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Abstract. Semantic segmentation is a fundamental problem in com-
puter vision that has attracted a lot of attention. Recent efforts have
been devoted to network architecture innovations for efficient semantic
segmentation that can run in real-time for autonomous driving and other
applications. Information flow between scales is crucial because accurate
segmentation needs both large context and fine detail. However, most ex-
isting approaches still rely on pretrained backbone models (e.g. ResNet
on ImageNet). In this work, we propose to open up the backbone and de-
sign a simple yet effective multiscale network architecture, Bidirectional
Pyramid Network (BPNet). BPNet takes the shape of a pyramid : infor-
mation flows from bottom (high-resolution, small receptive field) to top
(low-resolution, large receptive field), and from top to bottom, in a sys-
tematic manner, at every step of the processing. More importantly, fusion
needs to be efficient; this is done through an add-and-multiply module
with learned weights. We also apply a unary-pairwise attention mecha-
nism to balance position sensitivity and context aggregation. Auxiliary
loss is applied at multiple steps of the pyramid bottom. The resulting
network achieves high accuracy with efficiency, without the need of pre-
training. On the standard Cityscapes dataset, we achieve test mIoU 76.3
with 5.1M parameters and 36 fps (on Nvidia 2080 Ti), competitive with
the state of the time real-time models. Meanwhile, our design is general
and can be used to build heavier networks: a ResNet-101 equivalent ver-
sion of BPNet achieves mIoU 81.9 on Cityscapes, competitive with the
best published results. We further demonstrate the flexibility of BPNet
on a prostate MRI segmentation task, achieving the state of the art with
a 45x speed-up.

1 Introduction

Semantic segmentation, detailed semantic understanding of a scene, is a fun-
damental problem in computer vision. Great progress has been made in recent
years for semantic segmentation with convolutional neural networks (CNN), es-
pecially with the encoder-decoder architecture [1, 2]. In FCNs [1], convolution
layers are stacked with subsampling to form the encoder, and deconvolution
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layers are stacked with upsampling to build the decoder. In such network archi-
tectures, higher layers are usually thought to capture entire objects, and contexts
beyond objects, because they have larger receptive fields and go through more
convolution steps; lower layers are more likely to capture local patterns, includ-
ing part of objects and fine details. However, accurate semantic segmentation
requires both large-scale contexts and small-scale details, and the integration of
information across scales has been a central topic of investigation. This is par-
ticularly important for efficient (real-time) segmentation because we cannot use
heavyweight backbones to preserve sufficient information in higher layers.

UNet [2], a successful architecture design that is still popular today, intro-
duces skip connections between corresponding encoder and decoder layers to
better model small-scale details in the decoder. This general line of approach
has achieved good results with many improvements. VNet [3] proposes to use
a convolutional layer to enhance the raw skip connection. AttentionUNet [4]
utilizes an attention block to filter unrelated noise to improve the quality of
feature fusion. UNet++ [5] redesigns skip pathways to reduce the semantic gap
between the feature maps of the encoder and decoder. RefineNet [6] extracts
high-resolution semantic information which is both accurate in location and rich
in contextual information.

However, such skip connections cannot capture all useful interactions between
large-scale information and small-scale information as they flow through the
network. One major constraint is that most existing approaches use pre-trained
backbone networks in the encoder. Typically, a ResNet (or VGG) backbone
network is pre-trained on ImageNet on classification tasks, and then is fine-
tuned as part of the semantic segmentation network. Relying on pre-training
limits the possibility of adding interactions inside the backbone. Pre-training
can also be an issue when we look at different domains such as medical imaging.

In this work we aim to remove the need for pre-training, and open up the
backbone model to allow better flow of information across scales and processing
steps. We propose a simple yet effective architecture design called Bidirectional

Pyramid Network (BPNet), which symmetrically applies feature fusion between
successive layers (as we move up the resolution pyramid toward larger receptive
fields) and successive stages (as we apply more convolutions to extract segmen-
tation cues on the same layer). With a very loose analogy, our BPNet design
looks similar to the Pascal’s Triangle, where adjacent numbers are combined
to compute the next number. These cross-scale fusion “flows” are bidirectional:
not only can they go from higher layers (larger scale, lower resolution) to lower
layers (higher resolution); they can also go from lower layers to higher layers,
hence facilitating further integration of useful information. In addition to this
pyramid architecture, we also find it useful to employ a parallel unary-pairwise

attention mechanism in order to help capture long-range dependencies and thin
structures. An illustration of the BPNet design can be seen in Figure 1.

Our BPNet design can be instantiated in different forms w.r.t. computational
requirement, by changing the number of resolution layers (partly corresponding
to input image resolution), and the number of channels at each convolution
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step. We find that systematic information fusion in BPNet is most effective for
efficient semantic segmentation, when the network is light- to medium-weight.
One lightweight version, BPNet-S3-W32, achieves mIoU 76.3 on Cityscapes run-
ning 36 fps on Nvidia 2080 Ti, outperforming BiSeNet and other state-of-the-art
real-time networks. One heavyweight version, BPNet-S4, achieves mIoU 81.9 on
Cityscapes, competitive with the best published results. We also achieve state-
of-the-art results on other benchmarks such as Camvid [7] and PASCAL Con-
text [8]. It is worth noting that we do not use pre-training or external datasets; all
our models are trained from scratch on the individual datasets themselves. This
is in contrast to related works including HRNet [9], which did not use standard
backbones but still pre-trained their networks on ImageNet. Without needing
pre-training, our networks can be more versatile; we demonstrate the flexibility
of BPNet on a popular medical imaging task on prostate MRI segmentation [10],
achieving the state of the art with a 45x speed-up (using 2D convolutions only
instead of 3D).

2 Related Work

2.1 Balancing Resolution and Semantics

A widely used semantic segmentation framework is the encoder-decoder [1, 2].
An encoder usually reduces the spatial resolution of feature maps to learn more
abstract features. Correspondingly, the decoder recovers the spatial resolution
of the input image from encoder so as to generate dense prediction maps. Fully
convolutional network [1] is a typical encoder-decoder architecture which utilizes
convolutions for encoding and deconvolutions for decoding to perform pixel-wise
segmentation. UNet [2] combines shallow and deep features with skip connec-
tions to retain more details in the dense predictions. SharpMask [11] proposed
a convolution in the skip connection between encoder and decoder layers to re-
duce the gap between semantics and localization. PANet [12] built a bottom-up
connection between lower layers and the topmost layer to enhance the encoder-
decoder’s feature hierarchy with better localization and small-scale detail in the
lower layers. HRNet [9] introduced multi-resolution convolution to fully fuse
multi scale information, and the high-resolution pathway can well retain the lo-
calization information. In a related work on object detection, [13] proposed a
weighted bi-directional feature pyramid network (BiFPN), showing that infor-
mation flow in both directions (coarse-to-fine, and fine-to-coarse) are useful for
feature fusion.

2.2 Context Aggregation

Context aggregation can be used to model long-range information dependency.
Zhao et al. [14] proposed a pyramid pooling module to capture global contextual
information. Chen et al. [15] used convolutions with different dilated ratios to
harvest pixel-wise contextual information in different ranges. Wang et al. [16]
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developed a non-local module, which generates a pixel-wise attention mask by
calculating pairwise similarity, so as to guide context aggregation. Yuan et al. [17]
introduced an object context pooling (OCP) module to explore the relationship
between a pixel and the object neighborhood. DANet [18] designed spatial-wise
and channel-wise self-attention mechanism to harvest the contextual informa-
tion. To reduce the computational complexity of non-local module, Huang [19]
proposed criss-cross attention module which only computes correlation matrix
between each pixel and the corresponding row and column of this pixel. Zhu et
al. [20] proposed to sample typical pixels of a feature map as the basis to compute
the correlation matrix, reducing computational cost for the non-local module.
Li et al. [21] introduced EM algorithms to build a low-rank weight matrix to
improve the efficiency of the context aggregation. Although pairwise attention is
useful, Li et al. [22, 23] found that long-range information in pairwise attention is
usually dominated by features of large-scale patterns and inclined to oversmooth
small-scale regions (e.g., boundaries and small objects). They proposed local dis-
tribution block to distribute global information adaptively over the feature map.

2.3 Efficient Segmentation

Many algorithms have been designed for efficient segmentation with reasonable
accuracy, targeting real-time applications [24–29]. Some works dramatically re-
duced the resolution of the feature maps to achieve faster inference. For exam-
ple, in ICNet [24], a cascade network was proposed with multi-scale inputs. Li et
al. [25] used cross-level feature aggregation to boost accuracy on a light-weight
backbone. Though effective, these methods had difficulty handling some small
objects and boundaries of objects. Others tried to design light-weight networks
to achieve efficiency. For example, BiSeNet [29] separated semantics and high-
resolution details by introducing a spatial path and a semantic path. Different
from these methods, we retain a high-resolution representation and encourage
interactions between different levels of detail and abstraction.

3 Bidirectional Pyramid Networks

The architecture design of our BPNet is illustrated in Fig 1, including a pre-
liminary convolution step, a bidirectional pyramid network for cross-scale infor-
mation fusion, then followed by a parallel unary-pairwise attention module for
capturing long-range dependency and thin structures.

3.1 Pyramid Architecture

As shown in Figure 1, our pyramid scheme of processing goes in two basic di-
rections (blue arrows): one moves “up” in layers, from higher spatial resolution
to lower resolution; the other moves “forward” in stages, maintaining spatial
resolution while applying more convolution to extract information.
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Fig. 1. Illustration of the architecture of the proposed BPNet. This framework consists
of a pyramid network and a context aggregation module. (a) The pyramid network con-
tains four stages, i.e., S1, S2, S3 and S4. Each stage is with a bidirectional information
flow to boost communication between semantics and resolution, in which, top-down
flow (red lines) propagate semantics to high-resolution features and bottom-up flow
(yellow lines) passes high-resolution information to rich-semantic features. (b) Con-
text aggregation module learns a pixel-wise unary attention for an emphasis on small
patterns and a pairwise attention for long-range information dependency modeling.

A typical instantiation of the BPNet model consists of 4 or 5 layers (3 or
4 steps of subsampling), and 3 or 4 stages of convolution at the bottom layer
(highest resolution). If the input resolution is x64 (with x an arbitrary integer),
the feature resolution of the lowest layer is x16. At the second lowest layer,
the feature resolution is x8, and it goes through 3 stages of convolution at the
x8 resolution. As we move up the “pyramid”, following common practice, we
reduce the feature resolution by half at each step, and increase the number of
channels by two (as illustrated by the channel numbers C, 2C, 4C, etc. with C

an integer). A “bird-eye” view of our network resembles a pyramid, or triangle.
In the figure, we show a pyramid of 4 layers (with solid arrows), and a pyramid
of 5 layers (with the added stage L5, and the dotted arrows on the right side of
the triangle).

Note that this basic architecture (without the cross-scale flows, in red and
yellow) is already different from a typical UNet structure (or, for that matter,
that of a typical feature pyramid in object detection). There is no clearly defined
encoder and decoder. We not only pass information, laterally, from various steps
of the subsampling (L1, L2, to L5, left side of the triangle, reducing resolution)
to the corresponding steps of upsampling (right side of the triangle, increasing
resolution); for each lateral link, we add a varying number of stages, or con-
volution stages. As we move up the layers, fewer processing steps are needed
laterally, as the information has already been through a number of convolutions
in the subsampling process.

Top-down information flow. With aforementioned basic architecture, we de-
scribe how we design information cross-scale flow in a systematic way. One key
component is top-down information flow. As shown in Fig 1 (in red arrows),
information flows “down” the pyramid at each processing step. For example, the
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features at L2 (at resolution x8 and after one step of convolution with subsam-
pling) are fed down the hierarchy to be integrated with S1, which is one step of
convolution at the lowest layer (maintaining feature resolution x16). Similarly,
the features at L3 (at resolution x4 and after two steps of convolution with
subsampling) are fed down the hierarchy to the layer below, to be integrated
with the output of one lateral step from L2. Other top-down flows are designed
similarly across the pyramid.

Empirically, the number of layers (in the resolution hierarchy) and the num-
ber of stages (processing steps at the lowest layer) tend to be the same, which
results in a “perfect” triangle pattern. In all the models we use in this work, the
triangles are “perfect”, as they produce good results across board. It is worth
noting that the number of layers and the number of stages do not have to be
exactly the same. We have experimented with “skewed” triangles and they can
be effective under certain circumstances (such as when the input resolution is
high but we want a lighter weight model).

Bottom-up information flow. The top-down flows in our pyramid network
enhances processing at the high resolutions (low layers) with more semantic and
abstract information. However, the information flow does not have to be in only
one direction. We can also add bottom-up information flows, as illustrated by
yellow arrows in Fig. 1. For bottom-up flows, higher-resolution features (after
top-down fusion) are fed upward to be integrated with lower-resolution features
at the higher layers. This design completes our bidirectional pyramid network:
information is free to flow laterally, upward, or downward, and they are fused
at every step of the processing. In the ablation studies, we will show that both
top-down flows and bottom-up flows are useful and improve accuracy without a
heavy computational cost.

Feature fusion strategy. The bidirectional information flow in the pyramid
network brings features with different characteristics together, where feature
fusion plays a central role.

Typically, one of three feature fusion strategies is used in semantic segmen-
tation: element-wise addition, element-wise multiplication, and concatenation.
Concatenation is more flexible as it allows learned combination of the features
at a later step, with a computational cost. On the other hand, element-wise ad-

dition and multiplication are more elementary operations: simple to compute,
and do not increase the feature dimension.

We focus on how to effectively use the two elementary operations: addition
and multiplication. Intuitively, addition can be viewed as an OR operation, com-
bining individual signals from any of the two inputs; and multiplication can be
viewed as an AND operation, selecting shared signals from both inputs. Us-
ing either of these two operations alone may not be sufficient for feature fusion.
Therefore, we propose to use a combined fusion block add-multiply-add (AMA),
a weighted combination of these operations, as described below and illustrated
in Fig. 2.
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Fig. 2. Illustration of our feature fusion block add-multiply-add (AMA), which is more
expressive than either add ormul, but does not increase feature dimension like concat.

Let A and B represent two input feature vectors at any fusion step of our
pyramid network, A from the lower level (high-res, representing detail), and
B from the higher level (low-res, representing context). Let Ai, Bi represent
channel i of features A and B. Let F (B) denote a transformation of B, including
convolution, nonlinear activation, and also upsampling if there is a resolution
mismatch between A and B. For element-wise addition add, our fusion function
is Yi = Ai + F (B)i. Detail information is “summed” with context information
directly. Intuitively, because context information in B has a low resolution, a
direct sum tend to produce blurred boundaries. For element-wise multiplication
mul, our fusion function is Yi = Ai · F (B)

i
. Intuitively, this allows information

both in A and B to reinforce each other, but unique signals in either A or B
could be suppressed.

We find that either add or mul is not sufficient for feature fusion. Inspired
by polynomial feature expansion, and related works such as Factorization Ma-
chine [30], we propose a simple yet effective feature fusion block called add-

multiply-add (AMA):

Yi = αiAi + βiF
a(B)i + Fma (Ai · F

m(B)i) (1)

where F a, Fm and Fma are three transformations (convolutions) that bring the
signals together, and αi and βi are learned weights.

In our ablation studies, we validate that the AMA fusion block is indeed
more powerful and useful than either add or mul. As a comparison, we also ex-
plore a concatenation block concat, where the fusion function is Yi = conct(Ai, F (B)i).
Although concatenation is more expressive and incorporates addition, it cannot
directly represent multiplication, and we find that it performs less well than
the proposed AMA fusion, even with a higher computational cost.

3.2 Parallel Unary-Pairwise Attention

While our pyramid architecture is effective in modeling the fusion of small-scale
and large-scale semantic cues, it operates locally and does not directly capture
long-range dependency. Therefore, we feed the output of the pyramid model
through a Parallel Unary-Pairwise Attention (PUP) module to further improve
the effectiveness of the model.

We first use Asymmetric Pyramid Non-local Block (APNB) [20] to model
long-range dependency through pairwise attention. APNB utilizes a pyramid
sampling module into the nonlocal block to reduce computation and memory
consumption. However, we find that pairwise attention context aggregation tends
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to be biased toward large-scale patterns and may harm small-scale patterns (also
observed in [23]).

To mitigate the scale dilemma in APNB, we use a unary attention block
parallel to the pairwise attention block, as shown in Fig. 3. Specifically, The input
feature map first passes through a depth-wise 3 × 3 convolution, followed by a
sigmoid function to transform them to “importance weights”. Then we apply
a learned importance matrix on the input feature map to generate a position-
sensitive attention map. We conduct a simple element-wise addition to combine
the position-sensitive attention map (from unary attention) and the long-range
context-sensitive attention map (from pairwise attention), achieving effective
context aggregation without losing signals for local regions. In our studies, we
find that our PUP model, modeling unary and pairwise attention in parallel,
performs better than pairwise attention alone.

conv 𝜎
x

unary-attention

pairwise

attention

unary

attention

+

unary-pairwise attention

Fig. 3. Schematic illustration of unary-pairwise attention. This block receives a feature
map from the pyramid network and outputs a feature map with global information
aggregated and local signals retained.

3.3 Model Instantiations and Implementation Details

The model instance with 4 layers (L1 to L4) and 3 stages (i.e., S1 to S3), is
called BPNet-S3. The model instance with 5 layers (L1 to L5) and 4 stages (i.e.,
S1 to S4), is called BPNet-S4.

We employ Kaiming initialization to initialize our proposed network. We use
mini-batch stochastic gradient descent (SGD) with batch size 12, momentum
0.9 and weight decay 1e−4 during training. We apply the “poly” learning rate
strategy in which the initial rate is multiplied by (1 − iter

maxiter
)power each iter-

ation with power 0.9. The initial learning rate is set to 1e−2. We employ the
mean subtraction, random horizontal flip and random scale on the input im-
ages to augment the dataset in training process. The scales contains {0.75, 1.0,
1.5, 1.75, 2.0}. Finally, we randomly crop the image into fix size for training.
Implementation is done using TorchSeg [31].

4 Experiments

To evaluate the proposed BPNet models, we carry out experiments on Cityscapes
dataset, CamVid, Pascal Context, and a medical image dataset (prostate MRI),
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with Cityscapes being our primary benchmark. Experimental results demon-
strate that our BPNet achieves state-of-the-art performance on Cityscapes, par-
ticularly for real-time settings. Meanwhile, BPNet can compete with or outper-
form the state of the art on a number of other benchmarks, includign CamVid,
Pascal context and prostate MRI. In this section, we first introduce the datasets,
and then proceed to show our main results on Cityscapes, for both real-time and
non-real-time settings. We then perform a series of ablation studies, also using
the Cityscapes dataset, to valid various design choices in the BPNet. Finally, we
report our results on Pascal Context, and a prostate MRI dataset.

4.1 Datasets and Evaluation Metrics

We use the standard Mean IoU (mean of class-wise intersection over union) for
Cityscapes, Camvid, and Pascal Context. We use the Dice similarity score (DSC)
for the prostate MRI dataset, as standard for that benchmark.

– Cityscapes [32] is tasked for urban segmentation, which contains 5,000 pixel-
level finely annotated images captured from 50 different cities. Each image is
with 1024× 2048 resolution. The 5,000 finely annotated images are divided
into 2,975/500/1,525 images for training, validation, and testing.

– CamVid [7] contains 701 road scenes with image resolution 720 × 960 ex-
tracted from driving videos, in which, 701 images are divided into training,
validation and testing subsets with 367, 101 and 233 images, respectively.
All images are pixel-wise annotated with 11 semantic classes.

– The PASCAL context dataset [8] includes 4, 998 scene images for training
and 5, 105 images for testing with 59 semantic labels and 1 background label.

– PROMISE12-challenge dataset [10] is for MRI prostate segmentation, a
widely used medical image segmentation benchmark. This dataset contains
50 labeled subjects where only prostate was annotated, and 30 extra subjects
hose ground-truth label-maps are hidden from us.

4.2 Experiments on Cityscapes

We primarily carry out our experimental studies on the Cityscapes dataset. We
first validate and compare the proposed models (our mediumweight network
BPNet-S3) with state-of-the-art real-time semantic segmentation methods that
focus on efficiency. We then compare our heavyweight network (BPNet-S4) with
state-of-the-art models that focus on accuracy. Furthermore, we conduct ablation
studies to explore the impact of the various key components in the BPNet.

Comparison with state-of-the-arts real-time segmentation methods

We first consider a lightweight model, i.e., BPNet-S3-W32, the S3 model with
the base number of channels C equal to 32. (If not specified, the mediumweight
BPNet-S3 has the base number of channels equal to 48). Results of other state-
of-the-art real-time semantic segmentation solutions on cityscapes validation and
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test set (with single-scale inference strategy) are summarized in Table 1. The
lightweight model, BPNet-S3-W32, presents the highest mIoU with a fast in-
ference speed. This shows that BPNet-S3-W32 is a good choice for efficiency-
demanding segmentation tasks.

Table 1. Semantic segmentation results on Cityscapes. The GFLOPs is calculated on
the input size 1024× 2048. * means FPS tested by ourselves on RTX 2080 TI.

method params. GFLOPs FPS mIoU
val test

ICNet [24] 7.7 - 37.5∗ 70.6 69.5
BiSeNet(Res18) [29] 13.4 104.3 41.7∗ 74.8 74.7

DFANet [25] 7.8 - 58.8∗ - 71.3
BPNet-S3-W32 5.1 74.2 36.5 77.2 76.3

Comparison with state-of-the-art segmentation methods. We now show
accuracy with our mediumweight and heavyweight models, i.e., BPNet-S3 and
BPNet-S4. Results of other state-of-the-art semantic segmentation solutions on
cityscapes validation set (with single-scale inference strategy) are summarized
in Table 2. Among the approaches, DFN uses ResNet-101 [33] as backbone,
Deeplabv3 [15] and PSPNet [14] both use Dilated-ResNet-101 as backbone and
Deeplabv3+ [34] use stronger backbone. HRNet [9] utilizes imagenet to train
a powerful pretrained model as the backbone for the segmentation tasks. The
results show that the proposed BPNet-S3 can achieve similar performance with
the DFN and DeepLabv3, but our model complexity is much lower (the number
of parameters is about 5 times fewer). More importantly, the computational
cost is about 10 times lower. In the meantime, our BPNet-S4 outperforms the
DeepLabv3+, PSPNet and HRNetv2-W40. Again, BPNet-S4 has less parameters
and needs much less computational resource. BPNet-S4 is also competitive to
HRNetV2-W48, without using external data (e.g., Imagenet) for pretraining.

Table 2. Semantic segmentation results on Cityscapes validation with single-scale
inference. The GFLOPs is calculated on the input size 1024× 2048.

method backbone params. GFLOPs mIoU

DFN [33] ResNet-101 90.2M 2221.0 78.5
PSPNet [14] Dilated-ResNet-101 65.9M 2017.6 79.7

DeepLabv3 [15] Dilated-ResNet-101 58.0M 1778.7 78.5
DeepLabv3+ [34] Dilated-Xception-71 43.5M 1444.6 79.6
HRNetV2-W40 [9] - 45.2M 493.2 80.2
HRNetV2-W48 [33] - 65.9M 747.3 81.1

BPNet-S3 - 11.8M 227.1 78.3
BPNet-S4 - 40.5M 307.5 80.3
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In addition, we also evaluate our models on the test set (with multi-scale in-
ference strategy) by submitting inference results to the official evaluation server.
We use train+val as training set to train our model and report the mIoU on the
test set. From Table 3, We see that BPNet-S4 achieve better mIoU than most of
the methods, and achieve competitive performance compared to HRNetv2-W48,
again without pre-training, and lower computational complexity.

Table 3. Semantic segmentation results on Cityscapes test (train and train+val as
training set, respectively) with multi-scale inference.

method backbone use pretraining mIoU

with train set

PSPNet [14] Dilated-ResNet-101 yes 78.4
PSANet [35] Dilated-ResNet-101 yes 78.6

HRNetV2-W48 [9] - yes 80.4
BPNet-S4 - no 80.5

with train+val set

BiSeNet [29] ResNet-101 yes 78.9
DFN [33] ResNet-101 yes 79.3

PSANet [35] Dilated-ResNet-101 yes 80.1
PADNet [36] Dilated-ResNet-101 yes 80.3

DenseASPP [37] WDenseNet-161 yes 80.6
ANN [20] ResNet-101 yes 81.3
OCNet [17] ResNet-101 yes 81.7
OCR [38] ResNet-101 yes 81.8

HRNetv2-W48 [9] - yes 81.6
BPNet-S4 - no 81.9

Training Details. BPNet-S3-W32 and BPNet-S4 are trained with 240 epochs
from scratch on Cityscapes, taking about 40 and 48 hours with 4 RTX 2080 TI.
The training time is not excessive, comparable to that of SOTA methods with
pretrained models (e.g., PSPNet, DeepLab V3+, HRNet and so on).

Comparing to Other Methods. Scale and fusion are central topics in com-
puter vision. Our work draws inspiration from many state-of-the-art algorithms,
such as HRNet [9] and GridNet [39]. We take HRNet as an example to explain
the difference. (1) Feature fusion design is quite different. (2) BPNet is much
more efficient than HRNet. (3) Pretraining is not necessary for BPNet to achieve
good performance. More details about the difference are introduced in the sup-
plementary material (Sec. 5.3).

Ablation studies To validate design choices in the BPNet, we conduct abla-
tion experiments on the validation set of Cityscapes with different settings. All
ablation studies are conducted on BPNet-S3.
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Impact of bidirectional information flow. To investigate the effect of
bidirectional information flow, we compare the following networks: (a) remove all
top-down and bottom-up flows in the pyramid (denoted as ‘BaseNet’); (b) add
only top-down flow in the pyramid network (denoted as ‘+Top-Down’); (c) add
only bottom-up flow (denoted as ‘+Bottom-Up’) and (d) with both top-down
and bottom-up flows (denoted as ‘+bidirectional’).

Table 4. Investigation of bidirectional information flow.

method fusion strategy mIoU ∆mIoU

BaseNet - 73.7 -
+Top-Down AMA 75.0 +1.3
+Bottom-Up AMA 74.6 +0.9
+Bidirectional AMA 76.1 +2.4

+Bidirectional add 75.4 -0.7
+Bidirectional mul 75.2 -0.9
+Bidirectional concat 75.5 -0.6

In Table 4, both “+Top-Down” and “+Bottom-Up” can boost the base net-
work to achieve better performance. Compared to bottom-up information flow,
top-down information flow is more beneficial which means providing context
to high-resolution processing is more important. With both the top-down and
bottom-up links, the network can enjoy even more performance gain, demon-
strating the merit of having information flow at every step of the processing, in
both upward and downward directions.

Feature fusion strategy. As mentioned in Section 3, three popular feature
fusion strategies are add, mul and contact. Our ablation studies focus on com-
paring these fusion approaches with our proposed AMA feature fusion in the
bidirectional setting. Table 4 indicates that the proposed AMA works best for
feature fusion, which outperforms the widely used concat as well as add.

Impact of parallel unary-pairwise attention. To validate the impact
of our parallel unary-pairwise attention (PUP) mechanism for capturing both
long-range dependency and thin structure, we conduct experiments with four
different designs of attention mechanisms applied on the output of the pyramid
network, respectively: (a) pairwise attention only (using APNB [20]) for context
aggregation; (b) sequential integration of unary and pairwise attention, unary
first, pairwise second; (c) sequential integration of unary and pairwise attention,
pairwise first, unary second; (d) the proposed parallel unary-pairwise attention
mechanism (PUP). We find that all four attention mechanisms are useful in
improving accuracy, with parallel unary-pairwise attention mechanism (PUP)
performs the best, significantly better than the two sequential mechanism.

4.3 CamVid

In this subsection, we further validate our lightweight models on the CamVid
dataset. The results on test set are listed in Tab. 6. BPNet-S3 can achieve a mIoU
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Table 5. Investigation of pairwise attention, unary attention, and their combinations.

method mIoU ∆ mIoU

pyramid (baseline) 76.1 -
+pairwise 77.5 +1.4

+unary+pairwise (sequential) 77.8 +1.7
+pairwise+unary (sequential) 78.1 +2.0
+PUP (parallel unary-pairwise) 78.3 +2.2

Basenet +Bidirectional

+Unary-pairwise GT

Fig. 4. An visual example of using the proposed modules in the BPNet. The bidirec-
tional model significantly improves over the basenet, by removing wrong predictions on
the building (right side), and improving upon one of the three lamps (upper middle).
Adding attention, we see improvements over all three lamps with thin structures.

as high as 73.8. With a much smaller number of parameters (5.1M), BPNet-S3-
W32 can achieve higher inference speed with competitive accuracy.

Table 6. Semantic segmentation results on CamVid test. Flops computed on 720×960.

Dataset mIoU params FLOPs FPS

SegNet [40] 55.6 29.5 - 6.6∗

ICNet [24] 67.1 7.7 - 41.9∗

BiSeNet(Res18) [29] 68.7 13.4 34.5 -
BPNet-S3 73.8 11.8 56.9 34

BPNet-S3-W32 69.4 5.1 24.5 52

4.4 PASCAL Context

We keep the same data augmentation and learning rate policy in training are as
Cityscapes. We set the initial learning rate to 4e−3 and weight decay to 1e−4 [41,
42]. During inference, we follow the standard procedure as suggested in [41,
42]. The comparison of our method with state-of-the-art methods is presented
in Table 7. Our network performs competitively to previous state-of-the-arts
without tuning of the hyper-parameters (same to those used for Cityscapes).
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Table 7. Semantic segmentation results on PASCAL-context, evaluated on 59 classes.

Dataset backbone use pretraining mIoU (59 classes)

PSPNet [14] Dilated-ResNet-101 yes 47.8
UNet++ [5] ResNet-101 yes 47.7
EncNet [42] ResNet-152 yes 52.6

HRNetv2-W48 [33] - yes 54.0
BPNet-S4 - no 52.7

4.5 Medical Image Data: Prostate Segmentation

Without the need for pre-training, BPNet has the potential to be useful for do-
mains other than natural images. To show the versatility of BPNet, we conduct
additional experiments on the PROMISE12-challenge dataset [10], a popular
MRI segmentation benchmark. The detailed comparison is provided in supple-
mentary material due to page limit. Without specific adaptation, we can achieve
a high DSC (91.1) in average based on five-fold cross validation, surpassing many
existing 3D medical image segmentation algorithms with much less training and
inference time. BPNet is competitive with nnUNet, a state-of-the-art 3D con-
volution model with the highest reported accuracy, but is 45x more efficient.
These experimental results indicate that our models may find applications in
many domains that need semantic segmentation.

5 Conclusions

We have presented our bidirectional pyramid network for semantic segmentation.
Starting from scratch without standard backbones or pre-training, we designed
a family of semantic segmentation models with several simple and yet effective
components, i.e., pyramid network with top-down and bottom-up information
flow, to enhance information interaction between large-scale contexts and small-
scale details. We also propose a parallel unary-pairwise attention for context
aggregation to help with long-range dependency and thin structure. Competitive
results are produced on standard benchmarks and the proposed components are
validated to be effective. With efficiency, and without pre-training, we believe
our models have the potential to be used for many applications and have room
for further improvements.
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