
Road Obstacle Detection Method Based on an

Autoencoder with Semantic Segmentation

Toshiaki OHGUSHI, Kenji HORIGUCHI, and Masao YAMANAKA

TOYOTA MOTOR CORPORATION,
Otemachi, Chiyoda-ku, Tokyo, 100-0004, JAPAN

{toshiaki ohgushi, kenji horiguchi, masao yamanaka}@mail.toyota.co.jp

Abstract. Accurate detection of road obstacles is vital for ensuring safe
autonomous driving, particularly on highways. However, existing meth-
ods tend to perform poorly when analyzing road scenes with complex
backgrounds, because supervised approaches cannot detect unknown ob-
jects that are not included in the training dataset. Hence, in this study,
we propose a road obstacle detection method using an autoencoder with
semantic segmentation that was trained with only data from normal road
scenes. The proposed method requires only a color image captured by a
common in-vehicle camera as input. It then creates a resynthesized im-
age using an autoencoder consisting of a semantic image generator as the
encoder and a photographic image generator as the decoder. Extensive
experiments demonstrate that the performance of the proposed method
is comparable to that of existing methods, even without postprocessing.
The proposed method with postprocessing outperformed state-of-the-
art methods on the Lost and Found dataset. Further, in evaluations us-
ing our Highway Anomaly Dataset, which includes actual and synthetic
road obstacles, the proposed method significantly outperformed a super-
vised method that explicitly learns road obstacles. Thus, the proposed
machine-learning-based road obstacle detection method is a practical so-
lution that will advance the development of autonomous driving systems.

1 Introduction

In recent years, advanced driving support systems have been rapidly developed
to realize autonomous driving in the future. Human–machine interfaces linked
with these systems will be able to support safe, secure, and comfortable driving
by informing drivers about changes in the driving environment (e.g., due to
traffic congestion, weather, and road obstacles) detected by preceding vehicles
and passed on to subsequent vehicles.

According to a report by the Ministry of Land, Infrastructure, Transport,
and Tourism in Japan [1], approximately 340,000 road obstacles were identified
in 2018 (i.e., almost 1,000 road obstacles per day). Such obstacles regularly cause
severe accidents. Therefore, the automation of road obstacle detection as a social
system is urgently required because the detection and removing of these road
obstacles are performed manually at present.
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Several driving environment recognition methods have been proposed based
on this background. However, these methods are not suitable for vehicles already
on the market because they require special sensors, such as stereo cameras, LI-
DAR, and radar. Further, special sensors that can be used for autonomous driv-
ing are prohibitively expensive and require considerable power. In particular,
a machine-learning-based approach is a potential alternative to special-sensor-
based approaches. However, collecting a large amount of data required for su-
pervised learning is impractical as the colors, shapes, sizes, and textures of road
obstacles can vary substantially, as shown in Fig. 1. Thus, training a classifier
to robustly detect road obstacles (i.e., unknown objects) is almost impossible.

In this paper, we propose a road obstacle detection method based on an
autoencoder with semantic segmentation. The proposed method requires only a
color image captured by a common in-vehicle camera as input. From this image,
the method creates a resynthesized image using an autoencoder comprising a
semantic image generator [2] as the encoder and a photographic image generator
[3] as the decoder. The method then calculates the perceptual loss [3] between the
input and resynthesized images and multiplies it by the entropy for the semantic
image to generate an anomaly map. Finally, the method localizes road obstacles
in the image by applying postprocessing to the anomaly map. Specifically, we
sharpen the anomaly map by applying a standard technique for calculating the
visual saliency in an image [4][5].

Through extensive experiments, we demonstrate that the performance of
the proposed method is comparable with that of existing methods, even with-
out postprocessing. Moreover, the proposed method with postprocessing outper-
forms state-of-the-art methods on one of the largest publicly available datasets
[6]. Additionally, in our tests with the proposed highway dataset, which includes
imagery with actual road obstacles, we show that the proposed method pro-
vides significant advantages over a supervised method that explicitly learns road
obstacles using a semantic segmentation technique.

Fig. 1. Examples of road obstacles [7]. Although some obstacles are more common
than others (e.g., burst tire debris, road cones, plywood, square lumber, and scrap
iron), predicting exactly what might fall from a truck or a car on the road (e.g., a
soccer ball) is impossible.
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2 Previous Work

Early studies in the field of road obstacle detection in highway environments
strongly relied on stereo vision techniques. For example, Hancock [8] used laser
reflectance and stereo vision to detect small road obstacles at long distances.
Similarly, William et al. [9] used a multibaseline stereo technique to detect small
road obstacles (approximately 14 cm high) at a distance of over 100 m. Even
relatively recent research uses stereo cameras or the structure-from-motion tech-
nique to detect road obstacles. For instance, Subaru Eyesight [10] is a repre-
sentative stereo-vision-based system that robustly detects large road obstacles.
In addition, Mobileye [11] is a commercially available system that can robustly
detect large obstacles at close range using only a monocular camera. Further,
Tokudome et al. [12] developed a novel real-time environment recognition system
for autonomous driving using a LIDAR sensor.

However, these special-sensor-based approaches require a relatively clean
road environment to compute image warping and disparity with high accuracy.
In practice, vehicle vibrations render calibrating cameras with long focal lengths
highly difficult because two cameras can move independently. Further, it is dif-
ficult to obtain high accuracy when using off-the-shelf active sensors over long
distances. For example, a LIDAR system (e.g., Velodyne HDL-64E [13]) has a
vertical angular resolution of approximately 0.4◦. This implies that the maxi-
mum distance at which the system can detect only three consecutive points on a
small 20-cm-high vertical object is less than 15 m. Although special-sensor-based
approaches present several problems as described above, rich features can be ex-
tracted in the context of road obstacle detection, particularly when detecting
small road obstacles from long distances.

Unlike special-sensor-based approaches, machine-learning-based approaches
extract raw images using a common in-vehicle camera and convert the images
into rich features by applying advanced machine learning techniques such as
autoencoders [14][15], uncertainty-based approaches [16][17], and generative ad-
versarial networks (GANs) [18][19]. In autoencoder-based approaches [14][15],
small input patches are compared with the output from a shallow autoencoder
trained on road textures only. In principle, road patches from other patches can
be distinguished using these approaches. However, other patches include not only
road obstacles (i.e., anomaly objects) but also normal objects, such as vehicles,
traffic signs, and buildings. Therefore, these approaches yield a significant num-
ber of false positives. Uncertainty-based approaches [16][17] rely on the Bayesian
SegNet framework and incorporate an uncertainty threshold to detect potentially
mislabeled regions, including unknown objects. However, these approaches also
yield numerous false positives in irrelevant regions (i.e., boundary regions at
semantic labels, such as roads, vehicles, buildings, sky, and nature). In GAN-
based approaches [18], an image is passed through an adversarial autoencoder,
and then the feature loss between the output and input images is measured.
These methods can be used to classify entire images, but not to identify anoma-
lies within the images. Moreover, in GAN-based approaches [19], given a GAN
trained to represent an original distribution, an algorithm searches for the latent
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vector that yields the image that most closely matches the input. However, this
is computationally expensive and does not identify anomalies.

A considerably different approach [20] has proven as a promising alternative
to the existing techniques previously mentioned. This approach relies on the in-
tuition that a network will yield false labels in regions that contain unexpected
objects. Currently, this approach, hereinafter referred to as Resynth, obtains
state-of-the-art results when tested on one of the largest publicly available road
obstacle detection datasets [6]. Specifically, Resynth uses an existing semantic
segmentation algorithm, such as [16] or [21], to generate a semantic map. It then
passes this map to a generative network [22] that attempts to resynthesize an
input image. If the image contains objects belonging to a class that the segmen-
tation algorithm has not been trained to identify, then the corresponding pixels
are mislabeled in the semantic map and, therefore, poorly resynthesized. Finally,
Resynth identifies these unexpected objects by detecting significant differences
between the original and synthetic images. Specifically, this method introduces a
sophisticated neural network (i.e., a discrepancy network). It explicitly trains the
discrepancy network to identify meaningful differences in the context of detect-
ing unknown objects by replacing a few object instances with randomly selected
labels in the ground-truth semantic map.

However, when trained in a supervised manner, this approach tends to per-
form poorly on images with complex backgrounds because the network only
learns arbitrarily mislabeled semantic maps for normal objects instead of learn-
ing mislabeled semantic maps for unknown objects. Moreover, training the dis-
crepancy network is not straightforward because the training process is quite
difficult to perform in end-to-end manner.

3 Approach

Our basic idea is the same as that of [20]. However, our implementation is com-
pletely different from the existing method and rather reasonable. Specifically,
our implementation has three types of components, namely, an autoencoder, an
anomaly calculator, and a postprocessor, as shown in Fig. 2. First, the input
to the autoencoder consists of only a color image (a) captured by a common
in-vehicle camera. Subsequently, the autoencoder generates a semantic map (b)
by applying a semantic segmentation technique [2] and creates a resynthesized
image (c) using a photographic image synthesis technique [3]. Subsequently, the
anomaly calculator generates an anomaly map (f) by multiplying the perceptual
loss (d) and entropy (e) for the semantic map. Finally, the postprocessor outputs
an obstacle score map (h) by sharpening the anomaly map for each local region
(g). The details of these steps are described below.

3.1 Autoencoder

The autoencoder comprises modules for semantic segmentation and resynthe-
sized image generation, as shown in Fig. 2. The autoencoder generates a seman-
tic map and a resynthesized image and outputs them to the anomaly calculator
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Fig. 2. Schematic overview of our road obstacle detection system. (a) Input image,
(b) semantic map, (c) resynthesized image, (d) perceptual loss, (e) entropy map, (f)
anomaly map, (g) superpixels, and (h) obstacle score map.

and postprocessor. In particular, we apply a representative semantic segmen-
tation technique (ICNet [2]) to process the input image such that the module
segments the input image into 20 types of semantic labels (e.g., road, car, traffic
light, and traffic sign). Input images are obtained from Cityscapes, a publicly
available dataset of road scenes for assessing and training vision algorithms [23].
Here, we downscale the Cityscapes training dataset to a resolution of 1,280 × 640
pixels owing to GPU memory constraints. Then, under fixed semantic segmenta-
tion model parameters, we concatenate the semantic segmentation module and
resynthesized image generation module. Further, we apply an advanced resyn-
thesized image generation technique (cascaded refinement network[3]) to process
the semantic map; the module generates an image (i.e., the resynthesized im-
age) that is exactly the same as the input image from the Cityscapes dataset
[23]. Among the three types of components, only the autoencoder must learn the
model parameters.

In particular, our algorithm can improve the quality of resynthesized images
by employing a simple solution: connecting the decoder not to the output of
the last layer (i.e., the softmax layer), but to the output of the intermediate
layer (i.e., the convolution layer immediately before the softmax layer). Further,
this solution performs well without additional functions such as the instance
segmentation and instance level feature embedding required in Pix2PixHD [22].
Although Resynth trains the encoder and decoder completely separately owing
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to heavy memory usage, our algorithm can realize end-to-end learning and rapid
inference by concatenating light DNNs.

3.2 Anomaly calculator

The anomaly calculator comprises modules for entropy calculation and percep-
tual loss calculation, as shown in Fig. 2. The anomaly calculator generates an
anomaly map that comprises an anomaly score at each pixel in the input image
and then outputs this anomaly map to the postprocessor. Here, the following
assumptions can be made when estimating the semantic labels of an unknown
object: The semantic map contains ambiguity around the unknown object, and
the resynthesized image yields significant differences in appearance with respect
to the input image because of this ambiguity. Therefore, we calculate the entropy
for the semantic map to measure the ambiguity and calculate the perceptual loss
[3] to measure the differences in appearance. Finally, we define the product of
these measures as the anomaly score. Specifically, we define the entropy for the
semantic map as follows:

S = Ubl

(

−
∑

k

p(k) log(p(k))

)

. (1)

Here, p(k) is the probability of the k-th semantic label estimated using the se-
mantic segmentation technique [2] and Ubl is a bilinear-interpolation-based up-
converter that upconverts the resynthesized image to the same resolution as
the input image. Further, we define the perceptual loss between the input and
resynthesized images as follows:

L =

5
∑

l=1

Ubl

(

L(l)
)

, (2)

L(l) = ||Φ(l)(I)− Φ(l)(R)||1. (3)

Here, I and R are the input and resynthesized images, respectively. In ad-
dition, Φ(l) is the output from the l-th hidden layer of VGG19 [24]. Specifi-
cally, Φ(l)(l = 1, . . . , 5) are given by the outputs from conv1 2, conv2 2, conv3 2,
conv4 2, and conv5 2, as shown in Fig. 3. Thus, we obtain the output from each
hidden layer using VGG19 on the input and resynthesized images. Additionally,
we define the L1 norm between the output from the l-th hidden layer for the
input image and the output from the l-th hidden layer for the resynthesized im-
age as perceptual loss L(l), as shown in Eq. (3). Further, we calculate the total
perceptual loss L by adding perceptual loss L(l)(l = 1, . . . , 5) after adjusting
its resolution with upconverter Ubl, as shown in Eq. (2). Finally, we generate
anomaly map A by taking the element-wise product of perceptual loss L and
entropy S as follows:

A = L ⊙ S. (4)
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Fig. 3. Schematic overview of our perceptual loss calculation module. We apply VGG19
[24] to the input and resynthesized images. The blue circle comprises two functions.
The first function calculates the channel-wise L1 norm for the difference between the
output from the i-th hidden layer for the input image and the output from the i-th
hidden layer for the resynthesized image. The second function applies upconverter Ubl

to the map composed of the L1 norm values.

3.3 Postprocessor

The postprocessor consists of modules for obstacle score calculation and super-
pixel division, as shown in Fig. 2. Its aim is to generate an obstacle score map to
localize unknown objects in the input image. First, we use simple linear iterative
clustering to segment the input image into local regions referred to as super-
pixels [25]. We perform this because superpixels are less likely to cross object
boundaries, which leads to greater accuracy in segmentation of visually salient
regions. Then, we define the obstacle score in the i-th superpixel as follows:

Li = αi

∑

j

njpj exp

(

−
r2i,j

2w2

)

. (5)

where αi is the average value of the anomaly score in the i-th superpixel, nj is the
number of pixels in the j-th superpixel, pj is the average value of the probability
for the road label in the j-th superpixel, ri,j is the Euclidean distance between
the center position of the i-th superpixel and the center position of the j-th
superpixel, and w is the median of the Euclidean distances between the center
positions of every pair of superpixels. Finally, the regions in which Li exceeds
a predetermined threshold are identified as those containing an unknown object
(i.e., a road obstacle).

4 Experiments

Using two separate datasets, we evaluated the ability of our method to detect
road obstacles. We did not use any prior knowledge about road obstacles during
training because our focus is on finding unknown anomaly objects.
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Fig. 4. ROC curves and AUROC scores for the Lost and Found dataset [6]. Resynth
(PSPnet) depicts the results of the method reported in [20] using PSPnet [21] as the
semantic segmentation technique. Uncertainty (Ensemble) depicts the results of the
ensemble-based method reported in [17].

4.1 Lost and Found Dataset

First, we quantitatively evaluated our road obstacle detection method on a pub-
licly available dataset, “Lost and Found” [6]. Instead of using a bounding box
to mark the road obstacle region, accurate human-marked labels are provided
as the ground truth in this public dataset. We followed a general methodology
[20] to evaluate the accuracy of the detected road obstacle region. Specifically,
all evaluated methods output a pixel-wise anomaly score. We compared the re-
sulting maps with the ground-truth anomaly annotations using ROC curves and
the AUROC (area under the ROC curve) metric. We considered representa-
tive existing methods (Resynth [20], a restricted Boltzmann machine [15], and
an uncertainty-based method (Uncertainty) [17]) as baselines. Further, we eval-
uated our approach using obstacle score maps (i.e., with postprocessing) and
using only anomaly maps (i.e., without postprocessing).

The ROC curves and AUROC scores obtained using these methods are shown
in Fig. 4. The curves on the left were obtained by restricting the evaluation to the
road, as defined by the ground-truth annotations. Similarly, the curves on the
right were computed over the entire images, excluding the ego-vehicle regions
only. The performance of our approach without postprocessing is comparable
to that of Resynth [20] and superior to that of the other methods. Moreover,
our approach with postprocessing achieves the highest AUROC scores among all
methods. In particular, the road obstacle detection performance is substantially
improved by applying postprocessing, as shown in Fig. 4.

Figure 5 shows an example of maps generated for an image with a road
obstacle, which is captured primarily in the middle of the road (a). The semantic
segmentation module outputs false labels in the road obstacle region (b). Then,
the resynthesized image generation module obtains an image with significant
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Fig. 5. Example of maps generated for a synthetic image with a road obstacle. (a)
Input image, (b) semantic map, (c) resynthesized image, (d) anomaly map, and (e)
obstacle score map.

(a) (b) (c)

(d) (e)

Fig. 6. Example of maps generated for a synthetic image with multiple road obstacles.
(a) Input image, (b) semantic map, (c) resynthesized image, (d) anomaly map, and (e)
obstacle score map.

differences in appearance with respect to the road obstacle region in the input
image (c). Thus, the anomaly calculator generates relatively high anomaly scores
around the road obstacle (d). Finally, the road obstacle is highlighted by the
postprocessor, which enhances the anomaly score only around the road and
suppresses the anomaly score in other regions (e).

The yellow car parked sideways causes a misclassification during semantic
segmentation. Such misclassifications decrease the quality of resynthesized im-
ages as well, and these may lead to false positives in road obstacle detection.

Figure 6 shows an example of maps generated for an image that contains mul-
tiple obstacles (a). Although relatively small obstacles are captured, the anomaly
score accounts for them accurately (e). For this case as well as the above, we can
observe that misclassifications caused around obstacle regions (b); and it leads
to poor quality of resynthesis (c).
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ments.

Ablation experiment To investigate how each component contributes to anomaly
detection performance, ablation experiments were conducted. Fig. 7 shows the
ROC curve and AUC scores of model (a), which contains all modules shown
in Fig 2; model (b), from which the entropy calculation module has been re-
moved; and model (c), from which the perceptual loss calculation module has
been removed.

The results show that model (c) outperforms model (b). This could result
from the fact that perceptual loss tends to produce relatively more false nega-
tives(Fig. 8(b)), as perceptual loss responds to a corrupt portion of the resyn-
thesized image sensitively and produces blurred score maps owing to the lower
resolution of the latter layers of VGG (i.e., conv4 2, conv5 2). Meanwhile, the
entropy score calculated from semantic segmentation labels can catch the edges
of class boundaries. However, the entropy score tends to be high even in well-
resynthesized areas, and the perceptual loss score is low (e.g., the corner of the
building on the left in Fig. 8(c)).

By multiplying the perceptual loss map and entropy map, an improved
anomaly score that reflects the benefits of both maps can be acquired (Fig. 8(a)).
Actually, we can verify that the best AUC score is obtained when all components
are used.

4.2 Our Highway Anomaly Dataset

We quantitatively evaluated our road obstacle detection method in tests using
our highway anomaly dataset, which is shown in Fig. 9. The dataset is composed
of (a) a training dataset captured under normal highway driving conditions with-
out road obstacles, (b) a validation dataset, and (c) a test dataset; the latter
two datasets include actual and synthetic road obstacles, such as traffic cones
and objects falling from other vehicles. The respective datasets include approx-
imately 5000, 300, and 200 photo and segmentation ground truth image pairs.
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Fig. 9. Examples from our Highway Anomaly Dataset.
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Fig. 10. Example of maps generated for a synthetic image. (a) Input image, (b) se-
mantic map, (c) resynthesized image, (d) anomaly map, (e) obstacle score map, and
(f) detection result.

First, we trained our autoencoder with the Cityscapes dataset and fine-tuned
it using our training dataset. The validation dataset was then used for deter-
mining the threshold for detecting road obstacle areas. Finally, we evaluated the
performance using the test dataset and the threshold described above.

Figure 10 shows an example of maps generated for a synthetic image (a),
in which a warning sign can be observed. The semantic segmentation module
outputs false labels in the road obstacle region (b). Then, the resynthesized
image generation module obtains an image with significant differences in ap-
pearance with respect to the road obstacle region in the input image (c). Hence,
the anomaly calculator generates relatively high anomaly scores around the road
obstacle (d). Further, the postprocessor sharpens the anomaly score around the
road and suppresses the anomaly score in other regions, such as the boundaries
between the trees and sky in the distance (e). Finally, we identify the region
wherein the obstacle score L exceeds the predetermined threshold T as the road
obstacle (f). We determined the threshold T using 300 validation images (dif-
ferent from the abovementioned 200 test images) including actual and synthetic
road obstacles, such that the F-measure of the detected road obstacle regions
was maximized.



12 T. OHGUSHI et al.

(a) (b)

(c) (d)

Fig. 11. Example of maps generated for an image without road obstacles. (a) Input
image, (b) anomaly map, (c) obstacle score map, and (d) detection result.

(a) (b)

(c) (d)

Fig. 12. Example of maps generated for an image containing small road obstacles. (a)
Input image, (b) anomaly map, (c) obstacle score map, and (d) detection result.

(a) (b)

(c) (d)

Fig. 13. Example of maps generated for an image containing large road obstacles. (a)
Input image, (b) anomaly map, (c) obstacle score map, and (d) detection result.
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Table 1. Performance comparison.

Evaluation Metric

w/ explicit learning w/o explicit learning

ICNet GAN Resynth
Ours

w/o post- w/ post-
processing processing

mean F-measure 0.142 0.103 0.231 0.300

global F-measure 0.197 0.040 0.333 0.452

mean IoU 0.092 0.063 0.154 0.219

global IoU 0.109 0.020 0.200 0.292

Figure 11 shows an example of maps generated for an image without road
obstacles, which can be observed as a normal driving environment on the high-
way (a). The anomaly map has relatively high scores around the boundaries
between the trees and road in the input image (b). However, the anomaly scores
are suppressed by the postprocessing of the anomaly map (c). Consequently, our
approach succeeds in obtaining the true negative as an entire image by thresh-
olding the obstacle score map (d). Our approach yields almost no false positives
in normal driving environments, such as that shown in (a).

Figure 12 shows an example of maps generated for an image containing road
obstacles, which are warning signs that are temporarily arranged at equal inter-
vals on the road (a). The anomaly map can detect extremely small road obstacles
in the distance (b). Further, even if the anomaly scores are suppressed by apply-
ing postprocessing for the anomaly map (c), our approach succeeds in detecting
small road obstacles at a distance (d).

Figure 13 shows an example of maps generated for an image containing large
road obstacles; in this case, the obstacles are sections of a large emergency vehicle
temporarily parked on the roadside (a). The emergency vehicle in the image
consists of a truck, a lift attached to a base, and a warning sign attached to the
truck. The truck should be recognized as a normal object, whereas the lift and
warning sign should be detected as anomalies (i.e., road obstacles). The anomaly
map succeeds in obtaining relatively high scores around the lift and warning
sign (b). However, the anomaly scores for the warning sign are suppressed by
the postprocessing of the anomaly map (c). Therefore, our approach fails to
discriminate the warning sign from the road, although it succeeds in detecting
the lift close to the road (d). In principle, it is quite difficult for our approach to
detect road obstacles that are not on roads.

Finally, we compared the performance of four different approaches: ICNet [2],
Resynth [20], our approach with postprocessing, and our approach without post-
processing. Specifically, we explicitly trained the ICNet to learn road obstacles
using the above validation images. Table 1 compares the performance of these
four approaches. Our approach outperforms ICNet [2] and Resynth [20], even
without postprocessing, as shown in Table 1. Here, the mean F-measure is the
average of the F-measures calculated for each test image, the global F-measure
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indicates the F-measure calculated using all test images, the mean Intersection-
over-Union (IoU) indicates the average value of the IoUs calculated for each test
image, and the global IoU indicates the IoU calculated using all test images.

The processing time required for creating an obstacle score map composed
of 1,280 × 640 pixel images was approximately 1 s when using a Tesla V100
equipped with 16.0 GB RAM. Regarding the processing time for each compo-
nent in our system, the autoencoder required 72.5 [ms] (13.8 fps), the anomaly
calculator required 1,053 ms (0.95 fps), and the postprocessor required 667 ms
(1.5 fps). This observation indicates that the computation time should be im-
proved, particularly for the anomaly calculator. This remains an issue for further
research.

5 Conclusion

In this study, we proposed a road obstacle detection method based on an autoen-
coder with semantic segmentation. The proposed method is purely unsupervised;
therefore, it does not require any prior knowledge of road obstacles. In particular,
the method requires only a color image captured by a common in-vehicle camera
as input. The method creates a resynthesized image using an autoencoder com-
posed of a semantic image generator as the encoder and a photographic image
generator as the decoder.

Subsequently, the method calculates the perceptual loss between the input
and resynthesized images and multiplies the perceptual loss by the entropy for
the semantic image to generate an anomaly map. Finally, the method localizes
a road obstacle in the image by applying visual-saliency-based postprocessing to
the anomaly map.

In particular, the method can improve the quality of resynthesized images by
employing a simple solution: connecting the decoder not to the output of the last
layer (i.e., the softmax layer) but to the output of the intermediate layer (i.e., the
convolution layer immediately before the softmax layer). Moreover, this solution
performs well without additional functions, such as instance segmentation or
instance level feature embedding. Although the existing method must train the
encoder and decoder completely separately owing to heavy memory usage, it can
realize end-to-end learning and rapid inference by concatenating light DNNs.

Through extensive experiments, we demonstrated that the performance of
the proposed method is comparable to that of existing methods, even without
postprocessing. Additionally, the proposed method with postprocessing outper-
forms state-of-the-art methods on one of the largest publicly available datasets.
Further, in evaluations using our Highway Anomaly Dataset containing actual
and synthetic road obstacles, the proposed method significantly outperformed
a supervised method that explicitly learns road obstacles using a semantic seg-
mentation technique. This unsupervised machine-learning-based road obstacle
detection method is a practical solution that will advance the development of
autonomous driving systems.
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