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Abstract. Adversarial attacks have been widely studied for general clas-
sification tasks, but remain unexplored in the context of fine-grained
recognition, where the inter-class similarities facilitate the attacker’s task.
In this paper, we identify the proximity of the latent representations of
local regions of different classes in fine-grained recognition networks as
a key factor to the success of adversarial attacks. We therefore intro-
duce an attention-based regularization mechanism that maximally sep-
arates the latent features of discriminative regions of different classes
while minimizing the contribution of the non-discriminative regions to
the final class prediction. As evidenced by our experiments, this allows
us to significantly improve robustness to adversarial attacks, to the point
of matching or even surpassing that of adversarial training, but without
requiring access to adversarial samples. Further, our formulation also
improves detection AUROC of adversarial samples over baselines on ad-
versarially trained models.
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1 Introduction

Deep networks yield impressive results in many computer vision tasks [1, 2, 3, 4].
Nevertheless, their performance degrades under adversarial attacks, where natu-
ral examples are perturbed with human-imperceptible, carefully crafted noise [5].
Adversarial attacks have been extensively studied for the task of general object
recognition [6, 5, 7, 8, 9, 10], with much effort dedicated to studying and im-
proving the robustness of deep networks to such attacks [11, 12, 13]. However,
adversarial attacks and defense mechanisms for fine-grained recognition prob-
lems, where one can expect the inter-class similarities to facilitate the attacker’s
task, remain unexplored.

In this paper, we therefore analyze the reasons for the success of adversarial
attacks on fine-grained recognition techniques and introduce a defense mecha-
nism to improve a network’s robustness. To this end, we visualize the image
regions mostly responsible for the classification results. Specifically, we consider
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Fig. 1: Interpreting adversarial attacks for fine-grained recognition. We
analyze the attention maps, obtained with [14](a) and [15](b), of four images from
the Black-footed albatross class. Under PGD attack, these images are misclassified as
closely-related bird species, such as Layman albatross, because the classifiers focus on
either confusing regions that look similar in these classes, such as the bird’s beak, or
non-discriminative background regions, such as water.

both the attention-based framework of [14], closely related to class activation
maps (CAMs) [16], and the recent prototypical part network (ProtoPNet) of [15],
designed for fine-grained recognition, which relates local image regions to inter-
pretable prototypes. As shown in Fig. 1, an adversarial example activates either
confusing regions that look similar in samples from the true class and from the
class activated by the adversarial attack, such as the beak of the bird, or, in
the ProtoPNet case, non-discriminative background regions, such as water. This
suggests that the latent representations of these confusing regions are close, and
that the ProtoPNet classifier exploits class-irrelevant background information.
These two phenomena decrease the margin between different classes, thus mak-
ing the network more vulnerable to attacks.

Motivated this observation, we introduce a defense mechanism based on the
intuition that the discriminative regions of each class should be maximally sep-
arated from that of the other classes. To this end, we design an attention-aware
model that pushes away the discriminative prototypes of the different classes.
The effectiveness of our approach is illustrated in Fig. 2, where the prototypes
of different classes are nicely separated, except for those corresponding to non-
discriminative regions. However, by means of an attention mechanism, we enforce
these non-discriminative prototypes to play no role in the final class prediction.
Ultimately, our approach reduces the influence of the non-discriminative regions
on the classification while increasing the magnitude of the displacement in the
latent space that the attacker must perform to successfully move the network’s
prediction away from the true label.
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Fig. 2: t-SNE visualization of the prototypes from 12 fine-grained classes of
the CUB200 dataset. In ProtoPNet [15], the prototypes of different classes are not
well separated, making the network vulnerable to attacks. By contrast, our approach
yields well-separated discriminative prototypes, while clustering the background ones,
which, by means of an attention mechanism do not participate the prediction. This
complicates the attacker’s task.

As evidenced by our experiments, our approach significantly outperforms
in robustness the baseline ProtoPNet and attentional pooling network, in some
cases reaching adversarial accuracies on par with or higher than their adversarially-
trained [17, 18] counterparts, but at virtually no additional computational cost.

Our main contributions can be summarized as follows. We analyze and ex-
plain the decisions of fine-grained recognition networks by studying the image
regions responsible for classification for both clean and adversarial examples. We
design an interpretable, attention-aware network for robust fine-grained recog-
nition by constraining the latent space of discriminative regions. Our method
improves robustness to a level comparable to that of adversarial training, with-
out requiring access to adversarial samples and without trading off clean accu-
racy. Further, our approach improves the AUROC score of adversarial example
detection by 20% over baselines for adversarial trained networks. We release the
source code of our experiments at We release the source code of our experiments
at https://github.com/krishnakanthnakka/RobustFineGrained/

2 Related Work

Adversarial Robustness. DNNs were first shown to be vulnerable to adver-
sarial, human-imperceptible perturbations in the context of general image recog-
nition. Such attacks were initially studied in [19], quickly followed by the simple
single-step Fast Gradient Sign Method (FGSM) [5] and its multiple-step BIM
variant |7]. In [10], the attacks were stabilized by incorporating momentum in
the gradient computation. Other popular attacks include DeepFool [8], which
iteratively linearizes the classifier to compute minimal perturbations sufficient
for the sample to cross the decision boundary, and other computationally more
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expensive attacks, such as CW [9], JSMA [6], and others [20, 21, 22]. As of to-
day, Projected Gradient Descent (PGD) [11], which utilizes the local first-order
network information to compute a maximum loss increment within a specified
{+ norm-bound, is generally considered as the most effective attack strategy.

Despite a significant research effort in devising defense mechanisms against
adversarial attacks [23, 24, 25, 26], it was shown in [27] that most such de-
fenses can easily be breached in the white-box setting, where the attacker knows
the network architecture. The main exception to this rule is adversarial train-
ing [11], where the model is trained jointly with clean images and their adversar-
ial counterparts. Many variants of adversarial training were thus proposed, such
as ensemble adversarial training [18] to soften the classifier’s decision bound-
aries, ALP [12] to minimize the difference between the logit activations of real
and adversarial images, the use of additional feature denoising blocks [13], of
metric learning [28, 29], and of regularizers to penalize changes in the model’s
prediction w.r.t. the input perturbations [30, 31]. Nevertheless, PGD-based ad-
versarial training remains the method of choice, thanks to its robustness and
generalizability to unseen attacks [5, 7, 8, 9, 32].

Unfortunately, adversarial training is computationally expensive. This was
tackled in [33] by recycling the gradients computed to update the model pa-
rameters so as to reduce the overhead of generating adversarial examples, albeit
not remove this overhead entirely. More recently, [34] showed that combining the
single-step FGSM with random initialization is almost as effective as PGD-based
training, but at a significantly lower cost. Unlike all of the adversarial training
strategies, our approach does not require computing adversarial images, and does
not depend on a specific attack scheme. Instead, it aims to ensure a maximal sep-
aration between the different classes in high attention regions. This significantly
differs from [35, 36], which clusters the penultimate layer’s global representation,
without focusing on discriminative regions and without attempting to separate
these features. Furthermore, and more importantly, in contrast to all the above-
mentioned methods, our approach is tailored to fine-grained recognition, making
use of the representations that have proven effective in this field, such as Bags
of Words (BoW) [37, 38] and VLAD (39, 40], which have the advantage over
second-order features [41, 42, 43] of providing some degree of interpretability.

Interpretability. Understanding the decisions of a DNN is highly important
in real-world applications to build user trust. In the context of general image
recognition, the trend of interpreting a DNN’s decision was initiated by [44],
followed by the popular CAMs [16]. Subsequently, variants of CAMs [45, 46] and
other visualization strategies [47] were proposed.

Here, in contrast to these works, we focus on the task of fine-grained recog-
nition. In this domain, BoW-inspired representations, such as the one of [48, 49,
50, 15, 51], were shown to provide some degree of interpretability. While most
methods [48, 49, 50, 51] allows one to highlight the image regions important for
classification, it does not provide one with visual explanations of the network’s
decisions. This is addressed by ProtoPNet [15], which extracts class-specific pro-
totypes. However, the feature embedding learnt by ProtoPNet gives equal impor-
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tance to all image regions, resulting in a large number of prototypes representing
non-discriminative background regions, as illustrated by Fig. 1. Here, we over-
come this by designing an attention-aware system that learns prototypes which
are close to high-attention regions in feature space, while constraining the non-
discriminative regions from all classes to be close to each other. Furthermore,
we show that this brings about not only interpretability, but also robustness to
adversarial attacks, which has never been studied in the context of fine-grained
recognition.

3 Interpreting Adversarial Attacks

Before delving into our method, let us study in more detail the experiment
depicted by Fig. 1 to understand the decision of a fine-grained recognition CNN
under adversarial attack. For this analysis, we experiment with two networks: the
second-order attentional pooling network of [14] and the ProtoPNet of [15], both
of which inherently encode some notion of interpretability in their architecture,
thus not requiring any post-processing. Specifically, [14] uses class attention maps
to compute class probabilities, whereas [15] exploits the similarity between image
regions and class-specific prototypes. We analyze the reasons for the success of
adversarial attacks on four images from the Black-footed albatross class.

As shown in Fig 1(a), under attack, [14] misclassifies all four images to Lay-
man albatross. Note that these two classes belong to the same general Albatross
family, and, for clean samples, the region with the highest attention for these
two classes is the bird’s beak. Because the discriminative regions for these two
classes correspond to the same beak region, which looks similar in both classes,
the attack becomes easier as minimal perturbation is needed to change the class
label.

In the case of ProtoPNet [15], while the network also consistently misclassifies
the attacked images, the resulting label differs across the different images, as
shown in Fig. 1 (b). In the top row, the situation is similar to that occurring
with the method of [14]. By contrast, in the second row, the region activated
in the input image corresponds to a different semantic part (wing) than that
activated in the prototype (beak). Finally, in the last two rows, the network
activates a background prototype that is common across the other categories
and thus more vulnerable to attacks.

In essence, the mistakes observed in Fig 1 come from either the discrimi-
native regions of two different classes being too close in feature space, or the
use of non-discriminative regions for classification. This motivates us to encour-
age the feature representation of discriminative regions from different classes
to be maximally separated from each other, while minimizing the influence of
background regions by making use of attention and by encouraging the features
in these regions to lie close to each other so as not to be discriminative. This
will complicate the attacker’s task, by preventing their ability to leverage non-
discriminative regions and forcing them to make larger changes in feature space
to affect the prediction.
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Fig.3: Overview of our framework. Our approach consists of two modules
acting on the features extracted by a backbone network. The attention module
extracts attention maps that help the network to focus on the discriminative
image regions. The feature regularization module further uses the attention maps
to encourage separating the learned prototypes belonging to different classes.

4 Method

In this section, we introduce our approach to increasing the robustness of fine-
grained recognition by maximal separation of class-specific discriminative re-
gions. Figure 3 gives an overview our framework, which consists of two modules
post feature extraction: (i) An attention module that learns class-specific filters
focusing on the discriminative regions; and (ii) a feature regularization module
that maximally separates the class-specific features deemed discriminative by
the attention module. Through the feature regularization module, we achieve
the dual objective of providing interpretability and increasing the robustness of
the backbone network to adversarial attacks.

Note that, at inference time, we can either use the entire framework for pre-
diction, or treat the attention module, together with the backbone feature ex-
tractor, as an standalone network. As will be demonstrated by our experiments,
both strategies yield robustness to adversarial attacks, which evidences that our
approach in fact robustifies the final feature map. Below, we first describe the
overall architecture of our framework and then discuss the feature regularization
module in more detail.

4.1 Architecture

Formally, let I; denote an input image, and X; € R *xWxD ' represent the corre-
sponding feature map extracted by a fully-convolutional backbone network. Our
architecture is inspired by the ProtoPNet of [15], in the sense that we also rely
on class-specific prototypes. However, as shown in Section 3, ProtoPNet fails
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to learn discriminative prototypes, because it allows the prototypes to encode
non-discriminative background information and to be close in feature space even
if they belong to different classes. To address this, we propose to focus on the
important regions via an attention mechanism and to regularize the prototypes
during training.

Specifically, our attention module consists of two sets of filters: (i) A class-
agnostic 1 x 1 x D’ filter yielding a single-channel map of size H x W; and (ii) K
class-specific 1 x 1 x D’ filters producing K maps of size H X W corresponding
to the K classes in the dataset. Each of the class-specific map is then multiplied
by the class-agnostic one, and the result is spatially averaged to generate a K-
dimensional output. As shown in [14], this multiplication of two attention maps is
equivalent to a rank-1 approximation of second-order pooling, which has proven
to be well-suited to aggregate local features for fine-grained recognition.

The second branch of our network extracts interpretable prototypes and is
responsible to increase the robustness of the features extracted by the backbone.
To this end, X; is first processed by two 1 x 1 convolutional layers to decrease the
channel dimension to D. The resulting representation is then passed through a
prototype layer that contains m learnable prototypes of size 1 x 1 x D, re-
sulting in m similarity maps of size H x W. Specifically, the prototype layer
computes the residual vector r between each local feature and each proto-
type, and passes this distance through an activation function defined as f(r) =
log ((||r/13 +1)/(/[r[l3 +~)), where v is set to le — 5. In contrast to [15], to fo-
cus on discriminative regions, we modulate the resulting similarity maps with
an attention map A;, computed by max-pooling the final class-specific maps of
the attention module. We then spatially max-pool the resulting attention-aware
similarity maps to obtain similarity scores, which are passed through the final
classification layer to yield class probabilities. As in [15], we make the proto-
types class specific by splitting the m prototypes into K sets of ¢ prototypes
and initializing the weights of the classification layer of the prototype branch
to +1 for positive connections between prototype and class label and -0.5 for
negative ones. While exploiting attention encourages the prototypes to focus on
the discriminative regions, nothing explicitly prevents prototypes from different
classes to remain close in feature space, thus yielding a small margin between
different classes and making the classifier vulnerable to attacks. This is what we
address below.

4.2 Discriminative Feature Separation

To learn a robust feature representation, we introduce two feature regularization
losses that aim to maximally separate the prototypes of different classes. Let x!
represent a local feature vector at location ¢ in feature map X; from image I,
with label y;. Furthermore, let N = W - H be the total number of feature vectors
in X;, and P, be the set of prototypes belonging to class y;.

Our regularization consists of two attention-aware losses, a clustering one and
a separation one. The attentional-clustering loss pulls the high-attention regions
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in a sample close to the nearest prototype of its own class. We express this as
L4 (L zal i [ il 1)

where a! is the attention value at location ¢ in A;. By contrast, the attentional-
separation loss pushes the high-attention regions away from the nearest proto-
type of any other class. We compute it as

att 2
Lscp Zaz I H}ég |Xz pl”? . (2)

While these two loss functions encourage the prototypes to focus on high-
attention, discriminative regions, they leave the low-attention regions free to
be close to any prototype, thus increasing the vulnerability of the network to
attacks. We therefore further need to push the non-discriminative regions away
from such informative prototypes. A seemingly natural way to achieve this would
consist of exploiting inverted attention maps, such as 1 — a; or 1/a;. However,
in practice, we observed this to make training unstable. Instead, we therefore
propose to make use of the attention maps from other samples to compute the
loss for sample i. Specifically, we re-write our regularization loss for sample ¢ as

ZZM i I} — pull3 — /\za§-l:p13ggym Ixi —pill2,  (3)
where B is the number of samples in the mini-batch. When j = i, we recover
the two loss terms defined in Eqs. 1 and 2. By contrast, when j # i, we exploit
the attention map of a different sample. The intuition behind this is that either
the attention map of sample j focuses on the same regions as that of sample 4,
and thus the loss serves the same purpose as when using the attention of sample
i, or it focuses on other regions, and the loss then pushes the corresponding
feature map, encoding a low-attention region according to the attention map
of sample ¢, to its own prototype in class y;. In practice, we have observed
this procedure to typically yield a single background prototype per class. These
background prototypes inherently become irrelevant for classification because
they correspond to low-attention regions and have thus a similarity score close
to zero, thanks to our attention-modulated similarity maps. As such, we have
empirically found that all background prototypes tend to cluster.

Ultimately, we write our total loss function for sample i as

L(I’L) = CEatt(Ii) + CEreg (Iz) + Lreg(I'L) )

where CE,4; and CE,..4 represent the cross-entropy loss of the attention module
and the feature regularization module, respectively.

At inference time, we perform adversarial attacks on the joint system by ex-
ploiting the cross-entropy loss of both the attention and feature regularization
module. Furthermore, we also attack the attention module on its own, show-
ing that, together with the feature extraction backbone, it can be used as a
standalone network and also inherits robustness from our training strategy.
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5 Experiments

5.1 Experimental Setting

Datasets. We experiment on two popular fine-grained datasets, Caltech UCSD
Birds (CUB) [52] and Stanford Cars-196 [53].

Threat Model. We consider both white-box and black-box attacks under an £-
norm budget. We evaluate robustness for two attack tolerances e = {2/255,8/255}.
In addition to the popular 10-step PGD attack [11], we test our framework with
FGSM [5], BIM [7], and MI [10] attacks. For PGD attacks, we set the step size
a to 1/255 for e = 2/255 and to 2/255 for e = 8/255. For the other attacks, we
set number of iterations to 10 and the step size a to e divided by the number
of iterations, as in [35, 28|. For black-box attacks, we transfer the adversarial
examples generated using 10-step PGD with e = 8/255 and « = 2/255 on either
a similar VGG16 [54] architecture, or a completely different DenseNet-121 [55]
architecture. We denote by BB-V and BB-D the black-box attacks transferred
from VGG16 and DenseNet-121, respectively.

Networks. We evaluate our approach using 3 backbone networks: VGG-16 [54],
VGG-19 [54] and ResNet-34 [56]. Similarly to [15], we perform all experiments
on images cropped according to the bounding boxes provided with the dataset,
and resize the resulting images to 224 x 224. For both VGG-16 and VGG-19,
we use the convolutional layers until the 4th block to output 7 x 7 spatial maps
of 512 channels. For ResNet-34, we take the network excluding the final global
average pooling layer as backbone. We initialize the backbone networks with
weights pretrained on ImageNet [2].

Evaluated Methods. As baselines, we use the attentional pooling network
(AP) of [14], and the state-of-the-art ProtoPNet of [15]. We use Ours-FR and
Ours-A to denote the output of our feature regularization module and of our
attention module, respectively. In other words, AP and Ours-A share the same
architecture at inference time, and Ours-FR is an attention-aware variant of Pro-
toPNet. To further boost the performance of the baselines and of our approach,
we perform adversarial training. Specifically, we generate adversarial examples
using the recent fast adversarial training strategy of [34], which relies on a single
step FGSM with random initialization. During training, we set € to 8/255 and «
to {0.5¢, 1.25¢} as suggested in [34]. This was shown in [34] to perform on par with
PGD-based adversarial training, while being computationally much less expen-
sive. For our approach, during fast adversarial training, we use the cross-entropy
loss of both modules to generate the adversarial images. We denote by AP* and
ProtoPNet* the adversarially-trained AP and ProtoPNet baselines, respectively,
and by Ours-FR* and Ours-A* the adversarially-trained counterparts of our
two sub-networks. We also compare with state-of-the-art defense [35] which
regularizes the hidden space with additional prototype conformity loss (PCL).
Lastly, we also evaluate triplet-loss [57] based feature separation of penultimate
layer global features as another baseline. Due to the space limitation, we provide
more experimental training details in the supplementary material.
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Base Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Network (Steps,e) (0,0) (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8)
AP [14] 78.0% 36.5% 31.0% 27.7% 14.6% 23.5% 11.7% 30.2% 16.7% 9.6%  60.4%
S AP+ Triplet [57]  81.0% 49.5% 36.6% 33.5% 11.2% 26.5% 8.50% 37.7% 14.3% 8.54% 63.4%
¢ AP+ PCL [35] 80.0% 41.0% 33.1% 32.9% 13.6% 23.5% 9.6% 35.3% 17.1% 10.6% 65.8%
$ Ours-A 80.4% 47.2% 40.2% 40.0% 23.2% 35.3% 21.8% 42.2% 26.4% 12.9% 66.9%
”  ProtoPNet [15] 69.0% 19.9% 8.10% 3.80% 0.00% 2.20% 0.00% 5.00% 0.10% 22.9% 58.5%
ProtoPNet+Ours 73.2% 49.9% 42.2% 42.5% 35.3% 38.4% 30.1% 42.9% 37.5% 15.4% 59.7%
AP [14] 75.7% 20.4% 14.5% 13.4% 6.9% 10.5% 5.7% 14.8% 6.9% 21.1% 61.3%
S AP+ Triplet [57]  82.0% 53.9% 38.2% 35.0% 12.4% 27.7% 9.40% 39.4% 15.3% 17.40% 64.9%
¢p AP+ PCL [35] 76.9% 20.3% 14.8% 12.1% 5.7% 8.8% 4.2% 13.9% 6.8% 19.8% 60.2%
$ Ours-A 79.7% 51.4% 44.6% 42.3% 26.5% 36.8% 26.3% 45.0% 42.6% 29.8% 68.2%
”  ProtoPNet [15] 73.8% 22.9% 11.1% 3.2% 0.0% 1.2% 0.0% 3.6% 0.0% 21.0% 58.0%
Ours-FR 75.4% 52.2% 46.3% 46.6% 41.3% 42.4% 31.0% 44.4% 37.6% 30.4% 63.7%
s AP [14] 79.9% 30.4% 26.3% 18.0% 7.20% 13.2% 5.8% 22.3% 8.6% 43.0% 59.4%
% AP+ Triplet [57]  78.6% 25.6% 18.7% 11.4% 2.9% T7.1% 1.8% 14.7% 3.8%  42.11% 58.4%
6 AP+ PCL [35] 77.9% 30.1% 24.5% 21.4% 13.3% 17.6% 11.6% 23.9% 15.3% 45.7% 61.4%
Z  Ours-A 79.0% 32.3% 27.0% 24.8% 20.5% 22.5% 19.8% 26.2% 22.0% 48.6% 63.2%
Q
&  ProtoPNet [15] 75.1% 23.2% 12.8% 7.80% 1.80% 4.10% 1.00% 8.90% 2.20% 39.1% 53.0%
Ours-FR 76.3% 30.7% 22.0% 19.3% 13.6% 14.2% 13.0% 19.1% 13.8% 46.0% 60.0%

Table 1: Classification accuracy of different networks with £, based attacks on
CUB200. The best result of each column and each backbone is shown in bold. The
last two columns correspond to black-box attacks with PGD attack.

5.2 Results on CUB 200

Quantitative Analysis. We first compare the accuracy of our method to that
of the baselines with the three backbone networks on CUB200. Table 1 and Ta-
ble 2 provide the results for vanilla and fast adversarial training, respectively. On
the clean samples, Ours-FR typically surpasses its non-attentional counterpart
ProtoPNet [15], and Ours-A yields the better accuracy than baseline AP and
AP+PCL across all backbones. This is true both without (Table 1) and with
(Table 2) adversarial training.

Under adversarial attack, our approach, without and with adversarial train-
ing, yields better robustness under almost all attacks and backbones. Impor-
tantly, the boost in performance is larger for attacks with larger perturbations.
Furthermore, our model trained with clean samples sometimes outperform even
the adversarially-trained baselines. For example, on VGG-16 with PGD attack
with e = 8/255, AP* yields an accuracy of 16.9% (Table 2) while Ours-A
reaches 21.8% accuracy (Table 1). This evidences the ability of our feature reg-
ularization module to learn robust features, even without seeing any adversarial
examples. This is further supported by the fact that, despite AP and Ours-A
having the same architecture at inference, Ours-A is more robust to attacks.
Our method outperforms AP+PCL in most cases since PCL do not take into ac-
count subtle difference in local regions and regularizes global representation only.
Furthermore, in contrast to adversarially-trained models, our vanilla approach
does not trade off clean accuracy for robustness. For example, on VGG-16, while
adversarial training made the clean accuracy of AP* drop to 54.9% (Table 2),
that of Ours-A is 80.4% (Table 1). In other words, we achieve good robustness
and clean accuracy.
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Base Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Network (Steps,e) (0,0) (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8)
© AP [14] 54.9% 44.9% 24.2% 41.9% 18.2% 41.2% 16.9% 41.9% 18.7% 54.6% 54.0%
T AP+PCL* [35] 60.7% 50.5% 28.5% 47.1% 22.8% 46.7% 21.6% 47.2% 23.5% 59.5% 59.9%
8 Ours-A* 63.1%56.1%34.8%51.7% 29.6% 50.8% 28.0% 52.0% 32.5% 66.3% 68.0%
»  ProtoPNet* [15]60.1% 44.5% 26.9% 57.1% 10.9% 35.9% 10.3% 37.6% 13.5% 58.4% 59.1%
Ours-FR* 63.0%53.83%37.3%49.4% 30.4%48.1% 28.6% 49.7%31.1%61.1% 62.0%

o AP [14] 58.0% 47.5% 29.1% 44.3% 25.6% 44.0% 24.34%44.4% 26.2% 57.0% 57.3%
' AP+PCL* [35] 61.8% 52.1% 30.9% 48.9% 24.7% 48.6% 23.3% 49.1% 25.4% 60.5% 60.9%
8 Ours-A* 68.2%57.1%36.5% 53.2% 30.4% 52.6% 29.2% 53.5% 31.2% 66.2% 66.9%
»  ProtoPNet* [15]55.1% 40.0% 28.9% 26.5% 11.3% 29.7% 9.60% 25.6% 10.2% 53.6% 53.9%
Ours-FR* 64.4% 55.5% 37.4%51.2% 30.6% 50.4% 28.7% 52.1% 32.3% 62.5% 63.2%

3 AP* [14] 55.6% 47.8% 29.2% 44.80%21.0% 44.5% 19.4% 44.9% 21.9% 55.3% 55.2%
& AP+PCL* [35] 54.5% 45.4% 26.9% 42.3% 18.2% 41.9% 16.4% 42.4% 19.1% 54.0% 54.0%
2 Ours-A* 62.2%54.2%35.7%51.5% 25.5%51.0%23.1% 51.6% 26.6%61.5% 61.9%
8  ProtoPNet* [15|57.9%46.5% 30.3% 41.1% 21.1% 40.3% 18.4% 41.5% 20.9% 56.9% 57.0%
&  Ours-FR* 57.6% 49.5%32.3% 45.8% 23.2%44.9% 19.9% 46.1% 24.6% 57.1% 57.0%

Table 2: Classification accuracy of different robust networks with £, based attacks on
CUB200. The best result of each column and each backbone is shown in bold. The last
two columns correspond to black-box attacks with PGD attack.

Transferability Analysis. To evaluate robustness to black-box attacks, we
transfer adversarial examples generated from substitute networks to our frame-
work and to the baselines. As substitute models, we use a VGG-16 [54] and
DenseNet-121 [55] backbone followed by global average pooling and a classifi-
cation layer. The corresponding results are reported in the last two columns of
Table 1 and Table 2. As in the white-box case, our approach outperforms the
baselines in this black-box setting, thus confirming its effectiveness at learning
robust features.

Qualitative Analysis. Let us now qualitatively evidence the benefits of our
approach. To this end, in Figure 4, we visualize the 10 class-specific prototypes
learned by ProtPNet and by our approach for the Blackfooted albatross class.
Specifically, we show the activation heatmaps of these prototypes on the source
image that they have been projected to. Note that ProtoPNet learns multiple
background prototypes, whereas our approach encodes all the background infor-
mation in a single non-discriminative prototype. Furthermore, ProtoPNet [15]
focuses on much larger regions, which can be expected to be less discriminative
than the fine-grained regions obtained using our approach. This is due to our use
of attention, which helps the prototypes to focus on the areas that are important
for classification.

In Figure 5, we analyze the effect of adversarial attacks on AP, ProtoPNet
and our approach (all without adversarial training) by visualizing the attention
maps and/or a few top activated prototypes along with their similarity scores
for a Blackfooted albatross image with and without attack. Without attack, AP
activates a larger region than our attention module. Furthermore, ProtoPNet
activates a prototype from a different class (Cape glossay starling), while our
approach focuses on the correct class only. This already shows that the features
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Network | Att-clustering Att-separation Clean PGD Network Att-clustering Att-separation Clean PGD
loss loss (0,0) (10,8) loss loss (0,0) (10,8)

AP [14] | - - 78.0% 11.7% ProtoPNet [15]] - - 69.0% 0.0%
- 78.7% 14.07% - - 75.7% 13.76%

- v 79.6% 0.0% - v 69.8% 0.0%

Ours-A v - 80.0% 19.3%  OursFR v - 73.7% 18.7%
v v 80.4% 21.8% v v 73.2% 30.1%

Table 3: Ablation study. Contribution of each proposed feature regularization mod-
ule in classification accuracy of undefended VGG-16 network.

learned by these baselines are less discriminative, making them more vulnerable
to adversarial attacks. As a matter of fact, under attack, AP focuses on a different
region that is not discriminative for the Blackfooted albatross class. Similarly,
ProtoPNet activates prototypes of different classes with high similarity scores,
highlighting non-discriminative regions. By contrast, the prototypes activated
by our approach remain the same as in the clean case, thus corresponding to the
correct class.

Gradient Obfuscation. As suggested in [27], we check the gradient obfuscation
to ensure that proposed approach do not give false sense of security. As shown
in Figure 6, VGG-16 trained with our feature regularization performance drops
as the perturbation norm increases. Further, from Table 1 and 4, the black-
box attacks are less successful than white box attacks. Both these experiments
suggest ou formulation do not suffer from gradient obfuscation.

Adversarial sample detection. Our formulation also helps in detecting adver-
sarial samples due to well separation of discriminative regions. Following [58],
we learn a logistic detector by computing mahalanobis distance to the near-
est class-conditional Gaussian distribution as the feature at every layer of the
network. As shown in Figure 7, our proposed feature regularization approach
increases the detection AUROC performance over the baselines by around 20%.
Ablation Study. To understand the importance of each module in achieving
robustness, we perform ablation study on VGG-16. As shown from Table 3, our
attention-aware formulation performs better than baseline even without feature

(a) ProtoPNet

K
~

ackground ~background  background

b) Ours
> »
™ {
L "

background

Visualization of 10 classs specific prototypes of Black Footed Albatross class

Fig. 4: Comparison of the prototypes learned with ProtoPNet [15] and with
our approach on CUB. ProtoPNet yields multiple background prototypes and
prototypes that focus on large regions. By contrast, our prototypes are finer-
grained and thus more representative of the specific class in the images.
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Fig. 5: Comparison of the activated image regions without and with attack.
Without attack, the baselines (AP and ProtoPNet) tend to rely on relatively large
regions, sometimes corresponding to wrong classes, for prediction. By contrast, our
approach focuses more closely on the discriminative regions. Under PGD attack, this
phenomenon is further increased, with ProtoPNet and AP activating incorrect proto-
types and regions. The activations obtained with our approach remain similar to those
obtained without attacks, albeit with a decrease in the similarity scores, indicated
above the top prototype activation maps.
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regularization. However by adding attentional cluster and separation cost, we
achieve significant improvements over the baselines.

Base  Attacks Clean FGSM FGSM BIM BIM PGD PGD MIM MIM BB-V BB-D
Nettwork (Steps,e) (0,00 (1,2) (1,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8) (10,2) (10,8)
AP [14] 91.2% 52.6% 40.2% 37.4% 10.5% 28.8% 6.93% 41.7% 12.9% 12.5% 82.5%

g AP+ Triplet [57] 91.1% 54.3% 43.5% 42.4% 14.9% 34.1% 9.54% 45.5% 19.2% 15.6% 84.7%
) AP+PCL [35]  90.2% 51.7% 40.5% 39.3% 14.1% 31.8% 9.44% 42.5% 17.5% 16.7% 83.9%
1] Ours-A 88.5% 58.7% 40.2% 48.0% 28.6% 46.5% 21.7% 53.2% 33.2% 19.9% 82.2%
> ProtoPNet [15] 84.5% 31.2% 9.85% 4.78% 0.01% 2.23% 0.00% 6.5% 0.01% 27.8% 75.5%
Ours-FR 83.8% 60.1% 52.0% 51.3% 41.0% 47.8% 32.9% 51.8% 43.9% 23.4% 75.1%

AP 91.5% 50.1% 37.8% 33.4% 10.3% 23.83% 6.93% 37.9% 12.7% 20.7% 82.8%

2 AP Triplet [57] 91.0% 56.2% 45.1% 40.5% 13.0% 30.3% 8.70% 45.3% 16.7% 29.0% 85.0%
o AP+PCL [35] 91.3% 61.3% 49.9% 49.0% 19.7% 40.2% 14.1% 52.4% 23.4% 30.6% 85.7%
] Ours-A 88.7% 64.4% 54.8% 56.4% 36.7% 51.7% 33.4% 58.1% 41.0% 35.9% 82.5%
> ProtoPNet [15] 85.6% 34.1% 20.8% 11.3% 1.11% 4.40% 0.5% 14.2% 1.39% 26.5% 75.5%
Ours-FR 85.0% 62.4% 54.7% 54.5% 45.7% 51.2% 38.5% 54.3% 47.6% 36.1% 76.8%

Table 4: Classification accuracy of different undefended networks with £o, based at-
tacks on Cars196.
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1o_Receiver Operating Characteristic

—

True Positive Rate
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Fig. 6: Performance of VGG-16 with our pro- Fig.7: ROC curves for adversarial
posed approach under different perturbation sample detection on robust VGG-
strengths. 16 with PGD attack.

a) ProtoPNet

- < N ~5
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b) Ours

Visualization of 10 classs specific prototypes of Acura TL Sedan 2012 class

Fig. 8: Comparison of the prototypes learned with ProtoPNet [15] and with
our approach on Stanford-Cars. ProtoPNet yields prototypes that cover large
regions, whereas our prototypes more focused.

5.3 Results on Stanford Cars

We now present on results on Stanford Cars [53]. In Table 4, we report the results
obtained using vanilla training. As in the CUB case, our approach yields better
robustness than the baselines. We provide a qualitative analysis and the results
obtained with adversarial training in the supplementary material.

In Figure 8, we compare the prototypes learned with ProtoPNet and with
our approach for the Accura TL Sedan class. As before, while the prototypes
learned by ProtoPNet cover large regions, those obtained with our framework
are more focused on the discriminative parts of the car.

6 Conclusion

In this paper, we have performed the first study of adversarial attacks for fine-
grained recognition. Our analysis has highlighted the key factor for the success
of adversarial attacks in this context. This has inspired us to design an attention-
and prototype-based framework that explicitly encourages the prototypes to fo-
cus on the discriminative image regions. OQur experiments have evidenced the
benefits of our approach, able to match and sometimes even outperform adver-
sarial training, despite not requiring seeing adversarial examples during training
and further improving AUROC score of adversarial sample detection.

Acknowledgments. This work was funded in part by the Swiss National
Science Foundation.
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