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Fig. 1. Image inpainting results of our method. Each triplet of images is composed
of the original image, the image with the missing region, and our result. The method
allows users to remove unwanted objects or fill missing parts in images. Please see in
color.

Abstract. Recently deep learning methods have achieved a great suc-
cess in image inpainting problem. However, reconstructing continuities
of complex structures with non-stationary textures remains a challeng-
ing task for computer vision. In this paper, a novel approach to image
inpainting problem is presented, which adapts exemplar-based methods
for deep convolutional neural networks. The concept of onion convolu-
tion is introduced with the purpose of preserving feature continuities
and semantic coherence. Similar to recent approaches, our onion con-
volution is able to capture long-range spatial correlations. In general,
the implementation of modules with such ability in low-level features
leads to impractically high latency and complexity. To address this lim-
itations, the onion convolution suggests an efficient implementation. As
qualitative and quantitative comparisons show, our method with onion
convolutions outperforms state-of-the-art methods by producing more
realistic, visually plausible and semantically coherent results.
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1 Introduction

Image inpainting is the problem of completing missing or damaged regions in
images resulting in a realistic, visually plausible, and semantically meaningful
output. It can be utilized in many applications such as recovering spots or other
damaged parts in images, removing unwanted objects or parts of them.

The main challenge of obtaining a high-quality image inpainting algorithm
is getting both semantically consistent and visually realistic results, especially if
the image contains complex scenes and structures.

Some traditional approaches [1–8] are based on texture synthesis techniques
and achieve great success in producing realistic-looking texture details. However,
these methods rarely give structurally or semantically reasonable outputs.

Later, some methods [9–11] were proposed to address the structural incon-
sistencies resulting in perfect image completions in some cases. Yet, generating
coherent semantics remains beyond the abilities of traditional methods. Hence,
deep learning techniques come to fill the missing region in a semantically plau-
sible way [12–16]. Early methods [17, 12, 18, 13] use vanilla convolutions and
manage to gain fine results for small missing regions. However, for complex
structures, these methods introduce blur, edge artifacts, and color inconsisten-
cies. The reason is that vanilla convolutions treat all pixels equally, so outputs
depend on the initialization of the missing pixels.

Some methods [19, 14, 15, 20] introduce special convolutional layers which are
designed to operate with only valid pixels in the input. This approach allows to
gain a drastic improvement over using only vanilla convolutions. Though, these
mechanisms introduce some patterns or distorted structures near the boundary
of the missing region due to ineffectiveness of convolutions in modeling long-
range pixel correlations.

To address this problem, two main approaches were introduced. The first
approach [21–24] adopts patch-based traditional image inpainting techniques in
the learning process, while the second one [25, 15, 16] utilizes the self-attention
mechanism [26]. Both approaches perform state-of-the-art results by completing
complex structures and semantics. However, in all these methods, the modules
responsible for capturing long-range dependencies are designed to process ten-
sors in which the initial missing region is roughly filled. So the output of these
methods highly depends on the coarse estimation of the missing pixels. In some
cases, networks fail to make a continuity-preserving coarse estimations, resulting
in outputs with structure discontinuities (see Fig. 4).

To address this problem we introduce the onion convolution layer, which is
able to preserve feature continuities and does not depend on a coarse estimation
of the missing region. To make the layer keep feature continuities, we supply it
with an iterative filling of the missing region starting from its boundary to the
center, similar to the process of peeling an onion, so we call it onion convolution.
Some results can be found in Fig. 1.

In general, modules capturing long-range pixel dependencies come with a
high computational cost, since their implementations often require (all-to-all)
pixel-wise dot-product computations. This makes the usage of such modules
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impractical in high resolution features. On the other hand, in the case of image
inpainting, some of the computations mentioned above can be avoided. Such
adaptation of these modules to the image inpainting problem was introduced
in [25] for rectangular-formed missing regions. However it still does unnecessary
computations when the missing region has an irregular form. To eliminate the
redundant computational cost we make our own implementation with a common
deep learning framework TensorFlow [27].

To summarize, our main contributions are the following:

– We introduce the onion convolution mechanism, which enables us to contin-
uously propagate feature activations from valid pixels to the missing ones.

– To the best of our knowledge, this is the first work on using exemplar-based
image inpainting techniques in deep features without coarsely estimating the
pixels in the missing region.

– Onion convolution mechanism, which can capture long-range pixel depen-
dencies, is implemented in a low computational and memory-efficient way.

The structure of the further part of this work is the following: in Section 2
some existing approaches to the image inpainting problem are reviewed. Then
in Section 3 our approach is introduced in detail. In Section 4 our experiments,
quantitative and qualitative comparisons with state-of-the-art methods, and the
ablation study are presented. In Section 5 we make a conclusion.

2 Related Work

The existing approaches to the problem of image inpainting can be roughly
divided into two groups. First group uses traditional diffusion-based or exemplar-
based techniques, while the second one utilizes learning processes. In this section,
a brief introduction of the mentioned groups will be held.

2.1 Traditional Non-Learning Methods

Historically, image inpainting was a problem of image restoration, with the aim
of removing scratches, torn parts, or text in images. Several algorithms [28,
29] were suggested for this purpose, and rely on the idea of propagating image
structures from the known region to the unknown by diffusion processes. Diffu-
sion based approaches are able to produce high quality results when restoring
small damaged parts in images. However, they sometimes over-smooth outputs,
especially in cases when the missing region is large. To address this problem,
exemplar-based methods [1–8, 30–32] replicate the texture by copying patches
from the known region. In [1], authors apply a patch-based technique to sample
from the conditional distribution of each pixel, conditioned on its neighborhood.
Later some methods [3–5] were proposed to optimize the algorithm introduced in
[1]. Also, the randomized search, introduced in [2], can be adopted for this pur-
pose. However, the method described in [1] completes a single pixel at a time,
which can lead some textures to “occasionally ‘slip’ into a wrong part of the
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search space and start growing garbage” (as mentioned in limitations in [1]). To
address the problem of “growing garbage”, some texture synthesis algorithms
suggest copying regions with more than one pixel at a time [6, 30–32].

Though these methods perform excellent results in providing detailed tex-
tures, they fail in reconstructing complex structures or semantics.

2.2 Learning-Based Methods

After computer vision adopted deep learning techniques, researchers started ex-
perimenting with convolutional neural networks in the image inpainting prob-
lem. Deep learning allows modeling of high-level semantics, which is used to
generate missing parts of objects based on the semantic information of images.
Early works on image inpainting with neural networks [17, 33, 19] concentrate
on completing locally corrupted images when missing regions are small. Later,
for obtaining more structure-preserving results, some learning-based methods
[34–36] have adopted structure-guidance techniques inside networks. However,
some of the methods mentioned above poorly generate texture details.

Through generative adversarial networks,GANs [37], researchers have reached
new heights in solving computer vision tasks. The ability of GANs to generate
visually plausible results helps to coherently hallucinate the missing region [12,
13, 18, 24, 15]. Nevertheless, in some cases boundary artifacts and inconsistencies
occur. This is caused mostly by treating all pixels equally when processing an
incomplete image trough stacked vanilla convolutions. Hence, the methods with
partial convolutions [14] and gated convolutions [15] are introduced. The partial
convolution [14] convolves with only known pixels at each sliding window and
normalize the output by the number of these known pixels. Moreover, it narrows
the missing region in a rule-based manner. In contrast, the gated convolution
[15] lets the network to learn how to update the missing region for each layer.
Both works perform excellent results on many complicated examples.

Despite the high quality of the algorithms mentioned above, some of them fail
to complete complex structures continuously. The main reason is the inability to
capture long-range spatial dependencies. To eliminate this cause, some methods
either adopt exemplar-based techniques [21–24] or benefit from self-attention
mechanisms [25, 15, 16]. In [23] the authors use the technique described in [38],
which replace the patches in the unknown region with their closest (in terms of
similarity defined by cross-correlation) patches from the known region. Similarly,
[22] uses a special case of this technique, by considering patches of size 1×1 (i.e.
pixels) and combining features from both encoder and decoder for computing
similarities. [25, 15] introduce the contextual attention layer for completing the
missing region based on the soft self-attention mechanism [39, 26]. These works
obtain great results, outperforming previous state-of-the-art methods. Though,
their long-range spatial dependency capturing modules need to be fed with a
tensor in which the missing region is coarsely initialized. This may cause struc-
ture discontinuities due to unreasonable coarse estimations. In this work the
onion convolution layer is introduced to continuously propagate the information
without any coarse estimation of the missing region.
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3 Approach

In this section, all components of our approach are described in detail. First, we
introduce our onion convolution mechanism and discuss some implementations.
Then the inpainting network architecture and loss functions are presented.

(a) (b) (c) (d)

Fig. 2. Onion convolution. First we perform onion-peel patch-match in the following
way: for each iteration t = 1, . . . , T the pixels in the boundary ∂M t of the missing
region M t are considered. (a) km × km patches, centered in the boundary pixels (e.g.
p1, p2, p3), are matched to their corresponding patches from the source region (M t)c

(corresponding source patches are centered in p̂1, p̂2, p̂3). (b) kf ×kf patches centered in
the pixels p1, p2, p3, . . . are replaced with their corresponding kf × kf patches centered
in p̂1, p̂2, p̂3, . . .. (c) Then the overlapping parts are aggregated by averaging, and the
next missing regionM t+1 is computed. After the onion-peel patch-match, a convolution
followed by an updating of the initial missing region M1 = M is applied. (d) Some
kc×kc convolution sliding windows, centered in the filled region (1−MT ), may overlap
with the missing region MT , hence their centers are also treated as non-valid pixels,
resulting in the updating of the initial missing region M 7→ M ′ by the Eq. 8.

3.1 Onion Convolution

During our research, it has been validated that for getting semantically mean-
ingful and visually realistic results, our network needs to contain a block which
satisfies the following conditions:

– (C1) Valid/known pixels has higher impact on the output of the block
than missing ones.

– (C2) The block continuously propagates the information (e.g. texture,
structure, semantics) of the know region to the unknown.

All deep-learning-based methods that use only vanilla convolutions do not
satisfy the condition (C1), since they treat all pixels as valid ones.

Though the partial [14] and gated [15] convolutions are designed to satisfy
the condition (C1), they are unable to model long-range pixel correlations, which
is necessary for satisfying the condition (C2). As we have already mentioned,
some methods [22, 23, 15] capture long-range pixel dependencies, but do not pay
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a special attention on continuously propagation of the information, so they also
do not satisfy (C2).

To make both (C1) and (C2) hold, we propose the onion convolution layer,
illustrated in Fig. 2. It takes two arguments as input: a tensor X ∈ R

H×W×c

and a binary mask M ∈ {0, 1}H×W indicating the missing region in the tensor
X (Mij = 1 means, that the pixel Xij ∈ R

c lies in the missing region). The
onion convolution layer is composed of three stages: onion-peel patch-match,
convolution and updating the missing region. Below we describe each stage in
detail.

Onion-Peel Patch-Match As the name prompts, the onion-peel patch-match
is an algorithm, which deals with patches. Let T ∈ R

H×W×c be a tensor, k be a
positive integer and p = (i, j) be a position of a pixel in T (1 ≤ i ≤ H, 1 ≤ j ≤
W ). Then by patchk

T
(p) we denote the k × k patch in T centered at p.

With a usage of concepts introduced in [1], our onion-peel patch-match aims
to preserve feature continuities when filling the missing region. Illustration of
the approach is shown in Fig. 2 (a), (b), (c).

The missing region in X is filled iteratively, initially taking X1 = X,M1 =
M . For each iteration t = 1, . . . , T , the boundary of the missing region M t is
filled, resulting in a tensor Xt+1 with a missing region, indicated by M t+1. So at
first we need to identify the boundary of the missing region. Since the missing
region is indicated by M t, the boundary can be obtained by the morphological
erosion operation on M t with a window of size 3× 3:

∂M t = M t − erode(M t, 3) . (1)

Then for each point p in the boundary ∂M t of the missing region we fill the
unknown pixel Xt

p by sampling from its conditional distribution P (Xt
p | Xt

n(p))

given its known neighborhood Xt
n(p).

In order to estimate P (Xt
p | Xt

n(p)), similar with [1], we consider the his-

togram of pixels from a set Ωε(p). The set Ωε(p) is composed of pixels, neigh-
borhoods of which are close to the neighborhood of p. More precisely, we consider
patchkm

Xt (p̂) as a neighborhood of a pixel Xt
p̂, and fix a function d(·, ·) (which will

be detailed later) for measuring distances between patches. Then we compute
the distances

dpp̂ = d(patchkm

Xt (p) , patch
km

Xt (p̂)) (2)

for points p̂, which are in the known region, but are also in a neighborhood of
the missing region. This neighborhood, indicated by a binary mask (M t)c can
be obtained by the morphological dilation operation:

(M t)c = dilate(M t, dil)−M t , (3)

where dil is a hyper-parameter determining the region of valid pixels which are
used for filling the missing ones.
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After computing the distances dpp̂, the minimum distance d∗ is found (the
corresponding matching patches are illustrated in Fig. 2 (a)). Then the set Ωε(p)
is defined as follows:

Ωε(p) = {Xt
p̂ | (M t)cp̂ = 1, d(patchkm

Xt (p), patch
km

Xt (p̂)) ≤ (1 + ε)d∗} , (4)

where ε is a hyper-parameter.
After the Ωε(p) is determined, one can sample from it’s histogram. For sim-

plicity we sample a pixel Xt
p̂ uniformly from the set Ωε(p).

When Xt
p̂ is chosen, patch

kf

Xt(p) is replaced with patch
kf

Xt(p̂) in the tensor Xt

(see Fig. 2 (b)). Notice that if kf > 1, and we replace the corresponding patches
simultaneously for all points p (in the boundary of the missing region), we will
end up with multiple candidates for missing pixels Xt

p. In our algorithm these
candidates are averaged to fill the pixel Xt

p for each point p in the boundary of
the missing region (see Fig. 2 (c)).

After replacing patches centered in all boundary points, we result in a tensor
X̂t, and take

Xt+1 = (1− ∂M t)⊙Xt + ∂M t ⊙ X̂t . (5)

As the boundary pixels in Xt+1 are filled, we also update the missing region
by taking

M t+1 = M t − ∂M t . (6)

Now it only remains to define the distance d(·, ·). As it is crucial to satisfy the
condition (C1), for measuring the distance between patchkm

X (p) and patchkm

X (p̂),

we use only valid pixels in patchkm

X (p). More precisely, d is defined as a normalized

sum of squared distances between valid pixels in patchkm

X (p) and corresponding

pixels in patchkm

X (p̂):

dpp̂ =
1

sum(patchkm

M (p))
||(patchkm

X (p)− patchkm

X (p̂))⊙ patchkm

M (p)||22 . (7)

The result of onion-peel patch-match is denoted by O.

Convolution and Updating the Missing Region After the onion-peel
patch-match is performed, we apply a convolution with a kernel size kc × kc
to the tensor O, resulting in a tensor we denote by C. On the other hand, some
pixels in the tensor O may remain unknown (the new missing region is indicated
by MT ). So during the convolution some kc × kc sliding windows will contain
missing pixels. Hence, in the tensor C we eliminate the results of convolving in
such sliding windows. To obtain the centers of such sliding windows, one can use
the morphological erosion operation with the kernel size T − [kc/2]:

M ′ = erode(M,T − [kc/2]) . (8)

We refer to M ′ as the updated missing region after the onion convolution (see
Fig. 2 (d)).
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So, the result of the onion convolution, with parameters km, kf , kc, dil, ε is
the tuple (C ⊙M ′,M ′).

Note that the onion convolution layer satisfies conditions (C1) and (C2).
Indeed, by designing the M 7→ M ′ mask updating procedure, we keep from the
tensor C only the signals, which are results of convolution in sliding windows
with only valid pixels. So the condition (C1) holds. On the other hand, our onion-
peel patch-match is a generalization of the non-parametric sampling technique
[1] designed to have no visual discontinuities between the boundary of the known
and generated regions. As the onion-peel patch-match is applied to deep features,
it has the property of preserving feature continuities, so the condition (C2) also
holds.

3.2 Discussion on Implementation

Note, that the onion convolution mechanism requires pairwise distance compu-
tations between patches centered in the regions indicated by ∂M t and (M t)c

(for each iteration t = 1, . . . , T ). Moreover, the L2-norm component in the Eq.
7 can be computed by using dot product due to the formula

||u− v||22 = ||u||22 − 2〈u, v〉+ ||v||22 (9)

for any vectors (patches) u, v. Therefore, similar to other long-range pixel depen-
dency capturing mechanisms, we also need to calculate patch-wise dot products.
In general, it is done by extracting patches

Pkm

Xt ((M
t)c) = {patchkm

Xt (p) | (M
t)cp = 1} (10)

then convolving the tensor X with filters from Pkm

Xt ((M t)c).3 This procedure
contains dot product calculations also for pairs of patches, each of which is
centered in the region (M t)c. To avoid these redundant computations, we merely
extract patches Pkm

Xt (∂M t) and compute distances for each pair

(patchkm

Xt (p), patch
km

Xt (p̂)) ∈ Pkm

Xt (∂M
t)× Pkm

Xt ((M
t)c) . (11)

Our implementation is done purely with TensorFlow [27], resulting in an end-
to-end pipeline for training and inference.

3.3 The Network Architecture

In our method, a generative adversarial network is used, the generator of which
is the main inpainting network. As a discriminator, our approach uses the SN-
PatchGAN introduced in [15] and based on the concept of SN-GAN [40].

The generator network consists of two parts: coarse and refinement networks.

3 Moreover, replacing patches followed by averaging of overlapping regions, also can

be done by using transposed convolution operation and P
kf

Xt((M
t)c) (see [38] for

details).
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Fig. 3. The architecture of our coarse network. After each convolution the corre-
sponding activation is used. The onion convolution layer is used with parameters
km = 4, kf = 2, dil = 8, ε = 0.1, kc = 3, T = ∞, where T = ∞ means that we
iteratively complete the missing region until it is filled completely.

Coarse Network Let I be an image normalized to the range [−1, 1], and M
be a binary mask indicating the missing region in the image. The network is fed
by two inputs: I ⊙ (1−M) and M . The overall architecture of our coarse model
is presented in Fig. 3. Six partial convolution layers with ELU [41] activation
are used at the begining of the network to reduce the tensor sizes. Let’s denote
the output of sixth partial convolution by X. The binary mask M is resized
to the size of X and is referred as the missing region indicator in the tensor
X. Then the onion convolution layer (see Fig. 3). We have experimented with
the hyper-parameters and the onion convolution layer position and find this is
the optimal usage of it in our case. After the onion convolution layer the ELU
activation is used. The rest of our coarse network is composed of convolutional
layers and Nearest Neighbor Upsamplings, followed by convolutions. All convo-
lutions, except the last one, are followed by activation functions ELU. In the
end, tanh activation is used to obtain output in the range [−1, 1]. For details see
the supplementary material.

Refinement Network After passing the image and the missing region through
the coarse network, we obtain a rough estimation of pixels in the missing region.
Let us denote the output of the coarse network by Ic. For getting more detailed
output, the image Icomp = Ic ⊙ M + I ⊙ (1 − M) is formulated and passed
through another network, which we call refinement network. The architecture of
the refinement network is very similar to the refinement network used in [15].
The only difference is using vanilla convolutions instead of gated convolutions
(this difference is discussed in our ablation study, see Section 4.3).
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3.4 Loss Functions

Our loss function consists of three terms: pixel-wise reconstruction loss L1, ad-
versarial loss Lad and perceptual loss Lp. The total loss is a weighted sum of
these losses:

L = λ1L1 + λ2Lad + λ3Lp , (12)

where λ1, λ2, λ3 are training hyperparameters. For optimizing the inpainting
network G, the loss function L is minimized w.r.t. the generator’s weights ωG.
At the same time, as there is an adversarial loss, Lad, it is maximized w.r.t.
SN-PatchGAN discriminator’s weights ωD. We update ωG and ωD one after
another at each step resulting in an equilibrium point for the GAN.

Let Iorig be the image, which is needed to be reconstructed given an image I
with a missing region indicated by a binary mask M . Let Ic and Ir be the coarse
and refinement networks’ outputs, respectively. Each of our losses is discussed
below in detail.

Pixel-Wise Reconstruction Loss We penalize each of our inpainting net-
works in all spatial locations by minimizing the mean absolute error between
the original image Iorig and reconstructions Ic and Ir (similarly as in [15]):

L1 = ||Ic − Iorig||1 + ||Ir − Iorig||1 . (13)

Adversarial Loss Our discriminator gets the original images Iorig as real ex-
amples and composition images Icompos = Iorig ⊙ (1 − M) + Ir ⊙ M as fake
examples. Since the discriminator belongs to the family of PatchGAN s, it out-
puts 3D tensors Dreal and Dfake. As in [15], the hinge loss between the outputs
of our discriminator is computed:

Lad = −E[ReLU(1−Dreal) +ReLU(1 +Dfake)] . (14)

Perceptual Loss We also use the perceptual (content) loss introduced in [42],
which minimizes the distance between the features of the original and the com-
pleted images obtained by the V GG-16 [43] network. Similar to [14], we compute
distances between the vgg-features of three images: the original image Iorig, the
output of the refinement network Ir and the composition image Icompos. More
precisely, let MPi(X) be the output of the MaxPool layer in the ith block, when
feeding the V GG network with an image X. Then our perceptuall loss is defined
as follows:

Lp =

3
∑

i=1

[

||MPi(Ir)−MPi(Iorig)||1 + ||MPi(Icompos)−MPi(Iorig)||1

]

. (15)

Thus, the total loss L is a weighted sum of above-mentioned three losses. In
our experiments λ1 = 1, λ2 = 1, λ3 = 0.05 are taken.
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4 Experiments

We have experimented with the dataset Places2 [44]. Our model is trained by the
ADAM optimizer [45] with learning rate 10−4 and parameters β1 = 0.5, β2 =
0.999. For all experiments, a single NVIDIA V100 GPU (with 16GB RAM) is
used with batch size equal to 28. Images and binary masks are resized to the size
256× 256 before feeding the network; no augmentations are used. The training
lasted 14 days.

To evaluate our model, we have randomly chosen a test-set from 500 images
from the test set of the Mapillary [46] dataset. We have created random free-
form masks as it was done in [15]. The masks are in different sizes equiprobable
from area ranges covering 10 − 20, 20 − 30, 30 − 40 or 40 − 50 percents of the
image area. All masks and images are resized to the size of 256× 256.

Due to our efficient implementation of the onion convolution layer and the
fact that our network is fully convolutional, we can also process images with
resolution 512× 512 (see Fig. 1).

We compare our method with state-of-the-art methods4: Gated Convolutions
(GC) [15] and Partial Convolutions (PC) [14].

4.1 Qualitative Comparison

As shown in Fig. 4, PC [14] reconstructs semantics, but introduce some blur
(e.g. rows 5 and 7 in Fig. 4), pattern (e.g. rows 1, 6 in Fig. 4) or sometimes does
not preserve continuous lines (e.g. rows 1, 2, 3 in Fig. 4). GC [15] shows plausible
results, but sometimes does not keep the image structure (rows 3, 4 in Fig. 4),
introduce some “dirt” (row 1 in Fig. 4) or generates some strange artifacts (e.g.
rows 2, 6, 7 in Fig. 4).

In comparison with these methods, our method can reconstruct detailed tex-
tures and coherently generate structures due to its property of feature continuity.
Also, our method does not generate artifacts not related to the context of the
image.

Table 1. Comparison of our method with PC [14] and GC [15].

PSNR SSIM MAE

Partial Convolutions (PC) 22.14 0.794 0.036

Gated Convolutions (GC) 21.97 0.83 0.029

Onion Convolutions (our) 22 0.835 0.029

4 For comparison we take the pretrained GC [15] model from the official repository. As
there is no official implementation of the method [14] PC, we make our own, which
benefits a lot from https://github.com/MathiasGruber/PConv-Keras.
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Masked PC GC our

Fig. 4. Comparisons of our method with PC [14] and GC [15]. For more images please
see the supplementary material.
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4.2 Quantitative Comparison

To compare our method with PC [14] and GC [15], we consider 500 images from
Mapillary dataset [46], generate irregular missing regions and evaluate methods
by calculating standard evaluation metrics PSNR, SSIM [47] and Mean Absolute
Error (MAE). The evaluation results are presented in Table 1 and show that our
method outperforms the others.

As shown in the Table 1 in terms of SSIM, our method outperforms the other
two. In terms of MAE, our method performs similarly with GC and better than
PC. In terms of PSNR, PC is better, but it mostly comes from the fact that PC
sometimes gives more smooth and blurry results, which is not looking realistic.

4.3 Ablation Study

The main idea of our approach is hooded under the mechanism of onion convolu-
tion: filling the missing region iteratively by only using valid pixels without any
pre-estimating a coarse output in that region. So we start to analyze the effect of
our onion convolution layer. Also, we analyze the impact of replacing the onion
convolution with consecutive onion convolutions. Then we study the effects of
the perceptual loss, the replacing gated convolutions with vanilla convolutions
in the refinement network.

Effect of Onion Convolution Layer As shown in Fig. 5, our model with
onion convolution Fig. 5(b) helps the model coherently fill the missing region.
Especially in the case of large missing regions, the model without onion convo-
lutions Fig. 5(c) cannot propagate sufficient information from the known region
to the unknown.

Effect of a Single Onion Convolution Instead of Consecutive Onion

Convolutions We also perform experiments with replacing the II-VI partial
convolution layers with 6 onion convolution layers in our coarse model. The
results are shown in Fig. 5(d). It can be noticed that sometimes this architecture
leads to more structure-preserving results (e.g. column 4 in Fig. 5(d)), but in
some cases it can introduce black (white) artifacts or blur.

Effect of Perceptual Loss We also train our model without perceptual loss we
have mentioned in Section 3. The results, presented in Fig. 5(e), show that using
the perceptual loss in our case helps to avoid some patterns and inconsistencies.

Effect of Vanilla Convolutions Instead of Gated Convolutions We have
also experimented with gated convolutions [15] in the refinement network and
find out that, in our case, gated convolutions introduce artifacts as shown in
Fig. 5(f). We suppose this is due to the property of “vanishing” some regions
when using gated convolution (sometimes the gate of a gated convolution does
not allow some information to pass through the layer).
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. (a) Masked image, (b) our model, (c) model without onion convolutions, (d)
model with using a sequence of onion convolutions, (e) model without perceptual loss,
(f) model with gated convolutions.

5 Conclusion

We present a novel patch-based onion convolution mechanism for image inpaint-
ing problem. By using the ability to capture long-range pixel dependencies, the
onion convolution is designed to propagate the information from known regions
to missing ones. We show that our method quantitatively and qualitatively out-
performs existing state-of-the-art approaches of image inpainting. It is worth
noting that our onion convolution can be adopted with various architectures
and learning techniques. In the future, we plan to extend this method to face
completion and image super-resolution tasks.
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7. Criminisi, A., Pérez, P., Toyama, K.: Object removal by exemplar-based inpainting.
Volume 2. (2003) 721–728

8. Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-
based image inpainting. Trans. Img. Proc. 13 (2004) 1200–1212

9. Sun, J., Yuan, L., Jia, J., Shum, H.Y.: Image completion with structure propaga-
tion. ACM Trans. Graph. 24 (2005) 861–868

10. Hung, J., Chun-Hong, H., Yi-Chun, L., Tang, N., Ta-Jen, C.: Exemplar-based
image inpainting base on structure construction. Journal of Software 3 (2008)

11. Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J.: Image completion using planar
structure guidance. ACM Trans. Graph. 33 (2014)
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J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015)
Software available from tensorflow.org.

28. Bertalmı́o, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIG-
GRAPH ’00. (2000)

29. Bertalmio, M., Vese, L., Sapiro, G., Osher, S.: Simultaneous structure and texture
image inpainting. IEEE Transactions on Image Processing 12 (2003) 882–889

30. Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by
patch-based sampling. ACM Trans. Graph. 20 (2001) 127–150
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46. Neuhold, G., Ollmann, T., Rota Bulò, S., Kontschieder, P.: The mapillary vistas
dataset for semantic understanding of street scenes. In: International Conference
on Computer Vision (ICCV). (2017)

47. Zhou Wang, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on Image
Processing 13 (2004) 600–612


