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Abstract. In this work, we present a new AI task - Vision to Action
(V2A) - where an agent (robotic arm) is asked to perform a high-level
task with objects (e.g . stacking) present in a scene. The agent has to
suggest a plan consisting of primitive actions (e.g . simple movement,
grasping) in order to successfully complete the given task. Queries are
formulated in a way that forces the agent to perform visual reasoning
over the presented scene before inferring the actions. We propose a novel
approach based on multimodal attention for this task and demonstrate
its performance on our new V2A dataset. We propose a method for
building the V2A dataset by generating task instructions for each scene
and designing an engine capable of assessing whether the sequence of
primitives leads to a successful task completion.

1 Introduction

Our goal is to develop an intelligent agent capable of perceiving and reasoning
about the environment by combining information from different modalities. Vi-
sual Question Answering (VQA) [1] is a related task that requires combining
language and visual input. Recently, Embodied Question Answering (EQA) [2]
was proposed as a new challenging problem incorporating navigation as the nec-
essary step for successful question answering. We propose a new task, Vision to
Action (V2A), to bridge the gap between visual reasoning and action planning
which requires the agent to perform a multimodal perception. We introduce a
dataset generated for this purpose, along with an engine capable of assessing the
correctness of predicted sequences of actions.

VQA and EQA tasks involve an agent to provide a specific answer to a given
question. For the question: What is the weight of the big blue box?, the answer
can be heavy. Humans typically interact with the object before answering such
question. We gain knowledge about the properties of the objects in the world
through exploration as well as from the external knowledge. When asked a given
question, our answer may be let me check that in the Internet or let me hold
it to estimate the weight, or use a scale for a more accurate answer. In our
work, we focus specifically on the latter, planning the exploration using simple,
primitive actions. We consider a scenario with objects on a table in the context of
robotic manipulation. Programming a manipulator is a similar task to composing
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Fig. 1: Vision to Action task. Given the scene and instruction, the task is to
predict a sequence of primitive actions leading to a successful completion of
the task. In order to enforce multimodal perception, data includes instructions
correct linguistically, although some not possible to complete given the scene.

a sequence of primitive actions. In addition, we claim that the tasks of visual
reasoning and planning should be done jointly - a plan cannot be made based
on the instruction only, but must rely on the current state of the environment.

The main focus of EQA is to include navigation in the task of Visual Question
Answering. While its goal is to perform on-line prediction of the best exploration
path, our proposed V2A is concerned with manipulation actions. Our main ob-
jective is to maximise information gain from the visual and language input such
that, in combination with experience gained through exploration, the system is
capable of assessing the validity of the given query and preparing a plan which
can then be implemented in a real-world or simulated scenario.

V2A considers semantically high-level primitives and high-level description
of the scene, which decouple the model from a particular robotics hardware or
a simulated environment. Nonetheless, we keep the primitive actions similar to
a high-level programming language, with the goal of being able to transfer the
sequences into the real settings by wrapping primitives in code functions specific
to the equipment. Realistic scenarios often require action planning that cannot
be replaced with an online decision making process e.g . picking up lighter out
of two objects requires planning to measure the weight of both of them. In such
a situation, one needs to plan a sequence of action based on the current obser-
vation. An overview of the V2A task is presented in Figure 1. Given the input
scene and a textual instruction, the system predicts the sequence of the actions,
if the task can be performed given the scene. Otherwise, the system indicates in-
validity of the task. To this end, we provide a new dataset for the V2A task along
with an engine to assess the completion of a given instruction. Our dataset is
inspired by the common robotic setup including a manipulator placed on a table-
top equipped with a camera. We also propose an evaluation protocol consisting
of different metrics to assess different aspects of model performance. Finally, we
propose a novel approach to perform the V2A task. Our approach incorporates a
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Multimodal Attention Model that is used to simultaneously translate sequences
of attribute vectors (corresponding to objects in the scene) and natural language
instructions into a sequence of primitive actions that fulfils the given task.

2 Related work

Our work involves visual and linguistic reasoning, and action planning , intended
for robotics applications. It is a new problem and there are no existing methods
that are suitable for this task, however the relevant literature include papers
from the area of VQA, EQA and action planning that we review below.

Visual Question Answering [1] is the task of providing the precise answer to
a given question that is related to a given image. VQA follows two main ap-
proaches: projecting images and text onto a common subspace to predict the
answer [3–5], or disentangling the scene and question into understandable forms
to perform a human-like reasoning to discover the answer. The latter emerged
as a new task, called Visual Reasoning, which along with predicting the correct
answer, attempts to produce a logical reasoning that resembles a human ap-
proach to the problem. Neural Module Networks [6–8] propose to stack network
modules to predict the flow of the focus over the image objects, and therefore
explain the origin of the final answer. NS-VQA [9] and NS-CL [10] focus on fully
disentangling the scene into a human-readable form, such that the reasoning can
be performed by executing symbolic programs on the new representation.

Embodied Question Answering [2] adds an additional component to the VQA
- navigation in a simulated environment. An agent is asked a simple question
and its task is to navigate to the correct location and answer the question after.
Current methods [11] split the task into two streams: navigation and question
answering. The agent switches between modules to gather clues necessary to
answer the query. The task of navigating an agent based on language and visual
input was further explored for both simulated and real world scenarios [12–14].

Action planning focuses on producing a plan consisting of simple components
based on the given input. A common source of the information about how to
perform the action is a linguistic description. Detailed textual instructions on
how to perform a task are translated into a series of actions in [15]. Generating
plans for a high-level task in the setting of incomplete world knowledge is pro-
posed in [16]. Video action recognition is used in [17] to generate sequences of
actions corresponding to the presented task.

Available datasets include examples with multimodal data, but none of them
have annotation in form of instruction/image pairs accompanied with ground
truth sequences of actions. Furthermore, there are no tools to assess the cor-
rectness of predicted actions. The most relevant datasets are Visual Reasoning
benchmarks. CLEVR [18] provides a number of simple synthetically generated
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scenes composed of spheres, cylinders and cubes. CLEVR includes questions,
answers and programs to obtain the answer given the scene graph. SHOP-VRB
[19] builds upon CLEVR and provides a more realistic scenario of a tabletop
with common household items. In addition to CLEVR structure, it provides
some simple text descriptions for the objects along with questions grounded in
the image and text simultaneously. SHOP-VRB also addresses the problem of
reasoning about unseen instances of object classes. On the other end of the spec-
trum there exist robotics datasets concerning the performance of different tasks
in simulated environments. DeepMind Control Suite [20] provides a number of
control tasks for different types of robotic agents. ALFRED [21] focuses on lan-
guage in robotics, as it provides detailed task descriptions along with action
sequences grounded in that text that are to be executed in a simulated environ-
ment. RoboTurk [22] is mainly focused on imitation learning, as it contains a
large base of different tasks paired with crowdsourced demonstrations for each.
Surreal [23] provides a reinforcement learning framework for manipulation tasks.

V2A attempts to bridge the gap between the visual reasoning task, robotics
action planning and available datasets. It is based on SHOP-VRB annotations,
allowing for easy generation of new samples. It provides an engine that works on
scene graphs that allows for very quick executions. The queries force the model
to perform multimodal perception. Unlike ALFRED [21], that provides detailed
descriptions linking high level tasks to sequence primitives, we allow the model to
learn visual-action dependencies through exploration. Additionally, V2A remains
very challenging from visual reasoning standpoint.

3 Dataset and engine

V2A involves generating a sequence of actions that, performed on a given scene,
would lead to a successful completion of a given instruction or question. Hence,
we introduce a new dataset containing natural language instructions along with
an engine that allows for testing solutions and validating the result of the per-
formed actions. We build on closely related SHOP-VRB datasets [19] that has
recently been introduced for VQA in robotics.

3.1 Engine

The engine operates on a level of abstraction, that allows to decouple the task
from real machines or specific simulating environments. It works as a state ma-
chine operating on two main abstractions - state of the scene, and state of the
robotic arm. The dictionary of the state extends the one in SHOP-VRB scene
graphs state by adding properties related to object manipulations (e.g . is opened,
current location). The manipulator dictionary describes the current state of the
manipulator and the gripper (e.g . gripper closed, current location).

Our engine performs all operations by calling a sequence of primitive actions
on the scene and manipulator states. Primitive actions, presented in Table 1,
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Table 1: Primitive actions in the proposed engine. The primitives are composed
of action verbs, and parameters if needed. Parameters can include an index, a
direction of movement or a property characteristic to the given action. If not
specified, the action is performed on the object in focus.

Command Argument Functioning

avoid index Avoid object index during next move.
move index Move arm towards object index.
move direction Move arm in cardinal direction.
move [up/down] Lift or lower the arm.
grasp [soft/hard/attach] Grasp the object next to the arm using given grip.
release - Release object from the gripper.
open - Open the object next to the arm.
close - Close the object next to the arm.
measure property Measure property of the object next to the arm.
shake - Shake the object in the gripper.
rotate - Rotate the object in the gripper.
flip - Flip the object in the gripper.
button press - Press the button on the object next to the arm.
fill - Fill the object next to the arm.

require the scene and the manipulator to be in particular states to be possible to
execute, and modify these states according to the performed action. Construction
of primitives and operation on state dictionaries allow new tasks to be easily
added to the engine, simply by specifying the required conditions and changes in
the state due to the action performed. As proposed in Table 1, primitive actions
take the form of operations related to robotic manipulation. The primitives are
on high semantic level in order for the benchmark to avoid limitations from any
specific language. It is assumed that any presented action can be wrapped in
a software-specific function such that, given the proper parameters, it would
result in similar changes in the scene as we describe. The parameters of the
scene and the manipulator that are required for the primitive action, reflect the
behaviour of a robotic arm. The set of requirements and changes are effectively
creating the rules of the environment for the agent. For example, when moving
the manipulator towards an object, one has to plan the trajectory such that
the arm does not collide with any other object (avoid::[close neighbors] has to
precede move::down). Similarly, when pushing the object by sliding it on the
tabletop, the trajectory should avoid the neighbors in the movement direction.
On the other hand, when the object is lifted, there is no need to avoid obstacles.
Furthermore, when putting an object into a container with a lid, one has to open
it to put the object in. Similar rules apply to all primitive actions presented.

The proposed engine is equipped with a functionality of checking whether the
agent, given a task, can succeeded in completing it by preforming the sequence
of inferred primitive actions. All benchmarking tasks are presented in Table 2.
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Table 2: List of benchmark tasks available in V2A. The tasks, together with
visual reasoning cues, are the base for the provided instructions. Each task is
characterised with a different engine state that allows to assess whether the task
can be completed with a given sequence of primitive actions.

# Task # Task

1 Pick the OBJ up 12 Check if there are moving parts inside the OBJ

2 Open the OBJ 13 Check what is on the other side of the OBJ

3 Measure weight of the OBJ 14 Pick the OBJ up and move it DIR

4 Measure stiffness of the OBJ 15 Pick the OBJ1 up and move it over the OBJ2

5 Measure roughness of the OBJ 16 Push the OBJ DIR

6 Measure elasticity of the OBJ 17 Push the OBJ1 towards the OBJ2

7 Empty the OBJ 18 Stack the OBJ1 on top of the OBJ2

8 Fill the OBJ with liquid 19 Put the OBJ1 in the OBJ2

9 Turn the OBJ on 20 Hide the OBJ1 inside the OBJ2

10 Boil the liquid inside the OBJ 21 Flip the OBJ1 and shake it over the OBJ2

11 Shatter the OBJ (drop it) 22 Rotate the OBJ1 and put it in the OBJ2

Due to the construction of the engine, checking the success is simply comparing
the state of the manipulator and the state of the scene to the model state. Such
an approach also makes the addition of more tasks very simple - by setting
requirements on the final states of the scene and the manipulator. For example,
when picking up an object, the target action is to simply change the state of
the object to picked up. When hiding an object in another object, a container,
one has to verify whether both are at the correct positions, and the lid of the
container has been closed after putting the object in.

The ground truth action sequences for each given task are generated by the
engine based on prototype sequences provided by human annotators. Prototypes
contain a series of primitives always necessary to be performed to complete
the given task (e.g . picking the object up has to contain moving towards and
grasping). Based on the prototype along with the knowledge of the environment
(required states of the primitives) the instructions are provided additional prim-
itives such that the task is ultimately executed with success. We consider this
ground truth to be the shortest sequence to achieve the goal for each task.

Due to the possibility of multiple correct solutions the ground truth sequences
are intended for measuring only the efficiency of the system, and not for a su-
pervised training of a predictor. Alternatively, such ground truth can be used
for initialising a model that is then trained on other data.

3.2 Dataset

We generate a V2A dataset of challenging instructions grounded in visual inputs.
We use the same scenes as in [19]. For each scene we provide 9 to 10 visually
grounded instructions asking the agent to perform one of the tasks specified in
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Table 2. Each instruction is equipped with a corresponding task, as well as the
objects and parameters concerned by the task. Figure 2 contains sample scenes
and corresponding instructions from V2A dataset.

(a) Could you push the
medium-sized light metal
portable thing behind the light
yellow metal portable object
on the right side of the table,
please?

(b) Pick up and move the
metal portable cylindrical thing
that is on the left side of the
medium-sized blue metal cylin-
drical thing over the brown
portable thing.

(c) There is a medium-sized
light object that is both on the
right side of the white bowl
and left of the portable ther-
mos; could you hide it inside the
heavy metallic object, please?

Fig. 2: Example scenes and queries from V2A dataset. Note the complexity of
visual reasoning process required to successfully plan the set of primitive actions
that fulfils the instruction.

Dataset instructions are generated in a procedural way. We employ 77 different
instruction templates. Each template corresponds to one of the aforementioned
tasks. Templates are chosen randomly for generating instructions while keeping
the distribution of instructions over templates uniform. Each template is used
to instantiate valid instructions, such that there exist a sequence of actions
resulting in a successfully executed task, as well as invalid instructions, such
that no sequence is able to lead to a positive result for a given task (e.g . asking
to turn on a fork). Invalid instructions require the system to specifically indicate
that a query is invalid (not only producing any invalid primitives sequence).
Distribution of valid and invalid instructions is also uniform over the templates.
While being generated, each new instruction is tested for correctness, and both
the task and the concerned objects are returned as the answer. This allows the
engine to test any generated sequence for execution correctness given the task,
as well as to generate the ground truth sequence of primitives. Furthermore, the
instructions provide a challenge for visual perception as they describe objects by
their properties and their relations to other objects. Finally, functional programs,
similar to those in CLEVR are also provided as a part of the ground truth.

V2A includes 4 splits: training, validation, test and benchmark. The benchmark
split is comprised of scenes that contain the same classes as, but different in-
stances of the objects as the other splits. In Table 3, we provide details of the
V2A dataset containing the number of samples in each split.
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Table 3: Number of instructions in V2A dataset for valid and invalid tasks. Note
that some scenes do not contain enough objects to generate 10 distinct questions,
hence, some of them contain fewer.

Split training validation test benchmark

valid 49965 7500 7500 7500
invalid 49911 7487 7494 7492
total 99876 14987 14994 14992

4 Multimodal Attention Model for V2A

We propose a three step approach as a Multimodal Attention Model for the V2A
task. Additionally, we analyse the performance of a simple translation model in
a blind scenario (without visual input).

Our proposed approach is inspired by NS-VQA [9]. It consists of three main
components - scene segmentation, attributes extraction and multi-modal sequence-
to-sequence instruction to action translation. The approach is illustrated in Fig-
ure 3.

Mask R-CNN

At
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Pick up the hemisphere thing
that is left to black object, please.

Instruction

LSTM encoder
(instruction)

LSTM encoder
(attributes)LSTM decoder

Cross-modal
attention

<START>

ACTION
SEQUENCE

LSTM hidden state
LSTM output

Fig. 3: Proposed Multimodal Attention Model. Input image is segmented with
Mask R-CNN and processed by attributes extraction network to provide a dis-
entangled representation of the scene. Both, attributes and a text instruction
are parsed by LSTM encoders in order to decode the final instruction sequence
using an LSTM decoder with a cross-modal attention layer.

Scene segmentation is performed using Mask R-CNN [24]. The network predicts
the segmentation mask and category of each object.
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Attributes extraction is implemented with the use of ResNet-34 [25]. Masked
images of objects obtained from the segmentation step are concatenated with
the full image and passed through the network to predict their properties and
coordinates on the supporting plane. Scene segmentation and attributes extrac-
tion are trained with the ground truth provided with the scenes, resulting in a
disentangled representation of the visual scene.

Instruction to action translation is based on the Seq2seq machine translation
scheme [26]. Disentangled attributes vectors of the scene corresponding to the in-
put instruction are passed as a sequence to the Bidirectional LSTM [27] encoder.
Considering the input as a sequence of objects allows the model to point towards
particular items within the scene. Similarly, instruction words are embedded to
vector representations and passed through a second Bidirectional LSTM net-
work. Further, hidden states for both representations are concatenated and set
as the hidden state of the decoder network, which is a unidirectional LSTM.
Both outputs from the image and the instruction LSTMs are projected with lin-
ear layers to match the output of the decoder LSTM. An attention mechanism
is then applied to the pair of outputs from the image encoder-decoder output
and the instruction encoder-decoder. The attention is implemented in a similar
manner to that proposed in [28] and adopted in NS-VQA. Given the output de-
coder vector qt for timestep t, and the encoder output ei for timesteps i a new
context vector for timestep t, ct is calculated by a weighted sum of the encoded
states according to the attention distribution:

ct =
∑

i

αtiei where: αti =
exp(qT

t
ei)∑

k
exp(qTt ek)

(1)

The context vector is concatenated with the decoder output and projected
back to its original size inside the attention layer. New representations for the
attributes-focused decoding and the instruction-focused decoding are projected
such that, after concatenation, their dimensions match those of the original de-
coder output. Finally, the obtained multimodal vector is projected onto the
output vocabulary space in order to predict the next action token for the final
action list. A detailed view of the decoder structure along with the attention
mechanism is presented in Figure 4.

The training regime for translating instructions to actions is divided into two
steps: weakly-supervised and reinforced. The weakly-supervised part of the train-
ing uses randomly selected ground truth action lists for the given instructions. Se-
lected actions are uniformly distributed among the instruction templates, while
keeping the ratio of valid to invalid templates at a given value. A total number
of ground truth annotated instructions for the supervised part of the training
does not exceed 3% of the whole training set size.

The reinforced step follows the weakly supervised part. We use REINFORCE
[29] to further train the model on the full set of instructions. The reward is
generated based on the execution of the generated action list in V2A engine. We
allow the setting of different rewards for valid and invalid instructions.
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Fig. 4: Detailed view of the decoder and attention layers. Hidden states of both
encoders are concatenated and used to initialise the decoder state. Outputs of
the encoders are projected to the size of the decoder output in order to use the
attention mechanism that produces context-aware outputs. These are further
concatenated and used to predict the next token in action sequence.

5 Evaluation protocol

Success rate (SR) is a natural way of evaluating any agent performance in in-
teractive tasks. It is defined as the ratio of successful attempts to all attempts.
In our case, it is the ratio of correctly evaluated sequences to all given queries.
However, we argue that such simple information is not sufficient to assess the
performance of the agent in detail.

Valid success rate (VSR) is therefore a new metric we propose. By considering
queries for which there exist a valid answer, we measure how well the model is
able to generate successful plans.

Invalid success rate (ISR) is the complement of VSR and allows assessment of
to whether the system is not overfitting to seemingly easier queries which do
not have a valid answer. Considering the simple scenario of creating model that
outputs only invalid tokens, one would obtain SR close to 0.5 (with the V2A
valid/invalid ratio of roughly 1:1) but score exactly 0.0 in VSR.

Harmonic success rate (HSR) is our proposal of a metric combining the afore-
mentioned scores into one based on the harmonic mean of VSR and ISR (being
an analogue of F1 score for precision and recall):

HSR = 2
V SR · ISR

V SR+ ISR
(2)

Efficiency of the sequence (Escore) prevents the agent from gaming the engine by
outputting all the possible moves that do not break the sequence (e.g . avoiding
all obstacles one by one before every move). Efficiency is calculated as the ratio of
the length of the primitives list generated by the model to the ground truth one
(the shortest possible). Efficiency is calculated only for valid entries for which
the model performed a successful task completion.
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Action sequence accuracy (Aacc) assesses the accuracy of the focus on the given
task by the model. To obtain the score, we calculate the ratio of successful task
completions to all actions produced by the model that lead to correct execution
according to the engine (with no errors, calculated only for valid instructions).

All suggested metrics, with information whether the goal is to maximise or
minimise each score, and bounding values for each are presented in Table 4.

Table 4: Summary of the evaluation metrics with bounding values and indicated
maximisation or minimisation goal.

Metric SR V SR ISR HSR Escore Aacc

better ↑ ↑ ↑ ↑ ↓ ↑
min 0.0 0.0 0.0 0.0 1.0 0.0
max 1.0 1.0 1.0 1.0 ∞ 1.0

6 Experiments

We perform experiments on the test and benchmark splits of V2A dataset. Test
split consists of new scenes generated with the same instances of objects as
train and validation splits, whereas benchmark split challenges the system with
scenes generated with the same classes of objects but new instances. We consider
benchmark split to be an analogue of zero-shot learning capable of evaluating
generalisation properties of the system in an unknown setting. We provide results
for our two models, both blind and multimodal. Both models follow the training
regime of supervised pretraining and reinforced fine-tuning. The amount of data
sampled for the supervised part is the same for both models and does not exceed
3% of all training split instructions.

6.1 Blind model

Additionally to our full model, we propose an ablation evaluation with only
the language part of the model. The method becomes a standard sequence-
to-sequence model trained with the same regime as the full model (weakly-
supervised + reinforced). The ablation study is proposed to show the importance
of correct visual perception in the V2A task.

Seq2seq blind model is trained only with instruction-action sequence pairs for
the supervised part and with instructions and engine rewards for the reinforced
part. The supervised part uses negative log-likelihood as the loss function and
is trained with Adam [30] with learning rate 1e − 3 as an optimiser. We use
validation split as an early stopping criterion. For the reinforced part, learning
rate is decreased to 1e− 5 and the reward is set to be 0.2 for invalid queries and
5.0 for valid ones.
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6.2 Multimodal attention model

Multimodal attention model uses an attribute extraction pipeline similar to that
in NS-VQA [9] . Firstly, we train Mask R-CNN for 30000 iterations with the
supervision of ground truth masks. Thereafter, we train the attributes extractor,
a ResNet-34, using training split. We apply early stopping based on validation
split. In order to draw conclusions on the action planning for test and benchmark
splits, we provide the attributes extraction accuracy for V2A scenes in Table 5.
We train our multimodal action planner similarly to the blind model. We use the

Table 5: Attributes recognition accuracy for V2A scenes.

Split Category Size Weight Colour MaterialMobility Shape Overall Dist err

Test 88.3 88.9 88.9 88.5 88.4 89.2 88.7 88.7 0.062
Bench 43.2 61.2 53.7 50.8 48.8 65.4 38.0 51.4 0.102

same optimisers and loss functions, and keep rewards the same. Additionally, we
train the model with ground truth attribute vectors as well as those inferred from
the attributes extraction network in order to assess how the quality of features
affects performance.

6.3 Results

The results for the aforementioned models are presented in Table 6.

Table 6: Results for V2A task. Text LSTM is a blind model without visual input,
MAM refers to the full proposed approach, test and benchmark refer to the splits
of the dataset and GT and inferred correspond to use of attributes from ground
truth or extracted via the attributes extraction network, respectively.

Model SR V SR ISR HSR Escore Aacc

Text LSTM test 32.1 3.1 61.1 5.9 1.09 12.4
Text LSTM benchmark 31.9 2.5 61.4 4.8 1.08 12.6

MAM test GT 44.9 24.9 65.0 36.0 1.04 38.4
MAM test inferred 44.7 23.8 65.0 34.8 1.04 36.3
MAM benchmark GT 42.3 10.7 73.9 18.7 1.02 16.2
MAM benchmark inferred 40.2 6.4 79.9 11.9 1.02 10.2
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The blind model performs very poorly overall which is the expected behaviour.
One can quickly notice that with no visual input the challenge of benchmark
split is not presented to the model, hence, the results are very similar for both
test and benchmark. As explained in the evaluation protocol, one can expect
balancing valid and invalid recognition to be a complex task. It can be inferred
that the blind model has overfitted to be predicting a majority of sequences with
invalid tokens as the answer. However, by looking at V SR and HSR scores one
may instantly notice that in fact, the blind model was not able to learn the actual
planning. Based on Escore, we can notice that correctly predicted action plans
were not much longer that ground truth ones. Aacc is showing that the model
was able to produce more programs that were executed by the engine with no
errors (which means they can be performed on the given scene), however, only
a small fraction of them were focused on the given task.

MAM system preforms significantly better than the blind one. We observed that
both models were performing similarly for invalid queries. However, the multi-
modal attention model generated many more correct sequences for instructions
with a valid answer. Increase in V SR drastically improved the harmonic mean
HSR, proving it to be a very useful metric to assess the performance of vari-
ous systems in the V2A task. In case of the multimodal approach, we observe a
significant difference between test and benchmark splits. Seemingly, presenting
a new, never-before-seen combination of attributes poses a nontrivial challenge
to the system. One can notice that ISR improved for benchmark split with
respect to test split. It may be inferred that the model learned to associate
specific attributes as preventing the instruction to be fulfilled and such ones
were associated with the valid instructions in benchmark split. Furthermore, all
models seem not to add too many additional instructions to the ground truth
action sequence (Escore). This is possibly due to the supervised pretraining step,
presenting the system with some shortest model sequences. We can see a clear
difference in action sequence accuracy Aacc between test and benchmark splits.
This indicates that the model was more precise in performing the task correctly
for test split, which may be caused by misleading attributes from benchmark
split. Finally, one may notice a significant impact of the attributes recognition
accuracy on the given model. A difference in the performance between models
using the ground truth attributes and the attributes extracted by the network
correspond to attributes recognition accuracy (Table 5. We observe bigger gap
in performance for benchmark split, which attributes were extracted with much
lower accuracy than for test split.

Breakdown of success rates among different task with distinction for valid and
invalid queries was also investigated. In Figure 5 we present the breakdown of
success rates, keeping the numbering consistent with Table 2. We observe that
the distribution of accuracies is not even among the tasks, especially for valid
samples. One can notice a significant decrease in performance for tasks 14 to
22. Those tasks correspond to instructions asking to manipulate more than one
object within the same sequence. It is then not surprising that the system finds
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Fig. 5: Breakdown of success rates for the full model (experiment on test split).
Task numbers refer to Table 2. Note that some tasks can always be performed
no matter the scene given (e.g . we assume objects cannot always be picked up
but can always be pushed), hence some columns are not present for invalid part.

such a task harder than manipulating a single object, as it also follows the human
intuition of being a harder task.

7 Conclusions

In this work, we presented a new challenging task for experiments in computer
vision and high-level action planning. We believe that V2A bridges the gap
between visual and language reasoning and action planning, and in particular,
object manipulation with a robotic arm. We show that the task poses a significant
challenge for multimodal perception. An agent has to be developed with the
understanding of natural language instructions that are grounded in an image -
visual input. The grounding forces the planning to be performed in a multimodal
space. We believe that V2A defines a task that resembles modalities that are
offered to an agent working in a real-world environment.

Along with the task, we provide a dataset containing natural language in-
structions for an agent, and an engine capable of assessing whether the task has
been performed successfully. The engine operates on functional primitives that
are actions assigned to be performed by the robotic arm. Primitives operate on
a high level of abstraction as we want to decouple the task from any particular
hardware or simulation software. Additionally, we believe that such an approach
enables further integration with a real system by wrapping primitive actions in
a syntax specific to a terminal system.

Our experiments proved V2A to be a challenging, but well-defined task. We
observe that challenges that are naturally hard for a human are also hard for the
system (manipulating more objects in a sequence is much harder than manipu-
lating one). An experiment with a blind system trying to learn primitive action
sequences directly from instructions shows that visual perception is an integral
part of the task, and must necessarily be addressed when trying to solve it.
Acknowledgements. This research was supported by UK EPSRC IPALM
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