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Abstract. With outstanding feature extraction capabilities, deep con-
volutional neural networks(CNNs) have achieved extraordinary improve-
ments in image denoising tasks. However, because of the difference of sta-
tistical characteristics of signal-dependent noise and signal-independent
noise, it is hard to model real noise for training and blind real image de-
noising is still an important challenge problem. In this work we propose
a method for blind image denoising that combines frequency domain
analysis and attention mechanism, named frequency attention network
(FAN). We adopt wavelet transform to convert images from spatial do-
main to frequency domain with more sparse features to utilize spectral
information and structure information. For the denoising task, the ob-
jective of the neural network is to estimate the optimal solution of the
wavelet coefficients of the clean image by nonlinear characteristics, which
makes FAN possess good interpretability. Meanwhile, spatial and chan-
nel mechanisms are employed to enhance feature maps at different scales
for capturing contextual information. Extensive experiments on the syn-
thetic noise dataset and two real-world noise benchmarks indicate the
superiority of our method over other competing methods at different
noise type cases in blind image denoising.

1 Introduction

Image denoising is a very critical low-level task in computer vision, and the
quality of the image has a significant impact on high-level tasks – image classifi-
cation, semantic segmentation, object localization, instance segmentation. Image
denoising is an ill-posed problem like a transcendental equation which is diffi-
cult to find a unique solution by reversing it but only by optimizing it. For a
real-world noisy image, noise usually results from the interaction of photons of
the image and electrons thermal movement when the sensor obtains the image
signal, such as shot noise, dark current noise, quantification noise, etc [1] [2].
During ISP pipeline, some nonlinear operations like demosaicking and gamma
correction also change the noise distribution which makes real-world noise more
sophisticated.

For decades, methods of image denoising can be divided into two categories,
model-driven and data-driven. One exact scheme of the first category is to find
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similar blocks by exploiting the correlations that exist in the image informa-
tion itself and using these similar blocks to estimate the clean image [3] [4] [5].
Another direction is to exploit prior information based on the transformed do-
main by converting image signal to another domain for shrinkage like frequency
domain. The noise is usually contained in the medium and high frequency in-
formation of the image due to the randomness and sparsity of the noise which
causes the gradient of the image increases so that reasonable reconstruction of the
medium and high frequency information can effectively remove noise [6] [7]. Re-
cently, data-driven deep convolutional neural networks(CNNs) are increasingly
applied on the image denoising task in that CNN can extract high-dimensional
features of images and utilize them to restore clean images.

Deep CNN denoisers significantly improve image denoising performance on
synthetic noise model [8] [9] [10] [11] [12] [13]but tend to be over-fitted to the
realistic noise model like additive white Gaussian noise(AWGN). When they
are applied on the real-world denoising task, they are lack of the ability to
eliminate both signal-dependent noise and signal-independent noise. Thus, real-
world denoising is still a challenging task since noise distributions vary a lot in
different scenes.

In this article, we tackle this issue by developing a frequency attention net-
work (FAN) which combine frequency domain analysis and a deep CNN model
for the image denoising task. From the perspective of Fourier, image transforma-
tion methods that can enhance the performance of the network are essentially
to change the frequency domain information of the image to enhance the fea-
ture [14]. Motivated by this perspective and sensitivity of frequency components
in human visual system(HVS) [15], we employ wavelet transform to extract the
spectral information and structure information of images as the prior information
of the network. The wavelet transform can preserve the structural information
of the image and facilitate high-dimensional features for image restoration.

Flexibility and robustness are still significant problems for most denoising
methods. [9] [16] introduce the noise map to train denoising networks jointly
which can provide more information to help extract image features and we adopt
it to accelerate our network training. We combine spatial attention mechanism
and channel attention mechanism to enhance the feature map for improving the
feature extraction ability of the network and removing signal-dependent noise. At
last, we explore the influence of different individual components of the network
and different wavelet basis functions.

To sum up, the contributions of this paper are following:

– We proposed frequency attention networks(FAN) combining traditional sig-
nal processing methods and deep learning, which makes the method based on
neural network with more interpretability from the perspective of frequency
domain.

– We introduced the Spatial-Channel Attention Block which combines the spa-
tial attention and channel attention mechanisms to enhance feature maps
and help to better extract the main features of the image.
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– We evaluate the effect of different wavelet basis functions on denoising per-
formance and experiments show Haar wavelet with symmetry, orthogonality
and compactly supported characteristics can acheive the best result.

– Experiments on synthetic noise datasets and real noise datasets respectively
prove the superiority of our model compared with competing methods and
can achieve state-of-the-art results.

2 Related Work

With the rapid development of convolutional neural networks in the field of com-
puter vision, many researchers have proposed algorithms based on deep learning
to solve low-level and high-level computer vision problems. Some combination
of traditional methods and deep learning provides more comprehensive inter-
pretability for neural networks. Next, we briefly describe representative methods
of image denoising.

Traditional Denoising Methods: Noise images can be seen as the sum
of clean signal and noise signal with their relationship usually expressed as
Y = X + n. Towards employing high frequency characteristic of noise, im-
age denoising methods on the different transform domains were widely proposed
especially DCT [7] [17] and wavelet transform [6] [18]. Wavelet transform is a
widely application method in signal processing, which uses the wavelet basis
function as a filter to extract the frequency information of the image and then
solve sub-band reconstruction coefficients in accordance with the desired expec-
tation to obtain a denoised image. Based on images self-similar patches, it is
effective to make full use of the structural information of the images themselves
as prior information to approximate the optimal estimate clean patches through
their statistical relationships involving CBM3D [19], NLM [3], NL-Bayes [5].
Another type of solution is to convert the image denoising task to a mathemat-
ical optimization problem based on the noise model and use decomposition or
dictionary-based to solve it, such as low-rank model [20] [21], sparse representa-
tion [22] [23] [24]. However, the main drawbacks of these algorithms are compu-
tationally expensive and time-consuming in that they need to be re-implemented
for new coming images so that they are difficult in gaining wider access.

Deep CNN denoiser: With the widespread use of deep convolutional net-
works in computer vision, deep CNN has also led to great performance on image
denoising. DnCNN [8] is the first to introduce a residual network for denois-
ing, allowing the network to learn the distribution of noise and then remove the
noise to get the result. FFDNet [9] adopts downsampling, introducing noise map
and orthogonalization to improve the speed, flexibility and robustness of the
denoising network. CBDNet [16] adopts two-stage denoising strategy including
estimating noise map and denoising, using asymmetric loss function for train-
ing. MWCNN [25] replaces the downsampling of UNet with wavelet transform to
retain more information using orthogonalization. VDN [26] introduces variable
inference to predict the noise distribution for denoising. CBDNet, MWCNN and
VDN all adopt UNet network [27] as their backbone which includes downsam-



4 H. Mo et al.

pling and can be operated for pixel-level tasks, with excellent results for image
restoration task that require attention to pixel points.

An improvement for image denoising is to apply attention mechanisms for
adapting to different regions. RIDNet [28] introduces enhancement attention
modules to select essential features and use a residual on residual structure to
build networks. KPN [29] utilizes the idea of non-local mean to train out filter
windows and then use these filter cores for image reconstruction. [30] considers
the deformable convolution to predict the distribution of filter kernels for obtain-
ing good results. However, these networks are learned in spatial domain which
are costly to learn and underutilize the frequency domain characteristics of the
noise.

More recently, frequency domain learning has shown its potential to improve
model efficiency and feature extraction capabilities. Both [31] and [32] employ
DCT transformations to convert training data into the frequency domain while
the front applied to image classification and the latter applied to image seg-
mentation. For the image denoising task, the spectral information can reflect
the relationship between noise and clean image signal in the frequency domain.
Wavelet transform is commonly used to convert images to the frequency domain
which preserves both the spatial structure information and the spectral informa-
tion of the image at the same time. Thus, we propose our method based on the
characteristic of wavelet transform and deep learning for blind image denoising.

3 Frequency Attention Network

This section presents our FAN consisting of data pre-processing, networks archi-
tecture and attention design. To begin with, we show FAN architecture including
Est-Net and De-net. Then, we analysis the effects of wavelet transform character-
istics on network performance. Finally, we introduce Spatial-Channel Attention

Block used for feature map enhancement.

3.1 Network Architecture

Inspired by the observation that human visual system(HVS) is more sensitive
to the spatial resolution of the luminance signal than that of the chrominance
signal [33] and HVS has the varying sensitivity to different frequency components
[15], we convert the image from the RGB color space to YCbCr color space for
denoising.

As shown in figure 1, the network we designed contains two subnetworks
including the noise estimation network and the denoising network. Est-Net takes
the noisy image as input and estimates different noise level map for each channel.
Est-Net is composed of five full-convolutional layers, each consisting of only
the Conv and PReLU layers excluding the batch normalization layer and the
pooling layer. The filter size is 3× 3 and the feature map is set as 64. The noise
map which can improve network flexibility and generalizability for different noise
levels is also conductive to increase the convergence speed of the network because
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Fig. 1: Frequency Attention Network Architecture

its redundancy can help to better extract image features. Given a training set
{Inoisy, Igt, σgt}

N
i=1, loss of the estimated noise map σ̂(Inoisy) is defined as

Lmap =
1

N

N∑

i=1

||σ̂(Inoisy)− σgt||1 (1)

where || · ||1 denotes l1 norm.
In the denoising network, the input RGB images are transformed to the

YCbCr color space including luminance Iy and chroma Iuv. Considering the
sensitivity of the human visual system to luminance, Iy is converted to the
frequency domain by wavelet transform for reserving spectral information and
structure information while Iuv stays original. We concatenate the processed
data and noise map to get I

′

as input to the De-Net network which contains 4
encoder blocks and 3 decoder blocks and there is a skip connection to concatenate
two blocks under the same scale.

The U-Net structure can use feature fusion at different resolutions to obtain
better contextualized representations, but it will cause the loss of image details
at high resolution when the network depth at each scale is consistent. Aim at
retaining more details, we adopted variable depth design for De-Net where the
numbers of residual convolutional blocks at different scales increase with the
resolution to ensure that our network can obtain a stronger expressive ability.
Besides, we add the SCAB module after each encoder for feature enhancement.
For the denoised image Î(Inoisy), we define image loss of De-Net as

Limg =
1

N

N∑

i=1

||Î(Inoisy)− Igt||1 (2)

Finally, we obtain the complete denoised image by wavelet reconstruction
and convert it to RGB color space. Given a training set {Inoisy, Igt}

N
i=1, loss
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function of our networks is defined as

L(θ) = Limg + γLmap (3)

3.2 Wavelet Transform

Wavelet is an important tool for the analysis of unstable signals while the im-
age as a 2D plane unstable signal is well suited for study with the wavelet.
Wavelet transformation of one image decomposes the image into different sub-
bands based on the frequency information and the processing of the medium
and the high frequency sub-bands can result in noise removal. Two-dimensional
wavelet decomposition of level j can be described as

f(x, y) =
∑

j,m,n∈Z

aj,m,n(k)ψj,m,n(x, y) (4)

where f(x) can be expanded into a linear combination of wavelet basis func-
tions with aj,m,n(k) as the expansion factor and ψj,m,n as the wavelet basis
function. For FAN, reconstruction denoising result can be defined as following,

Î(Inoisy) =
∑

k∈Z

W (ak)ψk(Inoisy) (5)

where W (·) refers to network output. It is difficult to deduce the expres-
sion relationship between W (ak) and ak through mathematical theory but the
optimal estimation of ak can be obtained with the help of the nonlinear char-
acteristics of the neural network and auxiliary noise map by deep learning to
restore the image as close as possible to ground truth. Therefore, the learning
objective of our neural network can be abstracted as the optimal solution to the
wavelet coefficients.

Separable wavelets which is widely used for two-dimension wavelet transform
generally use orthogonal wavelets and for discrete signal discrete orthogonal
wavelets have completeness to retain all the energy of the image signal in the
transformation process. Meanwhile, orthogonal wavelets can reduce the data
correlation between different sub-bands. Therefore, using wavelet to transform
the image into the frequency domain will not lose any information. Instead, it
can use the frequency characteristics of the image signal in the frequency domain
to help the deep convolutional network extract its nonlinear characteristics.

The wavelet transform includes discrete wavelet transform(DWT), stationary
wavelet transform(SWT) and continuous wavelet transform(CWT) where CWT
is the analysis of continuous signals, DWT and SWT are the analysis of discrete
signals. The decompose transformation process of DWT and SWT is shown
in the Figure 2. SWT is also called unsampled wavelet transform, which can
calculate the wavelet transform value point by point. The biggest difference
between SWT and DWT is that SWT has translation invariance because DWT
performs downsampling operation during the calculation process which will cause
the pseudo-Gibbs phenomena of reconstruction images. Meanwhile, SWT can
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(a) DWT (b) SWT

Fig. 2: Discrete Wavelet Transform and Stationary Wavelet Tranform

make the decomposition result keep the same size as the original image to retain
more prior information for network training and avoid information loss caused by
the downsampling and upsampling operation of the chroma layer for ensuring the
same size of the input and the output when we perform DWT on the luminance
layer instead of the chroma layer.

3.3 Spatial-Channel Attention Block(SCAB)

Signal-independent noise can be easily filtered out from the wavelet sub-band
through neural network learning, but signal-dependent noise is not easy to re-
move because of the high correlation between high-frequency signal and noise. In
order to make full use of the inter-channel and inter-spatial relationships of the
image, we used a Spatial-Channel Attention Block to extract the features in the
convolutional stream. The schematic of SCAB is shown in Figure 3. We extracted
the distribution of noise levels through Est-Net and also characterized the struc-
ture information of noise which we can use spatial attention mechanism to refine
features map of Iy. Meanwhile, we apply channel attention mechanism [34] on
Iy to achieve the feature recalibration.

Spatial attention is used to extract the inter-spatial relationship of im-
ages. Non-local block [35] [12] generates attention map through point-by-point
calculation of the feature map, but this method has limitations on the size of
the image and the calculation amount is large when the image size is too large.
CBAM [36] uses GAP and GMP to utilize the full channel information which
saves the amount of calculation while missing some feature information. We use
a progressively expanding multi-layer convolution operation to obtain an effec-
tive tradeoff between model complexity and performance. Dilated convolution
and expanding filter kernel size are adopted to increase the receptive field, and
gradually decreasing channels reduce the computational complexity. At the same
time, 1× 1 convolution layers distributed between convolutional layers work to
gather feature information in receptive fields of different ranges so as to calculate
the dependency relationship on the feature map space.

Channel attention utilizes the squeeze and excitation operation [34] to
enhance the main features of the feature map based on the inter-channel rela-
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Fig. 3: Spatial-Channel Attention Block

tionship. For an input feature map M ∈ R
1×1×c ,firstly generate the channel-by-

channel statistics d ∈ R
1×1×c through global pooling as the squeeze operation.

This statistic expresses the entire image under this type of feature extraction
convolution kernel global description. The excitation operation is used for fully
capturing the dependencies between channels through two convolutional layers
with the sigmoid gating and obtains activations d̂ ∈ R

1×1×c as follow

d̂ = σ(W2δ(W1GAP(fin))) (6)

where δ refers to PReLU function and σ is sigmoid gating.

In the image restoration, the attention mechanism can be regarded as an
extension of the classical method ideas on the neural network. Similar to the
bilateral filter [37] which adopts the difference between the spatial domain and
the value domain to calculate the weight of different locations for the central
area, spatial attention mechanism can re-weight the feature map according to
the location of the features and help the network learn where to be paid atten-
tion. Channel attention is the overall enhancement of different types of features,
which emphasizes the features corresponding to edge information in order to
achieve the effect of better retaining edges. The fusion of spatial and channel at-
tention mechanisms can enhance the feature maps in the high dimension, which
is conducive to smoothing the flat region and recovering the details of the texture
region.

4 Experiments

In this section, we design various ablation study to demonstrate effectiveness
of our strategy and evaluate performance by our method on synthetic and real
noise datasets compard with previous outstanding methods.
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Table 1: Impact of each individual components(Test on SIDD validation dataset)

Wavelet X X X X X

SCAB X X X X

Noise Map X X X X X X

Variable Depth X X X X

PSNR(dB) 39.04 39.13 39.29 39.16 39.24 39.37 39.45

SSIM 0.9124 0.9139 0.9157 0.9144 0.9158 0.9172 0.9184

Table 2: Impact of Different Types of Wavelet on Real-World Noise(SIDD vali-
dation dataset)

Wavelet Haar
Daubechies Biorthogonal

db2 db3 db4 db5 bior2.2 bior3.3 bior4.4

PSNR 39.45 39.36 39.25 39.17 39.10 39.39 39.35 39.26

SSIM 0.9184 0.9175 0.9163 0.9160 0.9157 0.9176 0.9173 0.9161

4.1 Implement Details

We employ SIDD real noise dataset and synthetic noise with as our training
dataset, respectively. Each image is cropped to a size of 128*128*3 as input, each
epoch trained 96000 images and 50 epochs trained each time. We adopt Adam
[38] as the optimizer with β1 = 0.9, β2 = 0.999 while we set initial learning rate
as 2e-4 and adopt the cosine annealing strategy [39] with the final learning rate
as 5e-10. The hyper-parameter γ is set as 0.2 both for real-noise and synthetic
noise training.

4.2 Ablation Study

Table 1 shows our ablation study on the impact of different architectural compo-
nents including wavelet transform, SCAB, noise map and variable depth when
testing on the SIDD validation dataset.

Compared with the spatial domain image as input, the wavelet transform
can simultaneously assemble frequency domain information and spatial struc-
ture information for learning and improves the network performance by 0.16dB.
Wavelet decomposition essentially regards the wavelet basis function as a filter
to decompose the image into different frequency bands. This operation can also
be learned by the neural network without wavelet transformation. However, the
Haar wavelet with orthogonality, compactly supported and symmetry provides
a certain prior constraint for the image to help the network pay attention to the
frequency domain information of the image during training process.

In order to choose a better wavelet basis function for wavelet transform, we
compare the performance of Haar, Daubechies and Biorthogonal wavelets on
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(a) SIDD (b) DND (c) LIVE1

Fig. 4: The noise map predicted by our FAN on SIDD, DND and LIVE1 dataset.
The noisy image and noise map of one typical image of SIDD validation dataset,
one of DND dataset and one of LIVE1 dataset with σ = 50.

our proposed FAN and the result is shown on Table 2. Daubechies wavelet is a
continuous orthogonal compactly supported wavelet and suitable for whitening
wavelet coefficients [40]. However, Daubechies wavelet is an asymmetric wavelet
which will cause the phase distortion of images during wavelet reconstruction and
the performance of Daubechies wavelet gets worse as the approximation order
increases. In order to construct ”linear phase” filters, biorthogonal wavelets are
proposed to construct compactly supported symmetric wavelets [41]. Note that
the biorthogonal wavelet does not perform better on the denoising task compared
with Haar, which indicates that the strictly orthogonal wavelet basis function
can decompose the image into an orthogonal space and is effective in eliminating
the correlation of the image signal.

We also experiment on applying the wavelet decomposition of the chroma
layer to concatenate that of the luminance layer as input and introducing the
multi-resolution decomposition of wavelet for wavelet transform respectively and
we observe these operations perform slightly worse than not using them. We
conclude that chrominance noise is eventually greater than luminance noise and
distributed in lower frequency band which results in insufficient seperation of
chromiannce noise. In the case of the same number of convolution kernels, in-
creasing the width of the network input will affect the ability of the network to
extract features and limit the denoising performance.

Furthermore, considering that the distribution of luminance noise and chrmi-
nance noise is inconsistent, we also train a FANdual with two De-Nets for the
lumianance layer and the chroma layer respectively. However, the final observa-
tion is that FANdual and FAN achieve close denoising results on the test dataset
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Table 3: The PSNR(dB) results about AWGN removal of three datasets

Sigma Datasets
CBM3D WNNM NCSR MWCNN DnCNN MemNet FFDNet VDN FAN

[19] [20] [23] [25] [8] [10] [9] [26] (Ours)

σ=15
LIVE1 33.08 31.70 31.46 32.33 33.72 33.84 33.96 33.94 34.16
Set5 33.90 32.92 32.57 33.84 34.04 34.18 34.31 34.34 35.01

CBSD68 32.89 31.27 30.84 31.86 33.87 33.76 33.85 33.90 34.08

σ=25
LIVE1 30.39 29.15 29.05 31.56 31.23 31.26 31.37 31.50 31.66
Set5 31.34 30.61 30.33 29.84 31.88 31.98 32.10 32.24 32.59

CBSD68 30.13 28.62 28.35 29.41 31.22 31.17 31.21 31.35 31.46

σ=50
LIVE1 27.13 26.07 26.06 26.86 27.95 27.99 28.10 28.36 28.44
Set5 28.25 27.58 27.20 28.61 28.95 29.10 29.25 29.47 29.51

CBSD68 26.94 25.86 25.75 26.54 27.91 27.91 27.95 28.19 28.24

while parameters of FANdual is almost twice that of FAN so that we still adopt
FAN for testing.

We develop SCAB to make the network pay more attention to the main fea-
tures of the image that are more relevant to the surroundings and to some extent
SCAB module aims at enhancing the self-similarity of the image. Experiments
also show that the attention module has achieve 0.32dB improvement on the
overall network.

For blind denoising tasks, the estimation of the noise level map can make the
network adaptive to different scenes with various noise distribution and help the
network adjust the ability of extract features to remove noise. Compared with
no noise map, FAN with noise map can reach a faster convergence when training
and better visual results. Figure 4 shows noise level map of real-world noise
and synthetic noise predicted by our proposed FAN including a typical image
of SIDD validation dataset, another of DND dataset and an image of LIVE1
with σ = 50. It can be seen that the noise intensity information in the predicted
map of real-world noise is more hierarchical because of signal-dependent noise
and signal-independent noise while noise map of synthetic noise has a smooth
distribution in each channel.

4.3 Experiments on Synthetic Noise

We collect 4744 pictures from Waterloo Exploration Database [42] and cropped
them into N = 20 ∗ 4744 pictures with the size of 128*128*3 for training. We
adopt three common image restoration datasets as test datasets to evaluate the
performance of different competing methods. There is still another challenge
to make noise contribution of synthetic noise as close as real-noise and it is
unfair to adopt one noise model for training when other methods train with
another. Considering that most denoising algorithms use additive white Gaussian
noise(AWGN) for the assumption of synthetic noise, in order to compare the
different methods more fairly, our noise model is defined as following,

Y = X + n, n ∼ N (0, σ2) (7)
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(a) Noisy (b) Ground Truth (c) CBM3D(24.93) (d) MWCNN(24.54)

(e) DnCNN(26.07) (f) FFDNet(25.85) (g) VDN(26.45) (h) FAN(27.50)

Fig. 5: Denoised results on one typical image in LIVE1 dataset with σ = 50 by
different methods

Table 3 lists the average PSNR results of different competing methods on
three testing datasets and Fig5 shows some denoising results of different method
on one typical images of CBSD68 dataset when σ = 50. From Table 3 and Fig 5,
it can be easily observed that: 1) Although the CBM3D based on self-similarity
model is a stable traditional method, there are color artifact and left noise in
the denoising results while most methods based on neural network performs
better at this problem. 2) Some outstanding CNN denoisers like FFDNet easily
over-smooth the images and are unable to preserve edge information while our
proposed FAN can retain more details by variable depth design. 3) For noise in
the flat regions, our model can also deal with it well because SWT can avoid the
pseudo-Gibbs effect and make the image look more natural and real.

4.4 Experiments on Real-World Noise

We select two real noise datasets DND [43] and SIDD [44] to evaluate the de-
noising performance of FAN. DND collected 50 images from 50 scenes captured
by four consumer cameras. The carefully post-processing of low-ISO images re-
sults in clean images, but it does not provide ground truth while PSNR / SSIM
results of denoised images through the online server. SIDD is another real noise
dataset which contains 320 image pairs of 10 scenes taken by 5 smartphones.
Clean Images are obtained by a series of ISP pipeline processing performing on
multiple images of the same scene. SIDD uses some unpublished image pairs as
a test set for verifying the performance of the denoising algorithms online.

Table 4 lists the denoising performance of different competing methods shown
on the SIDD benchmark. It can be seen that our FAN has obvious advantages
compared of model-driven traditional denoising algorithm and data-driven neu-
ral network denoising algorithm. In view of the fact that the noise type of CBD-
Net training data is inconsistent with SIDD, for fairly we also compared the
results of CBDNet training on the SIDD training set [26] and over 0.64dB. Spe-
cially, FAN achieves 0.62dB higher than RIDNet and 0.06dB higher than VDN
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Table 4: The comparison results of other methods on SIDD benchmark [44]

Method
DnCNN TNRD CBM3D NLM WNNM KSVD CBDNet CBDNet* RIDNet VDN FAN

[8] [45] [19] [3] [20] [22] [16] [16] [28] [26] (Ours)

PSNR 23.66 24.73 25.65 26.75 25.78 26.88 33.28 38.68 38.71 39.26 39.33

SSIM 0.583 0.643 0.685 0.699 0.809 0.842 0.868 0.901 0.914 0.955 0.956

(a) Noisy (b) Ground Truth (c) Noisy (d) Ground Truth

(e) CBM3D(29.53) (f) CBDNet(25.47) (g) CBM3D(27.14) (h) CBDNet(21.13)

(i) VDN(34.46) (j) FAN(34.67) (k) VDN(35.58) (l) FAN(36.29)

Fig. 6: Denoised results(PSNR: dB) on two typical images in SIDD validation
dataset by different methods

on the SIDD test dataset. As shown in Fig 6, we compare our results with other
competing algorithms. In the first example, our proposed FAN performs well in
the smooth region and the color boundary distinction while avoiding speckled
structures and chroma artifacts. For another example, the image denoised by
VDN has lattice-like artifact on the upper and left sides while the denoising re-
sult of our FAN can maintain the spatial smoothness of the homogeneous regions
and keep fine textural details.

Table 5 summarizes the quantitative comparison of different methods on
DND benchmark. It is easy to be seen that our proposed FAN surpasses other
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Table 5: The comparison results of other methods on DND benchmark [43]

Method
CBM3D WNNM KSVD MCWNNM FFDNet DnCNN+ TWSC CBDNet RIDNet VDN FAN

[19] [20] [22] [25] [9] [8] [24] [16] [28] [26] (Ours)

PSNR 34.51 34.67 36.49 37.38 37.61 37.90 37.96 38.06 39.26 39.38 39.41

SSIM 0.8507 0.8507 0.8978 0.9294 0.9415 0.9430 0.9416 0.9421 0.9528 0.9518 0.9507

(a) Noisy (b) CBM3D(30.91) (c) KSVD(31.73) (d) DnCNN(33.29)

(e) CBDNet(33.62) (f) RIDNet(34.09) (g) VDN(33.89) (h) FAN(34.23)

Fig. 7: Denoised results(PSNR: dB) on one typical image in DND benchmark by
different methods

methods, especially has a performance gain of 1.35dB and 0.15dB compared to
CBDNet and RIDNet respectively. Fig 7 shows some visualizing results of the
comparison between FAN and other competitive algorithms on DND benchmark.
We can see that our FAN can make the image smoother and retain perceptually-
pleasing texture details.

5 Conclusion

In this paper, we propose frequency attention network for blind real noise re-
moval which exploits spectral information and structural information of images
and employ the attention mechanism to enhance the feature maps. Abundant
ablation experiments indicate that Haar wavelet basis function which satisfies
symmetry, orthogonality and compactly supported characteristics at the same
time can achieve the best performance on our proposed FAN. Comprehensive
evaluations on different noise distribution cases demonstrate the superiority and
effectiveness of our method for image restoration tasks. Our method can also be
implemented on other low-level tasks including super-resolution and deblurring.
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