difficult 3D model con-
struction process and cannot handle the non-clothing areas well. Image-
based deep neural network methods are good at generating disclosed
human parts, retaining the unchanged area, and blending image parts,
but cannot handle large deformation of clothing. In this paper, we pro-
pose CloTH-VTON that utilizes the high-quality image synthesis of 2D
image-based methods and the 3D model-based deformation to the target
human pose. For this 2D and 3D combination, we propose a novel 3D
cloth reconstruction method from a single 2D cloth image, leveraging a
3D human body model, and transfer to the shape and pose of the target
person. Our cloth reconstruction method can be easily applied to diverse
cloth categories. Our method produces final try-on output with naturally
deformed clothing and preserving details in high resolution.

Keywords: Virtual try-on, 3D cloth reconstruction, Generative model.
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Fig. 1. Results of our CloTH-VTON. From left to right: input clothes, reference hu-
mans, reconstructed 3D clothes (shape and pose transferred respectively), and final
fusion results. CloTH-VTON produces realistic output with high details.
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1 Introduction

Virtual try-on (VTON) technologies can help customers in making their cloth-
ing purchase decisions for shopping online. Although 3D model-based VTON
approaches could produce realistic 3D VTON results, 3D modeling and scan-
ning for real clothing and human body are time-consuming and expensive [1,2].
Since the emergence of deep learning, 2D image-based approaches have gained
more attention, mainly due to the lower costs of 2D data collection and less com-
putational time than 3D [3,4]. However, manipulating the human and clothing
shape and texture is an extremely challenging task, due to the huge variety of
poses and shapes. Thus, deep neural networks, i.e., image-based and 2D VTON
technologies suffer from variations of clothing and human styles. Figure 2 shows
a comparison of state-of-the-art (SOTA) methods and their limitations. Espe-
cially, 2D image-based methods cannot deform the input clothing to the 3D
pose of the target person [5]. From the statistical 3D human model [6] and
3D reconstruction studies, many research works are ongoing on 3D human or
clothed-human digitization. Recently, works have been done in 3D garments or
clothing reconstruction [7,8,2,1]. However, since the separate reconstruction of
clothing and humans is necessary for VTON, prior works on 3D garment recon-
struction [1,2,7] methods work only with very limited clothing categories. Also,
full 3D reconstruction of human parts like the face with hair for VTON is a more
difficult problem [9,10,2,7].

In this paper, our idea is to leverage the advantages from both virtual try-
on domains, i.e., 3D model-based and image-based approaches, and make a
hybrid pipeline for the image-based virtual try-on task, which is simple and
fully-automatic. Hence, we propose Clothing Three-dimensional reconstruction
for Hybrid image-based Virtual Try-ON (CloTH-VTON). Since 2D non-rigid de-
formations suffer due to complex 3D poses [5] and 3D model-based techniques
are good at realistic deformation of any poses/styles [8], we propose a novel 3D
cloth reconstruction method, from a single in-shop cloth image, using 3D SMPL
human body mesh model [6]. Using the SMPL model for reconstruction and
deformation of clothes can handle any complex human poses. We also exploit
the latest deep networks-based VT ON techniques for generating the final try-on
results. We use a fusion mechanism for blending 3D warped clothes to 2D human
images, which generates the photo-realistic outputs with preserving the original
pixel quality (Fig. 1).

Our contributions are as follows:

— We propose a hybrid image-based VTON approach, utilizing the benefits of
2D GAN [13] based methods for synthesizing the dis-occluded parts, and 3D
model for the 3D posing of the clothing.

— We introduce a novel 3D clothing reconstruction method from a single in-
shop cloth image of any style or category, through 2D image matching and
3D depth reconstruction using body depth.

— We provide a highly effective fine alignment and fusion mechanism for com-
bining the rendered 3D warped clothing with the generated and original 2D
human parts.
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Fig. 2. Limitations from the existing image-based VTON methods. VITON [11] has fu-
sion problems, CP-VTON [4] and CP-VTON+[5] has texture & blur issue, ACGPN [12]
produces the best result among SOTA having texture alteration issue, while CloTH-
VTON generates output with the highest possible quality including full details.

2 Related Works

2.1 Image-Based Virtual Try-On (VTON)

(Fixed-Pose) Virtual Try-On This task is to transfer in-shop cloth to hu-
mans, keeping the pose fixed, same as ours. VITON [11] and CP-VTON [4]
propose VTON pipelines with two main stages - clothing warping and try-on
image synthesis. Sun et al. [14], VINFP [15], SieveNet [16] proposed an extra
stage for full target human segmentation generation including target clothing.
ACGPN [12] proposed a two-stage based target segmentation generation for tar-
get human body parts and target clothing mask respectively. Some other works
are [8,5,17,18,19,3,20,21]. However, challenges remain, such as self-occlusions,
heavy misalignment among different poses, and complex clothes shape or tex-
tures (Fig 2).

Multi-Pose Guided Virtual Try-On This task applies a new pose along with
the target cloth to the target human, e.g., MG-VTON [22], FIT-ME [23], Zheng
et al. [24], FashionOn [25]. They use multi-stage architectures due to the high
complexity and large information of features to transfer. Human pose transfer
is related to this task except for the target clothing, e.g., ClothFlow [17], Ma et
al. [20], Balakrishnan et al. [27] VU-Net [28], and others [29,30,31,32,33,34].

Person to Person Transfer Another popular application of image-based
VTON is the person to person clothing transfer. SwapNet [35] proposed a gar-
ment exchange method between two human images. Outfit-VITON [306] trans-
fers multiple clothing from different human images to another person. Zanfir et
al. [37] proposed appearance transfer between human images using 3D SMPL
models [6].
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However, most works use conditional GANs where results show the limita-
tions in blurring in dis-occluded area and misalignment of transferred clothing
to the target human when there is a big difference between two persons’ poses
and shapes.

2.2 3D Garment/Human Reconstruction and Dressing

3D Pose and Shape Estimation 3D human pose and shape estimation is
one of the most active research areas in 3D human reconstruction. Statistical
and parametric human body models, such as SMPL [6] and SMPL-X [38] are
accelerating this area rapidly. Frank and Adam [10] models capture markerless
motions. To estimate single 3D human pose and shape in an image, SMPLify [39]
and SMPLify-X [38] uses optimization techniques, HMR [410] uses learning with

3D supervision, SPIN [11] makes a combination of neural network regression
and optimization. OOH [12] estimates 3D humans from object-occluded images,
Jiang et al. [43] detect multiple 3D humans from single images, and VIBE [44]

estimates multiple 3D humans from videos.

3D Clothed Human Reconstruction Fully-clothed reconstruction of hu-
man texture/depth/geometry from image/video/point-cloud is popular due to
AR/VR potentials, although not for VTON, e.g., PIFulHD [45], PIFusion [16],
IF-Nets [17], PIFU [18], Tex2Shape [19], Photo Wake-Up [50], SiClope [51], 360°
textures [52], human depth [53].

3D Garment Reconstruction One major sub-task in our method is to re-
construct 3D cloth models from images. Due to the enormous variety of clothing
and fashion, it’s highly difficult to reconstruct 3D garment models covering all
categories. ClothCap [1] captures cloth models of shirts, pants, jerseys, and skirts
from 4D scans of people. Multi-Garment Net [2] makes 3D garment models from
3D scans of people for 3D VTON. They use 3D garment templates for 5 cat-
egories: shirt, t-shirt, coat, short-pants, long-pants [2]. Pix2Surf [7] learns to
reconstruct 3D clothing from images for 3D VTON, leveraging garment meshes
from MGN [2]. Our work is most similar to Minar et al. (2020) [8], where they
reconstruct and deform 3D cloth models for image-based VT ON. However, they
consider 5 clothing categories based on sleeve lengths only, and the final try-on
result suffers badly from blurring effects. Some other related works includes Tai-
lornet [54] for predicting realistic 3D clothing wrinkle details, 3D garments from
sketches [55], garment animation [56], DeepWrinkles [57].

Despite the high details of 3D clothing models, they mostly require 3D scan-
ning data/templates, fixed categories, and the modeling techniques outside of
clothing are still in early stages, which is difficult to apply in VTON task.

3 CloTH-VTON

Figure 3 shows the overall architecture of our proposed CloTH-VTON, which
takes a pair of an in-shop cloth image C;,, and a human image I;,,, and generates
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Fig. 3. Overview of our proposed CloTH-VTON. We reconstruct the 3D cloth model
of the target cloth by matching silhouettes to the standard body model. Then, we
transfer the 3D cloth model to the estimated 3D target human model, to produce the
3D warped cloth. We generate target human skin parts and blend it to the rendered
warped cloth along with human representations.

a virtual try-on output I,,; in the same pose J of I;,. First, we generate the
target segmentation map Spoay Which guides the following processes for synthe-
sizing the dis-occluded human parts F,,; and 2D matching mask Moy ey for
cloth deformation. Our method reconstructs 3D target cloth model Votpeq, first
through 2D matching between the cloth C;, and the matching mask Moyut,ref,
then reconstructing Veiotheq using the standard SMPL [6] model Vyoqy,. Then, the
vertices displacements of Vi jotneq are applied to the estimated 3D target human
model \_/;fo 4y- The non-cloth areas are retained from the original images or syn-
thesized if invisible in the input human image. The final try-on image is blended
by a fusion mechanism, retaining the target human properties and high original
details of the target cloth. Since the final output is fused by blending masks, not
generating using GAN [13] networks, it does not suffer from blurring effects or
texture alterations (Fig. 2) which are very common in deep neural network-based
image synthesis. Figure 1 shows sample results from our approach.

3.1 Segmentation Generation Network (SGN)

The segmentation layout in the try-on output becomes different from the input
human image because of the different cloth shape and occluded/dis-occluded
parts of the human. Early works like VITON [11] and CP-VTON [4] do not gen-
erate an explicit target segmentation. We use an explicit target segmentation
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Fig. 4. Segmentation Generation Network (SGN) architecture; to generate the target
human body segmentation according to the target cloth.

generation as ACGPN [12], for utilizing in the cloth matching and parts syn-
thesis. We refer to this stage as the Segmentation Generation Network (SGN),
presented in Figure 4. SGN has U-Net [58] as the generator and the discriminator
from Pix2PixHD [59]. SGN learns to generate the target human segmentation,
except for the target clothing area.

SGN takes merged human segmentation Sin merged, 2D pose as joints J from
the input human I;,,, and cloth mask Mc ;,, from the input cloth Cj;, as inputs.
Sin,merged comes from the 2D human segmentation St ;, of I;,, where clothes
on person and affected human body parts, i.e., top-clothes, torso-skin, right and
left arms, are merged to a single upper-cloth label. SGN produces Spody, fake as
output. We calculate Cross-Entropy loss Log between Spody, fake and Shody,real,
along with loss Lgan, which is the sum of GAN losses and GAN feature match-
ing loss from Pix2PixHD [59]. Spody,rear is parsed from Sy ;,, as the ground-truth
for SGN network.

Lsan = MLce + A2Lgan (1)

3.2 3D Cloth Reconstruction from In-shop Image

For reconstructing the 3D shape of clothing from in-shop images, we extend the
2D to 3D approach in [8], where they need manual category selection (of 5). We
present a fully automatic approach, not restricted to any cloth categories.

Mask Generation Network (MGN) Prior works on 3D garment reconstruc-
tion and modeling work with fixed clothing categories [1,2,7,54,8,55] works. They
use reference garment templates [1,2,7], trains separate network for predicting
3D models [2,7], or standard body model silhouette [8]. Since our cloth modeling
is similar to Minar et al. [8] without requiring 3D garment templates, we also
use silhouette masks of a standard A-posed SMPL [6] body model Vioqy, as the
reference for 2D silhouette matching between the target cloth and SMPL [0].
Figure 5 shows 5 reference masks generated for 2D matching of clothes.
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Fig. 5. 2D cloth mapping process to the reference SMPL silhouette. From left to right:
standard body model and its silhouette, matching masks for long-sleeve, half-sleeve,
short-sleeve (half-elbow and quarter elbow respectively), sleeveless clothing categories,
and the standard model inputs for generating matching masks with SGN & MGN.
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Fig. 6. Mask Generation Network (MGN) architecture; to generate the cloth mask for
2D matching.

To apply cloth matching to other categories, manual matching masks are
needed for corresponding clothing categories. While this procedure is easier
and generates a tight-fit clothing texture for 3D reconstruction, it is difficult
to cover all the clothing categories manually due to diverse clothing styles. Also,
making cloth matching masks from SMPL [6] body silhouette does not provide
loose-fitting clothing textures. To alleviate this problem and make the process
fully-automatic, we use the Mask Generation Network (MGN) for 2D matching,
following the semantic generation module of ACGPN [12], since they separated
the target cloth mask generation network from segmentation generation. MGN
has similar architecture as SGN, as illustrated in Figure 6.

MGN takes the generated body parts segmentation Syoqy from SGN output,
human joints J, and in-shop input cloth mask Mc¢ ;,, as the inputs, and produces
target cloth mask on person Moy, fake as the output. We calculate binary cross-
entropy loss Lpcr between Moyt fare and real clothes mask on person Moyt real
from Sy ;p, along with the GAN losses Lgan (Eq. 2).

Lyey = MLpee + A2Lgan (2)

We made a fused segmentation map of our standard body model, and gen-
erated 2D joints as in A-pose (see Figure 5), to provide input to SGN, which
generates the target body segmentation Sy,q, in standard pose. MGN takes Spody
as an input, and infers the matching masks Moy ey for silhouette matching of
target cloth to standard SMPL [6] model Viody- Figure 7 shows an example of
SGN and MGN inference for Vioqy.
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Fig. 7. Example of 2D cloth matching for 3D reconstruction. From left to right: Input
cloth image, target body segmentation generated by SGN for standard body model,
cloth matching mask generated by MGN, cloth texture after 2D matching and over-
lapped on SMPL silhouette respectively, 3D reconstructed cloth and overlaid on SMPL
model respectively.

2D Clothing Matching We apply Shape-Context Matching (SCM) [60] be-
tween the target clothes and their corresponding categorical masks (Fig. 5) or
matching masks generated by MGN (Sec. 3.2). Then, we apply Thin-Plate Spline
(TPS) [61] transformation on the target clothes, based on the shape correspon-
dences from SCM, to generate the clothing textures to be aligned to the standard
SMPL [6] body model Vioqy. Pix2Surf [7] argues that a combination of SCM-
TPS may generate holes and artifacts at the clothing boundary. However, since
we only use the front images of clothes for image-based VTON, SCM-TPS pro-
vides better matching for specific clothes. Figure 7 shows an example of 2D cloth
matching and texture extraction for 3D reconstruction.

3D Clothing Model Reconstruction For 3D reconstruction from the aligned
clothing image and projected silhouette, first, vertices of the 3D body mesh
Vbody are projected into 2D image space. When boundary vertices are in 2D
space, clothing boundaries are used to find the corresponding points. To make
the clothing transfer, i.e., change of its pose and shape easily, a 3D clothing
model’s vertices are mapped to an SMPL [6] body vertices. We assume that the
relation between the clothing and human vertices is isotropic, i.e., the difference
in the projection space is also retained in the 3D model. Although this is not
strictly true, we make this assumption for practical applications. We define the
corresponding points in the clothing boundary as the closest points from the
projected vertices. We estimate Thin-Plate Spline (TPS) [61] parameters and
apply them to the mesh points. New mesh points are considered as the vertices
projected from the 3D mesh of clothing V¢jothed. From 2D points to 3D points
are done with inverse projection with depth obtained from the body with a
small constant gap. In reality, the gap between the clothing and body cannot be
constant but it works with tight or simple clothes.

Velothed = P71 - Trps(P - Viody), depth(Vioay)), (3)

Here, P is the projection matrix with the camera parameters K- [R|t], P~ 1is
the inverse projection matrix of the same camera, and depth(Vioqy) is the dis-
tance from the camera to the vertices. Target clothing images are used as the
textures for the 3D clothing mesh. Finally, we obtain the clothing 3D model
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Fig. 8. Sample 3D clothing deformation with 3D human body estimation. From left to
right: input cloth, target human, 3D reconstructed cloth model, 3D estimated human
body model, 3D deformed cloth model, and the rendered image of 3D warped cloth.

Viiothea by selecting the vertices that are projected onto the clothing image
area.

Target Human Model Parameter Estimation To estimate V;fody, the SMPL
[6] parameters (3, 0) for a human image, we use the SMPLify [39] method. How-
ever, any newer and better method can be used since we use estimated pa-
rameters only. SMPLify [39] is for full-body images, so we made a few minor
optimizations, mainly for our half-body dataset, such as - head pose correction,
joints location mapping between the joints of the dataset used in this paper and
SMPL’s, the SMPLify joints definition, conditional inclusion of invisible joints
and initialization step.

3D Clothing Model Deformation 3D clothing model V jotpeq and texture
information obtained from 3D reconstruction is for the standard shaped and
posed person (5, 0y). For the VTON application, we have to apply the shape
and pose parameters (3, 6) of the target human image, V}fodw estimated from
the previous step (Sec. 3.2). Instead of applying the shape and pose parameters
to the obtained clothed 3D model, we transfer the displacements of clothing
vertices to \%tody, since the application of new parameters to the body model
provides much better natural results. Several options can be considered for the
transfer, e.g., transferring the physical size of clothing or keep the fit, i.e., keep
the displacements from the body to clothing vertices as before. We simply decide
the fit-preserving option for showing more natural results for final fitting.

V::tlothed = Vbtody +din ('Ll/x, Uy, U’Z"/btody) (4)

Hence, we get the 3D deformed model Vflothed of the target cloth. Then, we

render ‘zﬂothed to get the warped cloth image Cyarped, to apply to the final try-
on, following Minar et al. [3]. Figure 8 shows an example of applying 3D cloth
deformation. Additional details are provided in the supp. mat.

3.3 Try-on Generation

To generate the final try-on output image, its common to utilize the generative
neural networks [1,12]. However, due to not having enough training data, we
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Fig. 9. Parts Generation Network (PGN) architecture; to generate the target skin parts
of the input human according to the target cloth.
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chose not to train a network to generate the final results directly. Also, results
from the generative networks suffer from blurry output issues due to up-sampling
e.g. and texture alterations [4,3]. Therefore, we chose to simply merge the warped
clothes into the target human, leveraging the target segmentation from SGN.
One problem is getting the accurate target clothing affected human skin parts,
i.e., torso-skin, right and left arms/hands. For transition cases like long-sleeve
cloth to short-sleeve, hidden skin parts cause artifacts [2]. So, we train a separate
network for generating the target skin parts, using the Spoq, output from SGN.

Parts Generation Network (PGN) We refer to this stage as the Parts
Generation Network (PGN), which uses similar networks as SGN and MGN.
PGN pipeline is drawn in Figure 9.

PGN takes 2 inputs: mask of the target skin parts, Moy¢, skin from the target
segmentation Syoqy generated by SGN, and average skin color Kggin, i of body
skin parts i.e., torso-skin, left-arm and right-arm from the target human image
I;n. PGN generator produces the target body skin parts, Pous, fake. We calculate
Ly loss, VGG loss Ly g, and GAN losses Lgan from Pix2PixHD [59], between
the generator output Poy¢, foke and the real human body skin parts Pyyt,reqr from
Srin (Eq. 5).

Lpan = ML+ ALvee + AsLgan (5)

Try-on Fusion The final step is to merge all the parts (Eq. 6), i.e., human rep-
resentation I, fizeqd from the target person I;;,, rendered 3D deformed clothing
image Cyarped, and the generated skin parts Py, from PGN, to get the try-on
output I,,:. To make a successful fusion of all these segments, accurate target
body segmentation Spoqy and 3D body estimation plays a critical role.

Iout = Iin,fixed + Cwarped + Pout (6)
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Fig. 10. Sample final fusion for try-on. From left to right: Input cloth image, target
human image, rendered 3D warped cloth, human representation from target person,
target skin parts generated by PGN, and the final fusion output for virtual try-on.

4 Experiments

4.1 Dataset Preparation

For training and testing, We used the VITON [11] dataset, which contains 14221
training and 2032 testing pairs of in-shop clothes and human images (half-body).
VITON resized dataset [4] contains in-shop cloth masks, human poses predicted
by OpenPose [62], and human segmentation generated by LIP-SSL [63]. However,
as noted by [5], VITON dataset has several problems. LIP [63] segmentation does
not have labels for skin in the torso area, i.e., neck, chest, or belly, and labeled
those as background. These areas are crucial to estimate the clothing area, so we
generated new segmentation with pre-trained CIHP-PGN [64]. Also, many cloth
masks are wrong when cloth colors are similar to the background (white). We
re-implemented a new mask generator considering the dataset characteristics.

4.2 Implementation Details

Neural Network Training and Testing All three neural networks in our ap-
proach, SGN (Sec. 3.1), MGN (Sec. 3.2) and PGN (Sec. 3.3), shares the common
network architecture: U-Net [58] as the generators, and the discriminators from
Pix2PixHD [59] network. GAN losses include the generator loss, discriminator
losses for real and fake outputs, and the feature-matching loss [59]. All networks
are implemented in PyTorch [65], based on the public implementation [66] of
ACGPN [12], and each network is trained for 20 epochs with a batch size of
8. It takes 17-20 hours of training for each network with 4 TITAN Xp GPUs.
For testing, we used two kinds of VITON test input pairs - same-clothes and
different-clothes. Same-clothes input pairs are used for evaluating with ground-
truth, and different clothes pairs for visual comparison.

Mask Generation for Cloth Matching We use 5 silhouette masks from the
reference SMPL [6] model for 5 clothing categories based on sleeve lengths [3],
i.e., long-sleeve, half-sleeve, short-sleeve half-elbow, short-sleeve quarter-elbow,
and sleeveless. These categories contains a total of 465 + 130 + 780 + 162 + 252
= 1789 in-shop clothing images, out of 2032 VITON [11] test dataset clothes (See
Figure 5). For the rest of the clothes, we use the fully-automatic process from
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Section 3.2, to generate a specific matching mask for each cloth. Direct inference
with SGN and MGN networks gives several unexpected results when we test
with the standard A-posed model input. We assume that, since these networks
are trained with the full training set, which is full of various poses and different
from A-pose, cause the artifacts. It would be best to train simple networks with
fixed A-pose data. However, due to the lack of such data and annotations, we
choose to go with a closer path. We collected 1095 human images from the
VITON dataset, having very simple poses, e.g., straight hands and standing.
These are selected based on the Easy criterion from ACGPN [12]. We train a very
simple version of SGN and MGN networks with the easy pose pairs, exclusively
for generating reference masks for 2D clothing matching. We follow the same
training procedures for these networks as discussed in Section 4.2. Then, we
generate the cloth-specific silhouette matching mask, using our standard SMPL
model inputs, as shown in Figures 5, 6 & 7.

2D Clothing Matching We implemented this step in MATLAB, utilizing the
original script of SCM [60]. We chose 10 * 10 control points for describing shape
contexts between the silhouette masks, and then apply TPS [(1] transformation
on the input clothes.

3D Clothing Reconstruction and Re-posing We use the available public
models from SMPL [67] and SMPLify [68], and their python implementations
for 3D reconstruction and model transfer. Based on the SMPLify [39] implemen-
tation, we also make our implementation for this step using Chumpy [69] and
OpenDR [70]. First, the standard SMPL [6] model is reconstructed. Then, we
transform the model from 2D space to 3D space, according to the cloth texture
from 2D matching, to get the shape information of cloth. Pose and shape pa-
rameters are estimated from the human image using SMPLify [39] optimization.
Finally, the cloth model is transferred to the 3D body model to get the warped
cloth.

Clothing and Human Image Fusion For final try-on output, we utilize the
generated target body segmentation to fuse the human representations, warped
clothes, and the generated skin parts into output images.

4.3 Results

We provide both qualitative and quantitative analyses of our results, comparing
with existing image-based VTON methods. For qualitative comparisons, we re-
trained the networks from the available public implementations of the SOTA
approaches and reproduced the results.

Qualitative Analysis We present the qualitative comparisons in Figure 11
among VITON [11], CP-VTON [4], CP-VTON+ [5], ACGPN [12] and CloTH-
VTON, for different clothes input pairs. Newer methods such as CP-VTON+ [5]
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Fig. 11. Visual comparisons between SOTA image-based VTON methods and our
CloTH-VTON. For fair comparisons, we present samples from the dataset with complex
human poses e.g. cross arms, and target clothes with detailed textures. Our method
produces try-on results with the highest details and quality possible.

and ACGPN [12] generates competitive results. However, we can see the clear im-
provements in our results than the existing methods, especially when the target
clothes have detailed textures or the target humans have complex poses. Figure 2
shows the differences in the details of the methods’ results. More comparisons
& results are provided in the supplementary material.

Quantitative Analysis We present quantitative comparisons in Table 1. We
use the Structural Similarity Index (SSIM) [71] and Inception Score (IS) [72],
for comparing with and without ground truths respectively. The values of VT-
NFP [15] and ACGPN [12] are added from the reported scores in ACGPN [12]
paper. The values of CP-VTON+ [5] is added from their paper.

Our SSIM score is slightly lower than CP-VTON+ and ACGPN. SSIM is
originally developed for video compression quality measures without geometric
distortion, according to a recent study on the limitation of SSIM [73]. We argue
that, even though we are comparing with the image-based methods, our method
is a hybrid approach from the 3D reconstruction. Therefore, SSIM scores are
lower since rendered 3D warped clothes are structurally different from the clothes
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Table 1. Quantitative comparison with the SOTA image-based VTON methods: VI-
TON [11], CP-VTON [4], VINFP [15], ACGPN [12], and CP-VTON+ [3].

Metric| VITON|CP-VTON|VINFP|CP-VTON+|ACGPN|CloTH-VTON
SSIM | 0.783 0.745 0.803 0.816 0.845 0.813
IS 2.650 2.757 2.784 3.105 2.829 3.111

in images. However, human synthesizing metric like inception score provides the
highest score for our results, which proves the capability of our approach.

4.4 Discussion

From the results, it is clear that our method is highly competitive against the
SOTA image-based VTON approaches. However, there are many rooms for im-
provement. Such as - target human body segmentation generation, matching
mask generation for 2D clothing matching, 3D shape and pose estimation of
the human body, realistic clothing deformation, and final fusion. Target hu-
man segmentation plays a crucial role in almost all stages, making it one of
the most important areas for improvement. The next performance bottleneck is
the 2D silhouette matching for transferring the clothing textures to the stan-
dard 3D model. Hence, it is important to generate accurate silhouette matching
masks for input clothes. 3D body estimation from human images can be done
with any SOTA 3D human pose and shape estimation methods, e.g. SPIN [41]
or OOH [412]. Also, our current approach is mostly applicable to close-fitting
clothes. For reconstruction and deformation of loose-fitting clothes, e.g. dress
and skirt, separate clothing deformation techniques like TailorNet [54] can be
applied. Final fusion output will be far better based on the improvements in
previous stages.

5 Conclusion

We propose a hybrid approach for image-based virtual try-on tasks, combining
the benefits of 2D image-based GAN[13] and 3D SMPL [6] model-based cloth
manipulation. We present a 2D to 3D cloth model reconstruction method us-
ing only a 3D body model, applicable to diverse clothing without requiring 3D
garment templates. To integrate from two different domains, we develop target
semantic segmentation and clothing-affected body parts generation networks.
Our final try-on output provides the photo-realistic results which come with
great details, high resolution, and quality.
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