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Abstract The present study aims at learning class-agnostic embedding,
which is suitable for Multiple Object Tracking (MOT). We demonstrate
that the learning of local feature descriptors could provide a sufficient
level of generalization. Proposed embedding function exhibits on-par per-
formance with its dedicated person re-identification counterparts in their
target domain and outperforms them in others. Through its utilization,
our solutions achieve state-of-the-art performance in a number of MOT
benchmarks, which includes CVPR’19 Tracking Challenge.

1 Introduction

Multiple Object Tracking (MOT) problem has been receiving considerable atten-
tion from the computer vision community due to its significance to a number of
practical tasks, such as scene understanding[1], activity recognition[2], behavior
analysis[3], etc. Over the past few years, MOT solutions have gained considerable
performance improvement[4–6] partially due to the advance in Object Detection.
Namely, detectors rapidly progressed from Ada-Boost-based solutions, such as
ACF detector[7], to CNN-based ones[8–12]. While the former are capable of re-
turning bounding boxes with the fixed aspect ratio for a single category, the
latter successfully deal with multiple categories and arbitrarily shaped objects.
This progress was started by the invention of a two-stage detector[11]. It was
further stimulated by the introduction of a single-stage paradigm[10] and conse-
quent competition between the two[8, 9, 12]. The invention of Feature Pyramid
Network (FPN)[13], backbone efficiency improvement[14, 15], Regression Cas-
cades[16], Deformable Convolutions[17,18] also resulted in considerable accuracy
gains. This progress was one of the main reasons why Detection-Based Tracking
(DBT), which is also known as tracking-by-detection, has become the dominat-
ing paradigm in MOT domain[19]. It essentially breaks MOT problem into the
following sub-tasks: detection, embedding function application to the image area
corresponding to each detect, and data association. Making the detection stage
independent of the remaining two, DBT facilitates the adoption of modern de-
tectors. In its turn, any gain in Multiple Object Detection Accuracy (MODA)
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strongly positively affects the main MOT metrics[19–21], such as Multiple Ob-
ject Tracking Accuracy (MOTA), via False Positive (FP) and False Negative
(FN) counts.

At the same time, contemporary DBT solutions do not live up to the full
potential of their detection stage. In particular, most of them keep relying on
embeddings learned with single category datasets, thus making the scope of
the entire solution restricted to that single category. Moreover, the choice of
categories themselves is quite limited as long as the public datasets[5, 6, 22–24]
are concerned. The main two options are pedestrians and vehicles. Even though
a few DBT solutions have managed to keep their scope up with the scope of the
corresponding detector, so far all of them are associated with costly compromises.
For example, SORT[20] became applicable to multiple categories via the sacrifice
of appearance information. Relying solely on the intersection-over-union (IoU)
between considered detects at the data association stage obviously reduces its
accuracy and limits the applicability. Quite an opposite path was taken by Wang
et al. [25], who proposed to Jointly learn the Detection and Embedding (JDE)
model in a multi-task manner so that the detector and embedding could deal
with the same set of categories. However, such simultaneous training requires ID
annotation to be available throughout the corresponding dataset. Besides the
batch formation procedure for embedding learning, in this case, is expected to
be less flexible compared to a devoted one.

All in all, a wide application of contemporary DBT solutions in practice is
somewhat impeded by either the necessity of specific dataset creation or their
compromised accuracy and applicability. Due to the former factor, the tracking
of arbitrary objects (e.g. animals, robots, biological cells, etc.) becomes pro-
hibitively expensive for the vast majority of applications.

Perhaps, the most radical solution to the problem of restricted DBT scope
would be the utilization of class-agnostic embedding functions. Among tentative
candidates for this role, one could mention Learned Local Features Descriptors
(LLFD)[26–29]. While corresponding embedding functions shall obviously be
sensitive to object appearance, to the best of our knowledge their utilization for
object representation has not been reported. Indeed, there are a few factors that
make such endeavor questionable. In the first place, the representation of objects
in the case of LLFD could hardly correspond to the conventional one. Namely,
the objective of typical DBT embedding function is to produce compact and
separable object manifolds, when the loss formulation is adopted from metric
learning[30]. The same loss combined with a different sampling approach in the
case of LLFD is expected to result in extended and non-separable manifolds. At
the same time, one could argue that visually similar samples, even if attributed
to different manifolds, would tend to get mapped close to each other in the met-
ric space. Along with the gradual evolution of object appearance observed in
typical MOT setting, such property could potentially serve as a trade-off for lost
manifold compactness and separability. Next, susceptibility to background vari-
ation and/or occlusions is another point of concern. Finally, the discriminative
capability of LLFD may suffer from a rather low resolution of its input.



Learning LFD for MOT 3

As the nature of listed above concerns calls for an empirical approach, in this
study we report our rather successful results of LLFD utilization for Multiple
Object Tracking. In addition, we discuss the essential features of object repre-
sentation, which corresponds to the employed embedding. Finally, the aspects,
which turn out to have a positive impact on its efficiency, are indicated.

The paper is organized in the following way: the second section is dedicated
to related work. Section 3 is devoted to the preparation of our DBT MOT solu-
tion, which takes into account the object representation expected from LLFD. In
particular, we consider the necessary adjustments, which ameliorate embedding
function performance. Among them are the resolution of input patches, preserv-
ing color information, etc. For the sake of reproducibility, the details on the
detector and the association stage are provided as well. In the following section,
our MOT solution is evaluated and compared with other methods. In Section 5,
the properties of the proposed embedding function are discussed.

2 Related Work

The two approaches to embedding learning, which are relevant to our study, are
the following: person re-identification (Re-ID) and learned local feature descrip-
tors. While being similar in some aspects, they exhibit a conceptual difference
regarding the criteria, according to which given two samples are treated as such
that belong to the same category or, in other words, could form a positive sample
pair during training. In the case of person Re-ID, image patches representing a
given category have to depict the same object. The difference in object appear-
ance in these patches remains disregarded during the label assignment. In the
case of LLFD, however, the appearance of samples affects label assignment in
a more profound manner. Namely, it is required that the patches ascribed to a
given category depict the same pattern. At the same time, it could be viewed
from different perspectives and/or under various lighting conditions[26,31]. Typ-
ically each such pattern represents the vicinity of a particular local keypoint.
Due to their nature, the patterns normally do not possess any specific bound-
ary. As a consequence, the patterns extend right to the borders of corresponding
patches. This is another important difference from the case of person Re-ID,
where the image patches serving as training samples depict objects with well-
defined boundaries. And these boundaries rarely extend to the patch borders.
Some other aspects of these two approaches are summarized below.

2.1 Embedding Learning: Person Re-ID

Let us consider some person Re-ID aspects, which are relevant to MOT problem.
While several approaches are being used in this domain the solutions applied to
MOT task usually rely on metric learning. The employed backbone topologies
vary from those adopted from classification domain to the specifically designed
ones, as e.g. OSNet[32]. ResNet-50[14] became de facto the standard option in
the former case. Out of several representation options, global features turn out
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to be the most popular in DBT paradigm[19]. Successful solution tend to benefit
from attention utilization[30,33,34]. Multi-scale feature learning is another topic
of active research, which is approached explicitly by e.g. OSNet[32].

As far as training data are concerned, it is worth mentioning the following
factors. There is a number of widely used image and video datasets, see Ref. [30]
for an extensive list. Some of them are restricted to cropped patches, while oth-
ers contain entire scenes. The annotation quality depends on whether a manual
or automatic method was employed. The latter may include the application of
Object Detectors (OD), trackers, and Re-ID solutions. However, even in the for-
mer case, the noise rate remains non-negligible[30]. Occlusions are quite frequent
due to the scene and objects nature.

2.2 Embedding Learning: Local Feature Descriptors

Due to this task nature, it is desirable to start with the description of public
datasets. Among the most influential options in this area are UBC PhotoTour[31]
and HPatches[26]. Despite being introduced in 2007, UBC PhotoTour provides a
sufficient amount of data for CNN training. Being a patch-based dataset it con-
tains more than 106 grayscale patches extracted from three scenes. The patches
represent image areas around local keypoints. The positive samples correspond
to the matching keypoints. Recently introduced HPatches[26] addresses several
limitations inherent in UBC PhotoTour, such as scarce diversity with respect to
data, tasks, and the type of features. In particular, it consists of 116 sequences
containing 6 RGB images each. These sequences form two groups: 59 sequences
with significant viewpoint change and 57 with illumination change. In addition
to the extracted grayscale patches, the dataset includes the set of original images
in RGB format as well as the homography matrices representing the transfor-
mation between the images belonging to the same sequence.

The necessity to process numerous features per image imposes certain lim-
itations on the network topologies. For this reason, specific lightweight CNN
topologies find use in this domain. In recent years fully convolutional 7 layer
CNN design of L2-Net[28] has been enjoying broad utilization[27,35–38].

Since the training task is usually formulated as a metric learning problem,
a lot of effort is being invested into the following two directions: formulation of
more efficient loss function; and rising the proportion of so-called hard training
samples. The former activity is mainly related to modifying the triplet loss. The
latter deals with the fact that a fair portion of randomly formed triplets tends
to satisfy the objective function right away. Balntas et al. [29] approach this
problem by means of the anchor swap, also known as hard-negative sampling
within the triplet. In HardNet[27] the hardest-in batch sampling strategy was
proposed. In this case, triplet loss reads

Lt =
1

N

N
∑

i=1

max

{

∥

∥xi − x+
i

∥

∥

2
+ 1−min

j 6=i
‖xi − xj‖2, 0

}

, (1)
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where (xi, x
+
i )i=1...N designate descriptors corresponding to a set of N positive

pairs. Each pair originates from the same local keypoint. This method gained
broad recognition[35, 36] due to its straightforward implementation and lack of
side-effects. As examples of triplet loss modification, it is worthwhile to mention
the following. Zhang et al.[39] proposed a regularization term named Global
Orthogonal Regularization in order to achieve a more uniform distribution of
embedding vectors over the unit hypersphere. The authors of SOS-Net[36] put
forward an additional term named Second-Order Similarity aimed at improving
cluster compactness in the metric space. In terms of Eq. 1, the net loss function,
in this case, assumes the next form

L = Lt +
1

N

N
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√

√

√

√

N
∑
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j
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∥

2

)2

, (2)

where
cj =

{

xi ∈ KNN (xj) ∨ x+
i ∈ KNN

(

x+
j

)}

(3)

with KNN (xi) being a set of k nearest neighbors in the euclidean space.

3 ODESA-based Tracker

In order to assess the applicability of LLFD for MOT problem we prepare a
DBT solution, which accounts for the peculiarities in corresponding object rep-
resentation, and test its performance with relevant benchmarks. Regarding these
peculiarities, we make the following assumptions. Gradual appearance evolution
of objects observed between adjacent frames in a typical MOT environment being
combined with local descriptor capability to relate similar patterns is expected
to produce object manifolds that evolve in the metric space in a non-abrupt
manner. At longer time scales, certain objects may exhibit drastic changes in
appearance. Thus corresponding manifolds could likely become quite extended.
Periodic motion potentially could produce closed ”trajectories” in the metric
space. Also, the embedding derived from LLFD is assumed to exhibit better
discrimination properties, if color information is preserved. This assumption is
based on much lower probability to encounter lighting condition variations in
a MOT environment compared to e.g. the case of image retrieval, where LLFD
are typically find use. We also assume them to benefit from higher resolution
of input patches. To distinguish the embeddings that were modified according
to our assumptions from their LLFD origin, we will refer to them, hereafter, as
Object DEscriptor that is Smooth Appearance-wise (ODESA).

The rest of this section is devoted to the description of our DBT solution,
which in many aspects turns out to be similar to DeepSORT[40]. The subsections
devoted to its components are ordered in accordance with DBT processing flow.

3.1 Object Detector

The main objective for detector design was to obtain a competitive solution
constructed from the building blocks reported elsewhere[11, 13–16, 18, 41]. In
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Table 1: Ablation analysis of object detector components. R101, X101, Cascade, DCN,
GCB, Libra stand for ResNet-101, ResNeXt-101, Cascade R-CNN, Deformable Con-
vNets v2, Global Context Block, and specific Libra R-CNN components, respectively.
mAP(Mod) represents the mean Average Precision value for Moderate KITTI split.
R101[14] X101[15] Cascade[16] DCN[18] GCB[41] Libra[44] FP ↓ FN ↓ MODA ↑ mAP(Mod) ↑

X

C
a
r

685 2500 86.77 89.88

X 967 2113 87.20 90.05

X X 857 2021 88.04 90.00

X X X X 876 1876 88.50 89.92

X X X X X 774 1671 89.84 89.87

X

P
e
d
e
st
ri
a
n 1162 2723 65.03 82.91

X 787 3019 65.74 78.40

X X 843 2809 67.13 78.83

X X X X 934 2658 67.67 85.69

X X X X X 1018 2447 68.81 85.61

particular, the component implementations of MMDetection repository[42] were
reused. KITTI Tracking Benchmark[4] was considered as the main target.

The two-stage detector based on Faster R-CNN[11] was taken as the starting
point. ResNet-101[14] and ResNeXt-101[15] pre-trained on ImageNet[43] were
opted for the backbone. The following components were utilized as extension
options: FPN[13], Regression Cascades[16], the deformable convolution[18], and
Global Context Blocks (GCB)[41]. Also, IoU-balanced Sampling, Balanced Fea-
ture Pyramid, and Balanced L1 Loss of Libra R-CNN[44] were considered.

For experiments conducted on KITTI dataset[22], separate detectors were
prepared for Car and Pedestrian targets. 7481 training images for the detection
task were divided into a trainset of 4418 images and a local validation set of
3063 images so that the former does not contain any samples from 21 training
sequences for the tracking task. 4418 KITTI images were supplemented with a
sub-set from BDD[45] dataset, where 4975 suitable images were selected. Each
detector was configured to output two categories. These were either Car and Van

or Pedestrian and Cyclist. Such a configuration helps to get better accuracy.
The models were trained using SGD optimizer with momentum 0.9 and

weight decay 10−4. The learning rate was set to linearly increase from 3× 10−4

to 10−2 over the initial 500 warm-up training steps. The resulting rate was used
for 15 epochs. Finally, it was set to 10−3 for the last 10 epochs. The training
was performed with a batch size of 16 on 8 GPUs. As augmentation, we applied
multi-scale training and random horizontal flips. During evaluation and infer-
ence, the input images were resized to bring the shorter side to 700 pixels with
preserved aspect ratio. The results of detector evaluation on 21 KITTI tracking
train sequences are presented in Table 1.

3.2 ODESA Embedding

The topology of CNN adopted for ODESA models, which is depicted in Fig. 1,
was derived from L2-Net[28]. The modifications are related to adopting multi-
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Fig. 1. CNN topology of ODESA(HSV64/128) model. The last seven convolutions
correspond to L2-Net. The three layers introduced at the beginning reduce the lateral
dimension of feature maps to 32x32, which is the standard size of LLFD input patch.

channel input and the increase of input patch resolution.
For training, we utilize exclusively the data from HPatches dataset[26]. In

particular, the original set of RGB images and corresponding homography ma-
trices were used as the starting point for patch extraction. By conducting this
procedure by ourselves we obtained a set of patches with preserved color informa-
tion. The original set is accessible in the grayscale format only. And to the best of
our knowledge, the corresponding keypoint parameters are not publicly available.
As for the patch extraction routine itself, we followed the procedure of Ref. [26].
The random transformations of keypoints with respect to their position, scale,
and orientation were reproduced as well. Unless explicitly stated otherwise, they
were applied before projecting keypoints into related images in order to sim-
ulate the detection noise. As it will be discussed later these transformations
significantly affect embedding properties. Single intentional modification of the
patch extraction routine concerned with the choice of local keypoint detectors.
Namely, as an alternative to the original option, i.e. a combination of Differ-
ence of Gaussian, Hessian-Hessian, and Harris-Laplace1 the following learnable
Keypoint Detectors were considered: LF-Net[47] and D2-Net[48]. Hereafter, the
former will be referred to as HandCrafted Keypoint Detectors (HCKD).

The loss function of Eq. 2 was used with the default settings from Ref. [36].
SGD optimizer with the momentum value of 0.9 and the weight decay of 10−4

was used. The learning rate was configured to decrease linearly from the initial
value of 0.1 to zero over 20 epochs. Xavier[49] weight initialization method was
employed. The batch size was set to 512. Random horizontal flips were used.

The embedding model for our tracking solution was selected via the vali-
dation procedure described in Ref. [25]. Essentially this routine estimates True
Positive Rate at a given value of False Acceptance Rate (TPR@FAR) for a re-
trieval task set on a combination of person Re-ID datasets[24,50,51]. The results
of such validation are presented in Table 2. As long as the range of FAR val-
ues from 10−4 to 10−1 is concerned, about every next entry in Table 2 shows a
gradual improvement of TPR. In particular, the increase of input patch resolu-
tion from 32x32 to 64x64 results in higher performance. The patch sizes beyond
64x64 do not bring any considerable improvement. This observation indicates

1 Corresponding VLFeat[46] implementations were employed similarly to Ref. [26].
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Table 2: Embedding validation results obtained according to the routine described in
Ref. [25] on a set of public person Re-ID datasets. The model name in the first column
refers to the color space and the size of square input patch in pixels. A number of
person Re-ID and LLFD models were added to serve as a reference.

Model
Keypoint Embedding TPR@FAR, % ↑

Detector Size 10e-6 10e-5 10e-4 0.001 0.01 0.05 0.1

GRAY32 HCKD 128 7.08 11.30 18.48 31.32 52.47 70.38 78.67

GRAY32 D2-Net[48] 128 7.18 11.46 18.80 31.82 52.60 71.10 79.59

GRAY64 D2-Net[48] 128 7.79 12.35 19.74 32.75 53.72 72.24 80.38

RGB64 LF-Net[47] 128 5.35 10.91 20.14 35.13 60.29 79.25 86.59

RGB64 D2-Net[48] 128 4.79 10.65 19.45 35.85 61.62 80.21 87.33

HSV32 D2-Net[48] 128 5.06 10.93 20.51 36.78 61.78 80.27 87.30

HSV64 D2-Net[48] 128 4.76 12.01 21.81 37.34 62.37 80.87 87.87

HSV64 D2-Net[48] 512 4.65 10.59 20.70 36.37 63.67 81.35 87.95

SOSNet[36] HPatches[26] 128 7.31 10.79 16.38 27.05 47.88 66.92 75.60

OSNet[32] - 512 3.23 5.98 11.35 22.46 44.76 70.01 81.45

HACNN[33] - 1024 2.96 11.10 20.21 33.46 54.34 74.43 83.93

that the upscaling of training patches from their original size of 65x65 pixels
could be the limiting factor here. The datasets obtained by means of the learned
keypoint detectors[47,48] permit to learn models, which consistently outperform
the combination of hand-crafted keypoint detectors. The color information ap-
pears to be beneficial for this particular dataset. As will be shown later, the same
conclusion holds for MOT datasets as well. We assume that this observation is
related to limited changes in lighting conditions in typical person Re-ID or MOT
scenes. HSV color space consistently outperforms other checked options, such as
LAB, YUV, HLS, etc. Finally, the embedding dimensionality increase beyond
128 brings only moderate performance gains. The extended version of Table 2 is
provided in the supplementary material.

3.3 Data Association Stage

The Hungarian algorithm[52] was employed to perform the association between
incoming detects and known tracks. The appearance of each detect was reflected
by a single embedding vector xj of dimensionality k. The manifoldsHi = {xt}

D
t=1

containing up toDmax most recent embedding vectors, which were linked to each
other in the past, represented the known tracks. Keeping in mind our assump-
tions about the non-compact nature of ODESA object representation and grad-
ual appearance evolution, in the most general case we calculate the assignment
matrix in the following way

ci,j = (1− λ)min







1

2

√

∑

k

(

xk
t − xk

j

)2
| xt ∈ Hi







+ λ (1− IoU (i, j)) . (4)

Here each matrix element is represented by the normalized weighted sum of two
terms. The first one reflects the distance in the metric space between j-th detect
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and its closest element of i-th manifold. The second one depends on the IoU
value between the same detect and the most recent element from the considered
manifold. In other words, such cost formulation promotes association with the
closest manifold. Due to the second term, the association with the most recent
manifold element may get an additional boost. λ values were kept up to 0.1 in
all cases, where IoU was used in combination with the appearance information.

In order to incorporate motion information, we used the Mahalanobis gate.
It was based on possible object location predicted by the Kalman filter[53, 54]
as described in DeepSORT[40]. The association was regarded as permitted, i.e.
bi,j = 1, on condition that Mahalanobis gating got passed and its final cost
turned out to be smaller than the threshold value τ :

bi,j = 1l [ci,j ≤ τ ] . (5)

Comparing our data association stage with those reported elsewhere[19, 20, 40],
one could notice that it does not contain any unique components. The single
requirement to it, which follows from the assumed object representation, is re-
lated to the criterion of visual similarity estimation. The expectations regard-
ing considerable manifold extent make the minimal distance the simplest and,
at the same time, quite a reasonable choice. By applying this or similar crite-
rion, about any DBT solution could be adjusted to the utilization of LLDF or
ODESA-like embeddings. On condition that the same ID restoration after object
re-appearance is of interest, the utilization of larger Dmax values makes an ob-
vious sense. In our experiments, we kept Dmax ≤ 100, as further increases were
not related to any accuracy gains. Such settings are also quite usual in DBT
solutions[19, 40].

4 Results

The evaluation results for our tracking solution on the testset of KITTI Tracking
Benchmark[4] are presented in Table 3 along with the top-performing submis-
sions. In this particular case, the following settings were applied: the Kalman
filter was switched off, Dmax was set to 1, and λ in Eq. 4 was equal to 0.1.
HSV64/128 model was employed as the embedding function. It is evident
from this table that our trackers achieve state-of-the-art performance in both
leaderboards. They outperform other methods according to MODA metric while
demonstrating reasonable ID Switch (IDs) counts. In order to make direct com-
parison between ODESA and a number of embeddings that often find use in
MOT domain our DBT solution was adjusted to accept the latter as alterna-
tive options. In this case, the influence of the detection and data association
stages becomes separated. The results are summarized in Table 4. Here each
entry corresponds to the case, where the model listed in the first column was
employed in our DBT solution as the embedding function. All person Re-ID
models were trained on Market-1501[58] dataset, which is a common practice

2 The leaderboard state corresponds to July 7, 2020.
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Table 3: Top-performing solutions from KITTI Tracking Benchmark leaderboards.2

MOTA is being the main evaluation criterion.
Target Method TP ↑ FP ↓ FN ↓ MODA ↑ IDs ↓ FRAG ↓ MOTA ↑

C
a
r

TuSimple[55] 34’322 705 3’602 87.48 293 501 86.62

IWNCC 34’146 571 3’819 87.24 130 521 86.86

EagerMOT 32’858 1’209 3’173 87.26 31 472 87.17

FG-3DMOT 34’052 611 3’491 88.07 20 117 88.01

RE3T 34’991 785 3’005 88.98 31 193 88.89

CenterTrack 36’562 849 2’666 89.78 116 334 89.44

ODESA (Our) 36’258 451 2’887 90.29 90 501 90.03

P
e
d
e
st
ri
a
n

3D-TLSR 13’767 942 9’606 54.44 100 835 54.00

CenterTrack 15’351 2’196 8’047 55.75 95 751 55.34

VV team 15’640 2’366 7’757 56.27 201 1’131 55.40

Quasi-Dense[56] 14’925 1’284 8’460 57.91 254 1’121 56.81

TuSimple[55] 14’936 1’192 8’359 58.74 138 818 58.15

HWFD 17’296 1’302 6’159 67.77 116 918 67.27

ODESA (Our) 17’516 991 5’791 70.70 191 1’070 69.88

Table 4: Comparison with state-of-the-art person Re-ID embeddings on 21 KITTI
tracking training sequences for Car and Pedestrian targets. The association is restricted
solely to visual similarity, i.e. λ = 0 in Eq. 4.

Method
Car Pedestrian

MODA ↑ IDs ↓ FRAG ↓ MOTA ↑ MODA ↑ IDs ↓ FRAG ↓ MOTA ↑

SOSNet[36]

89.84

47 304 89.65

68.81

98 540 67.93

HardNet++[27] 43 298 89.66 93 537 67.97

OSNet[32] 65 317 89.57 78 523 68.11

MLFN[57] 57 312 89.61 88 532 68.02

HACNN[33] 50 305 89.63 81 525 68.08

AGW[30] 51 308 89.63 81 522 68.08

ODESA(GRAY64/128) 31 288 89.71 88 530 68.02

ODESA(HSV64/128) 35 292 89.70 84 527 68.05

ODESA(HSV64/512) 40 296 89.69 81 525 68.08

for MOT solutions. The remaining models were trained on HPatches[26]. The
detects employed for these experiments correspond to the detector entries, which
achieve the highest MODA values for a given target in Table 1. Let us consider
IDs count, which appears to be more discriminative compared to Fragmenta-
tion (FRAG). Our most universal target-wise model, which is HSV64/128, with
84 IDs is about 8% behind OSNet[32]. The latter with 78 switches turns out
to be the best-performing embedding for Pedestrian target. At the same time
HACNN[33], which has the lowest IDs count for Car target, is outperformed by
the same ODESA model by 43%. Also for both targets, our models show consis-
tently lower IDs counts compared to the contemporary LLFD models represented
by HardNet++[27] and SOSNet[36]. These results are also consistent with the
retrieval experiments summarized in Table 2. ODESA achieves such accuracy
level while operating with smaller input patches, shorter embedding vector, and
exhibiting faster inference time compared to the person Re-Id models.3

3 See the processing time comparison in the supplementary material.
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Table 5: The results of the top-performing solutions from CVPR19 Tracking Challenge
Leaderboard. MOTA serves as the main evaluation criterion.

Method MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDs ↓ FRAG ↓

IITB trk2 45.5 43.6 23’931 278’042 3’002 5’478

Aaron2 46.5 46.6 40’676 256’671 2’315 2’968

V IOU[61] 46.7 46.0 33’776 261’964 2’589 4’354

DD TAMA19[62] 47.6 48.7 38’194 252’934 2’437 3’887

TracktorCV[60] 51.3 47.6 16’263 253’680 2’584 4’824

ODESA1 (Our) 54.9 52.7 24’609 225’292 2’614 4’322

ODESA2 (Our) 54.8 52.2 33’814 215’572 3’750 5’493

For further validation, our ODESA-based tracking solution was adjusted
to the conditions of CVPR’2019 Tracking Challenge[59]. The modifications ac-
counted for the requirement of relying exclusively on the set of public detects.
In particular, we prepared a detector based on ResNet-101[14], FPN[13], and
Regression Cascade[16] using the training protocol described in Section 3.1.
RPN[11] block was then stripped from the detector. Its output was replaced
with either the items from the public set of detects, which correspond to earlier
frames, or the detects derived from them in the manner described in Ref. [60].
However, no data association was performed at this point. HSV64/128 was em-
ployed as the embedding function. The history depth Dmax was set to 100. The
matching was performed in two stages. At the first one λ in Eq. 4 was set to zero.
It accounted for about 97% of the associations. At the second one λ was set to 1
and the Kalman filter was turned off. The results of our two submissions, which
differ solely by the rejection routine settings at the detect refinement stage, are
presented in Table 5. Both show comparable performance, while the last table
entry turned out to be the challenge winner.

The videos representing the output of our tracker for the benchmarks men-
tioned above have been made available for visual inspection.

5 Discussion

5.1 ODESA Object Representation

Let us check the assumptions which were made at the beginning of Section 3
about the object representation expected from ODESA. For this purpose, we
utilize ALOI[63] dataset. It contains the images for 1000 objects taken on a ro-
tating stage every 5◦ against a uniform background. Due to such restricted angle
increment, each set of images could be regarded as representing gradual appear-
ance evolution. Uniform background and absent occlusions also help to model a
simplified version of MOT environment. A few samples from ALOI dataset are
depicted in the top row of Fig. 2. For each object, a set of 72 embedding vectors
was extracted by HSV64/128 model. t-SNE projections for corresponding man-
ifolds are shown in Fig. 2(a), where the original ALOI object number to color
correspondence is provided as well. Our assumption about the non-compact na-
ture of ODESA object representation can be readily checked via the estimation

https://vimeo.com/showcase/7275059
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Fig. 2. Object mapping into the metric space for ODESA(HSV64/128) model. (a)
t-SNE projection for all embedding vectors corresponding to the objects depicted at
the top. (b) (Solid) and (dashed lines) represent the distances from a given sample
embedding vector to its furthest element of the same manifold and its two closest
angle-wise neighbors halved, respectively. Best viewed in color.

of the corresponding manifold extent. Due to ODESA embedding vector normal-
ization, i.e. projection to the unit hypersphere, the maximal extent is limited to
the value of two. It can be deduced from the solid lines in Fig. 2(b), which repre-
sent the distance from the embedding vector corresponding to a given azimuth
angle to its most distant member of the same manifold. These curves indicate
that for one of the examined objects the maximal extent exceeds the value of
1.25. At the same time, rather compact manifolds could also be observed, on
condition that the appearance of objects does not vary much within considered
set of images. This is the case of objects #508, 4, and 8. The distribution of
the object manifold extent across the entire ALOI dataset is shown in Fig. 4 for
HardNet++ and HSV64/128 models. This figure confirms that for the majority
of objects the extent is significant, thus validating our initial assumption. It is
also worthwhile to note that while t-SNE projection does not reflect the manifold
extent, together with the solid lines in Fig. 2(b) it is indicative of the symmetry
exhibited by the objects #8, 132, 162, and 461.

To estimate the manifold continuity, the average distance from each embed-
ding vector to its two closest angle-wise neighbors was calculated. It is shown
in Fig. 2(b) by the dashed lines as a function of azimuth angle. We assume that
rotation by 5◦ shall not affect the object appearance significantly. Therefore,
any discontinuity is expected to manifest itself as a sharp peak in such a curve.
Our data indicate that the distance to neighbors is rather uniformly distributed
and scales with the manifold extent. The former conclusion is also supported by
the t-SNE projection. These observations are rather supportive of our assump-
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Fig. 3. The influence of occlusions and the bounding box misalignment on embedding
vector: (a) image patch, (b) Do, and (c) Dm as the function of δx and δy. The occluder
size s amounts 10% of the patch height h. Best viewed in color.

tion about the non-abrupt nature of ODESA mapping. The utilization of color
information tends to scale down the manifold extent, as shown in Fig. 4, and
the distance between the angle-wise neighbors. The evolution of these properties
from LLFD to ODESA models is discussed in the supplementary material.

5.2 Sensitivity to Occlusions, Background and Detection Noise

In Section 1, we mentioned the factors which cast doubts on LLFD utilization as
global object features. A few of them are related to the nature of object bound-
ing boxes. Namely, they usually contain a certain amount of background, could
be occluded and could deviate from the ground truth shape and position due
to the detection noise. The first two factors do not take place in LLFD domain.
The sensitivity of ODESA models to them could be estimated by examining the
influence of an occlusion applied in the sliding window manner. As a measure of
such influence, one could use the distance between the embedding vector corre-
sponding to the original patch P (x, y, h, w) and those originating from occluded
ones. Such distance could be calculated as the function of the occluder position

Do(δx, δy) = ‖f (P (x, y, h, w))− f (P (x, y, h, w)⊙ Tδx,δy (O (x, y, s, s)))‖2,
(6)

where f(·) - embedding function, ⊙ designate pixel-wise replacement operation,
Tδx,δy is a translation operation, O (x, y, s, s) - the square occluding patch of
size s filled with noise. An example of such estimation is shown in Fig. 3, where
(a) depicts the image area within the ground truth bounding box, (b) contains
Do(δx, δy). In this case, the occluder size s amounted as much as 10% of the
patch height h. Figure 3(b) indicates that the modification of the patch periphery
does not result in any considerable displacement of embedding vectors in the
metric space. At the same time, the central part of the patch plays a rather
significant role. Figure 5 represents our attempt to generalize these conclusions.
It shows Do averaged over 198 and 149 detects from KITTI dataset belonging to
pedestrian and car categories, respectively. The detects of the highest resolution
with unique IDs were selected for this purpose. To eliminate the aspect ratio,
scale, and Do magnitude differences, at first, relative Do for individual detects
was calculated. Then the patch area was split into 10 bands. Each band was
limited to the area between adjacent rectangles resulted from the bounding box
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Fig. 4. Distribution of manifold ex-
tent across the entire ALOI dataset for
HSV64/128 and HardNet++ models.
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Fig. 5. Relative Do(δx, δy) averaged over
a number of detects from KITTI dataset
for HSV64/128 and HSV64--/128 models.

scaling with a decrement of 5% height- and width-wise. Finally, the relative
intensity was averaged over each band across all detects and shown in Fig. 5.
This procedure was performed for HSV64/128 and HSV64--/128 models. The
latter was learned while the random patch transformations and flips were both
turned off. The data from Fig. 5 indicate that these options contribute to making
the embedding models considerably less susceptible to the patch periphery.

Finally, the influence of the detection noise could be estimated by examining
the embedding vector displacement due to the bounding box misalignment with
its ground truth position

Dm(δx, δy) = ‖f (P (x, y, h, w))− f (P (x+ δx, y + δy, h, w))‖2. (7)

An example of Dm(δx, δy) produced by means of HSV64/128 model is shown
in Fig. 3(c). The corresponding distribution of distances is quite shallow for
(δx, δy) values up to about 20% of the bounding box size. The displacement
values tend to grow as the misalignment increases. Such a picture appears to be
typical for the majority of examined samples. Fig. 3(c) indicates that ODESA
models, as well as LLFD ones, could put up with a certain level of the detec-
tion noise. In the supplementary material, we indicate that the random patch
transformations applied during dataset preparation[26] have a profound effect
on Dm(δx, δy). By controlling their strength, one could either get a model with
a better generalization or higher discriminative capability.

6 Conclusions

Our study shows that starting with LLFD it is possible to derive a class-agnostic
embedding function, which being deployed as a part of DBT solution is capable
of achieving competitive results in MOT domain. It produces meaningful ob-
ject manifolds with predictable properties. Corresponding object representation
turns out to be compatible with the association stages of contemporary DBT
solutions. For this reason, ODESA could be readily deployed with about any
DBT solution.
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