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Abstract. Visual-based 3D detection is drawing a lot of attention re-
cently. Despite the best efforts from the computer vision researchers
visual-based 3D detection remains a largely unsolved problem. This is
primarily due to the lack of accurate depth perception provided by Li-
DAR sensors. Previous works struggle to fuse 3D spatial information and
the RGB image effectively. In this paper, we propose a novel monocular
3D detection framework to address this problem. Specifically, we pro-
pose to primary contributions: (i) We design an Adaptive Depth-guided

Instance Normalization layer to leverage depth features to guide RGB
features for high quality estimation of 3D properties. (ii) We introduce a
Dynamic Depth Transformation module to better recover accurate depth
according to semantic context learning and thus facilitate the removal of
depth ambiguities that exist in the RGB image. Experiments show that
our approach achieves state-of-the-art on KITTI 3D detection bench-
mark among current monocular 3D detection works.

Keywords: 3D object detection, Monocular

1 Introduction

3D object detection from images plays an essential role in self-driving cars and
robotics. Powered by the effective deep point clouds processing techniques [1,
2], recent LiDAR-based 3D detectors [3–8] have achieved superior performance
through exploiting accurate depth information scanned by sensors. However, Li-
DAR is too expensive for some low cost scenarios and has a limited perception
range, i.e., usually less than 100m. On the other hand, 3D from 2D is a fun-
damentally ill-posed problem, and estimating 3D bounding boxes from images
remains a challenging task, due to the difficulty in drawing missing spatial in-
formation in 2D images. In spite of this, recent image-based 3D detectors have
made some progress with the help of carefully designed network architectures.
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(U62076067) , Science and Technology Commission of Shanghai Municipality
Projects (19511120700, 19ZR1471800).
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Fig. 1. We propose a novel monocular 3D detection approach. Pseudo-LidAR point
cloud-based methods, i.e., Pseudo-LidAR [19], rely much on the quality of depth map
(DORN [23]) and our methods fuse depth information and color context for more
accurate object 3D properties. Our approach also handle occlusion issue well. (As shown
in zoomed in region, where Pseudo-LidAR is affected by serious occlusion problem.)

However, there still exists a huge performance gap between them and LiDAR-
based approaches due to the ambiguities of 2D color images. Thus, predicted
depth maps are introduced to help resolve context vagueness.

Some early monocular image 3D detection approaches [9–11] either utilize ad-
ditional input features for more context information such as instance/semantic
segmentation [12–18] or directly regress the 3D bounding boxes by 2D convolu-
tional layers. However, it is still hard for them to recover 3D from 2D inputs,
which leads to relatively poor results. Recent work [19, 20] transfers the gener-
ated depth map into point clouds, and show that the depth data representation
matters in the 3D detection task. However, they are sensitive to input depth
quality and the procedure is complex as a result of point clouds processing, e.g.,
segmenting an object’s point cloud from its surroundings.

The dense disparity (inverse of depth) map could be inferred by stereo match-
ing equipped with convolutional neural networks, which motivates some stereo-
based 3D detection works [21, 22]. However, their accuracy still falls behind
LiDAR-methods and camera calibration is also needed, i.e., stereo cameras must
be maintained at the same horizontal level. Therefore, monocular methods [19,
20, 9–11] fit in more various scenarios where stereo is not available or practical.

In this paper, we propose a novel image-based 3D detection framework, aim-
ing to address the following key issues in monocular 3D detection field: (1) Inef-
ficient utilization for generated depth maps. For methods [19, 20] using pseudo-
LiDAR point clouds, they rely heavily on the accuracy of depth maps. More-
over, depth maps generated from state-of-the-art deep networks still tend to be
blurry on the objects boundary and thus re-projected point clouds are noisy,
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which makes results sensitive. (2) Inaccurate spatial location estimation for oc-
cluded objects. Occlusion happens in typical autonomous driving scenes, and
these cases affect detector performance greatly because it is difficult for tradi-
tional 2D convolution to capture correct depth information of occluded objects.
To solve these aforementioned problems, we propose two effective modules re-
spectively for each of the issues as shown in figure 1. Specifically, we first propose
an Adaptive Depth-guided Instance Normalization (AdaDIN) layer to fuse depth
features and color features in a more effective way, where the depth features are
utilized as an adaptive guidance to normalize color features to recover hidden
depth message from the 2D color map. Secondly, we design a novel Dynamic
Depth Transformation (DDT) module to address the object occlusion problem,
in which we sample and transfer depth values dynamically from tje depth map
in the target objects’ region by using deformable kernels generated over fused
features.

To summarize, this works makes the following contributions:

– We propose an AdaDIN layer, where color features are adaptively normalized
by depth feature to recover 3D spatial information.

– We design a novel Dynamic Depth transformation module to sample depth
value from target region to determine object spatial location properly.

– Evaluation on KITTI datasets [24] shows that our proposed method achieves
the state-of-the-art among all monocular approaches on 3D detection and
Bird’s eye view detection.

2 Related work

For 3D objects detection task, the methods could be grouped into two classes:
LiDAR-based and image-based. Here we briefly review relevant works.
Image-based 3D object detection. For lack of accurate depth information,
3D object detectors using only monocular/stereo image data is generally worse
than those using LiDAR data. For monocular input, early works [9, 10] take a
strategy of aligning 2D-3D bounding boxes, predicting 3D proposals based on the
2D detection results and additional features extracted from segmentation, shape,
context and location. Since the image-based 3D detection is an ill-posed problem,
more recent works [25–27] utilize objects prior like objects shape and geometry
constraints to predict the results. GS3D [25] generates refined detection results
by an estimated coarse basic cuboid from 2D results. M3D-RPN[26] is a one stage
detector, where a depth-aware convolutional layer is designed to learn features
related to depth. In contrast, our approach adopt a depth map estimated from
monocular as well as color image to fully utilize depth information for better
results.

As for stereo, there are a small number of arts compared with monocular
so far. 3DOP [21] generates 3D box proposals by exploiting object size priors,
ground plane and a variety of depth informed features (e.g., point cloud density).
Finally they combine a CNN to score the proposal boxes. Stereo R-CNN [22]
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first estimates 2D bounding box and key-point information and solves the 3D
boxes by optimizing a group of geometry constraints equations.

Nevertheless, the traditional 2D convolution does not have enough capabil-
ity to resolve the 3D spatial message from 2D features, and there is no effective
signal transformation ways from depth to color image, which limits the 3D de-
tection performance. Pseudo-LiDAR [19] brings another important option to
imaged-based detectors, in which the generated depth map from monocular are
re-projected into point clouds and then existing LiDAR-based approaches are
applied to point clouds data for 3D results. AM3D [20] further aggregates RGB
information into re-projected point clouds for a higher performance. However,
point clouds-based methods are sensitive to the quality of input depth maps. In
contrast, we normalize color features with depth features, which helps 3D spatial
information transfer from depth to color.
LiDAR-based 3D object detection. Most of state-of-the-art 3D object de-
tection methods use LiDAR data. VoxelNet [3] learns a feature representation
from point clouds and predict the results. The general point clouds processing
architectures [1, 2] provide the basic tools for LiDAR-based approaches [4, 5] to
generate accurate 3D proposals. However, the high price device and large space
consumption limit LiDAR-based methods in many scenarios. In this paper, our
proposed method takes easily available monocular image and depth map esti-
mated from the same color image as input to produce superior 3D detection
results.

3 Methodology

We describe our proposed one-stage monocular 3D detection method in this
section. Compared with two-stage approach [20] that also takes the monocular
input and depth map as input, our method facilitates a simplified detection pro-
cedure while also achieving a higher performance. We first introduce our overall
framework, and then we give the details of each key module of our approach.

3.1 Approach overview

The overall framework of our approach is shown in figure 2. The network mainly
consists of these modules: image and depth feature extractors, Adaptive Depth-
guide instance normalization, Dynamic Depth transformation and 3D detection
heads. Our network takes monocular RGB image I ∈ R

H×W×3 and the corre-
sponding generated depth map D ∈ R

H×W×1 as input, then extracts the features
of both depth map and image, and the depth map feature is utilized to guide
feature representation of RGB image by our Depth-guide instance normalization
module, which could effectively transfer the depth message to the color feature
for accurate 3D bounding box estimation. Afterwards, the depth map is further
transformed by our Dynamic Depth transformation to solve occlusion issue which
often occurs in autonomous scenes. Our network outputs are generated from 5
main independent heads (shown in figure 2) and 2 center point offsets heads,
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Fig. 2. Overall framework of proposed approach. The color image and the depth map
are feed into two feature extractor, and then AdaDIN layer is applied to fuse depth
information into color context feature. Multi-heads are attached for 3D bounding box
estimation with the help of DDF which address occlusion issue effectively. Note that
for simplicity, we omit the two offsets heads (2D center offset and 2D-3D offset) in
above figure. The numbers below the multiple heads names are channels of each head.

and each main head stands for a property of 3D bounding box, e.g., dimension,
location, rotation, object center position and its depth. During testing, we parse
all the outputs of multiple heads to obtain the final 3D objects bounding boxes
as described in section 3.4.

3.2 Adaptive depth-guided instance normalization

In this section, we introduce our Adaptive Depth-guided Instance Normalization
(AdaDIN).

AdaDIN layer is designed to normalize color features by exploiting depth
map features. Due to the lack of depth information, it is hard for color feature to
estimate 3D properties of objects (i.e., 3D dimension and depth), and how to fuse
depth information from depth feature into color features effectively is a key issue
for monocular 3D detection. In this work, inspired by [28, 29], we normalize the
color feature across the spatial dimensions independently for each channel and
instance, then the normalized feature is modulated with learned scale γ and bias
β generated from the depth feature. Specifically, assume that F i

I ∈ R
C′

×H′
×W ′

is the extracted feature for image i, where H ′ = H/4,W ′ = W/4 is feature
size, C ′ is number of feature channel, and note that we omit the mini-batch
size for simplicity. F i

D is the corresponding depth map feature with the same
shape of F i

I . Then we apply the following normalization (j ∈ {1, . . . , H ′}, k ∈
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Fig. 3. Adaptive Depth-guided Instance Normalization. The feature from depth map
are applied to generate channel-wise affine parameters γ and β for color feature after
instance normalization. We first apply a Global Average Pooling to the depth fea-
ture, then two independent fully connection layers are utilized to generate two affine
parameters for every RGB channel.

{1, . . . ,W ′}, c ∈ {1, . . . , C ′}, f i
c,j,k ∈ F i

I , ):

µi
c =

1

H ′ ×W ′

∑

j,k

f i
c,j,k (1)

σi
c =

√

1

H ′ ×W ′

∑

j,k

(

f i
c,j,k − µi

c

)2

+ ǫ (2)

AdaDIN(f i
c,j,k,F

i
D) = γc(F

i
D)

(

fc,j,k − µi
c

σi
c

)

+ βc(F
i
D) (3)

Where affine parameters γ, β are generated from depth map feature F i
D. As

shown in figure 3, the depth map feature is fed into two fully connection lay-
ers after a Global Average Pooling (GAP), and the outputs of these two fully
connections layers are applied to as affine parameters γ and β for color feature,
respectively.

3.3 Dynamic depth transformation

Another crucial module of our proposed approach is Dynamic Depth Transfor-
mation (DDT). The depth value (Z−coordinate in camera coordinate system,
in meters) estimation of 3D object is challenging for image-based 3D detectors.
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Fig. 4. The intuitive explanation for DDT. When the target object (the car behind)
is occluded, we hope to perceive depth value of its center position (red cross) from
unoccluded region.

The difficulty lies in the domain gap between 2D RGB context and 3D spatial
location. Our AdaDIN module effectively transforms the spatial message from
depth map to RGB feature for learning more accurate 3D spatial properties, i.e.,
3D object dimension and rotation. Furthermore, to determine the exact depth
value of a 3D bounding box, we design a novel Dynamic Depth Transformation
module.

To fully utilize the depth map which is the most explicit representation of
3D data to estimate the depth value of a target object, we first learn to generate
a depth residual map by a head branch attached to the image features, then we
sum this estimated depth residual and the input depth map together. To obtain
the depth of 3D bounding box center, we select the depth value in summed
map indexed by the corresponding object location. The intuition behind this
summation is that, when we have the relatively accurate dense depth map that
stands for the depth values of object surface, we only need to an additional
“depth residual” from the surface of objects to their 3D bounding box centers.
However, in real world scenes, objects like cars are often occluded by another one,
and this means that the depth value of the target center point is inaccurately
represented by the one who occludes it, which makes it hard to learn an accurate
depth residual and would harm the performance of center depth estimation, see
figure 4.

To address this problem, we propose a Dynamic Depth Transformation mod-
ule, which can dynamically sample and transfer the proper depth values for the
target object from surrounding positions who are not occluded, see figure 5.
Inspired by the [30], we learn a group dynamic offsets conditional on the local
input to help a sampling kernel grasp proper depth values.

To start with simple case, for a non-dynamic uniform sampling, we apply a
regular grid R over the dense depth map D = {d(p)}, where p is 2D index of
depth map, for example,

R = {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)} (4)

is a 3× 3 sampling kernel with dilation 1. We can get the estimated depth value
d̂(p0) by this uniform kernel at the position p0:

d̂ (p0) =
∑

pn∈R

w (pn) · d (p0 + pn) (5)
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Fig. 5. Dynamic Depth Transformation (DDT). The fused color feature generates off-
sets for the kernel at every local position and input depth map sample.

where w are learnable weights shared by all position p0.
We can further augment this regular grid R with offsets {∆pn}:

d̂ (p0) =
∑

pn∈R

w (pn) · d (p0 + pn +∆pn) (6)

∆pn is dynamically generated conditional on specific sample and local context,
which enable network to avoid incorrect depth value in occluded region. The
final estimated depth value dobj(p0) of object 3D bounding box center is:

dobj (p0) = d̂ (p0) + dres (p0) (7)

where dres is estimated depth residual from a 1-channel head. Different from [30],
in which the dynamic offsets are obtained by a convolutional layer over the same
input feature map, instead, our offsets are estimated over the final RGB features
by an attached head. After fusing with depth information by our AdaDIN layers,
the final RGB features provide more sufficient local semantic content as well as
spatial depth information than raw depth map for obtaining kernel offsets when
encountering occlusion.

Note that the offsets of a single location need K ×K × 2 scalars, where K is
the size of sample kernel, hence our dynamic offsets head makes a 2K2-channel
offsets prediction (18 for K = 3).

3.4 3D bounding box estimation

To estimate 3D objects bounding boxes, we need the following properties: lo-
cations, dimensions and orientation. Locations is determined by the depth and
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projected 3D location in image plane; Dimensions is the size of bounding boxes
(height, width and length); Orientation is the rotation angle of bounding box
around y−axis (perpendicular to ground). Therefore, we attach multiple heads
to the feature extractors to produce a group of 3D predictions, see figure 2.
Specifically, in addition to the object distance D ∈ R

H′
×W ′

×1 and depth trans-
formation offset Odepth ∈ R

H′
×W ′

×18, which have been discussed in section 3.3,

the complete model produce a objects 2D center heat-map H ∈ R
H′

×W ′
×C ,

2D center offset O2D ∈ R
H′

×W ′
×2, 2D-3D offsets O2D−3D ∈ R

H′
×W ′

×2, ob-
jects dimensions S ∈ R

H′
×W ′

×3 and objects rotations R ∈ R
H′

×W ′
×8, where

H ′ = H/4,W ′ = W/4 are the size of output feature and C is the number of ob-
jects classes. Next we explain these predictions and corresponding loss objective
one by one.

Firstly, to determine the position of object i that belongs to class c (c =
1, · · · , C) in the image plane, we regard 2D centers (xc

i , y
c
i ) of objects as key-

points and solve these key-points through estimating a C-channel heat-map H,
similar to human pose estimation [31–33]. The 2D center offset O2D is predicted
to recover the discretization error caused by the output stride of feature extractor
networks. It’s worth noting that the 2D center and the projected 3D center on the
image plane is not necessarily the same point, i.e., there is an offset from object
2D center to its corresponding projected 3D center, therefore, another output
head is desired to predict this offset O2D−3D. In particular, the projected 3D
center may not lie in the actual image (i.e., for objects which partially missed
lying on the edge of image), and our offset O2D−3D could lead to the correct
out-of-image 3D center. All classes share the same offsets O2D and O2D−3D. For
an object i, our final prediction of projected 3D center on the image plane is
obtained by:

(x̂c
i , ŷ

c
i ) = (intx̂

c
i + ôxi + ô′

x

i ,int ŷ
c
i + ôyi + ô′

y

i ) (8)

where (intx̂
c
i ,int ŷ

c
i ) is integer image coordinate generated from heat-map H,

(ôxi , ô
y
i ) is the estimated 2D offset obtained from O2D and (ô′

x

i , ô
′
y

i ) is 2D-3D
offset obtained from O2D−3D.

Note that the above object 3D center coordinate is represented on the 2D
image plane, to lift it to the 3D space, we can simply re-project the center point to
the 3D space by its depth Zi (obtained from our dynamic depth transformation
module) and camera intrinsics which is assumed known from the datasets:

Zi · [xi, yi, 1]
⊤
= K · [Xi, Yi, Zi, 1]

⊤
(9)

where K ∈ R
3×4 is camera intrinsics assumed to be known as in [33, 20],

[xi, yi, 1]
⊤ and [Xi, Yi, Zi, 1]

⊤ are homogeneous coordinates of 3D object cen-
ter in 2D image plane and 3D space, respectively.

In addition to 3D coordinate of object center, we still need the orientation
and object dimension to get the exact 3D bounding boxes. For orientation α,
we actually estimate the viewpoint angle, which is more intuitive for humans.
Since it is not easy to regress a single orientation value directly, we encode it
into 8 scalars lying in 2 bins, with 4 scalars for each bin and then apply a in-bin
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regression, like [10]. Our orientation head thus outputs a 8-channel prediction
R. For object dimension, we regress the height, width and length (hi, wi, li) for
each object with a 3-channel head prediction S.
Loss objective. Our overall loss is

L = LH + LO,2D + LO,3D−2D + Ldepth + Ldim + Lrotation (10)

For simplicity, we omit the weighting factors for each loss term. Where heat-
map loss LH is a penalty-reduced pixel-wise logistic regression with focal loss,
following [33, 34] Lrotation is orientation regression loss. 2D offset loss LO,2D, 3D-
2D offset loss LO,3D−2D, object depth loss Ldepth and object dimension loss Ldim

are defined as L1-loss (Ldim is in meters and LO,3D−2D,LO,2D are in pixels):

LO,2D = 1

N

∑N

i=1
(oxi − ôxi ) + (oyi − ôyi )

LO,3D−2D = 1

N

∑N

i=1
(o′

x
i − ô′

x

i ) + (o′
y
i − ô′

y

i )

Ldepth = 1

N

∑N

i=1
(di − d̂i)

Ldim = 1

N

∑N

i=1
(hi − ĥi) + (wi − ŵi) + (li − l̂i)

(11)

where (oxi , o
y
i ), (o

′x
i , o

′y
i ) is ground truth 2D offset and 3D-2D offset of object i,

ĥi, ŵi, l̂i are estimated size of object i and N is the number of objects.

3.5 Feature extraction

In principle, any deep network is suitable for our feature extractor. In our ex-
periments, we adopt Deep Layer Aggregation [35] (DLA-34) architecture as our
image and depth feature extractors because DLA balances speed and accuracy
well. Original DLA network is designed for image classification task with hi-
erarchical skip connections and we adapt it to our 3D detection framework.
Inspired by [33], we adopt a fully convolutional upsampling version of DLA-34
with network stride of 4, and the 3× 3 deformable convolution [30] is applied at
upsampling layers to replace normal convolution. We have two similar feature
extraction networks for RGB image and depth map respectively, and the image
and depth map share the same input size H × W × 3. Note that we tile the
original 1-channel depth map three times to form a 3-channel input. The size of
output feature is H/4×W/4× 64.

After RGB image and depth map are fed into two DLA-34 feature extractors
separately, the feature of depth map is utilized as a guidance for image feature
through fusing 3D spatial message from depth map by our Adaptive Depth-
guided instance normalization module, which is introduced in section 3.2.

3.6 Implementation details

Our proposed approach is implemented in PyTorch framework and takes about
12 hours to train on 2 NIVIDIA TITAN X GPUs for KITTI. We train our
networks for 70 epochs with batch size of 14. For input, we normalize each RGB
channel of color image with means and standard deviations calculated over all
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Fig. 6. Qualitative results of our 3D detection results on KITTI. Bounding boxes from
different class are drawn in different color.

training data. The input depth maps are inferenced by DORN [23], and are tiled
into 3-channel images before fed into feature extractor. The input depth are also
normalized with depth mean and standard deviation. When training, encoder
of our feature extractor is initialized with ImageNet pretrained weights, and the
Adam optimizer is applied with β = [0.9, 0.999]. Learning rate is initialized with
1.25e-4 and decays at epoch 45 and 60 with 0.1×. All loss weighting factors
are set to 1. When testing, we apply non-maximal suppression (NMS) on center
point heat-map with the threshold of 0.2.
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Table 1. Bird’s eye view and 3D detection results: Average Precision (in %) of bird’s
eye view boxes and 3D bounding boxes on KITTI validation set at IoU ≥ 0.5. In Data
column, M means only taking monocular image as input; M+D means taking both
monocular image and generated depth map as input.

Method Data
APBEV AP3D

easy moderate hard easy moderate hard

Mono3D [9] M 30.50 22.39 19.16 25.19 18.20 15.52
Deep3DBox [10] M 30.02 23.77 18.83 27.04 20.55 15.88
Monogrnet[36] M 54.21 39.69 33.06 50.51 36.97 30.82
Multi-Fusion [11] M 55.02 36.73 31.27 47.88 29.48 26.44
M3D-RPN [26] M 55.37 42.49 35.29 48.96 39.57 33.01
Ours M 56.8 42.3 35.9 51.60 38.9 33.7

Pseudo-LiDAR [19] M+D 70.8 49.4 42.7 66.30 42.30 38.50
AM3D [20] M+D 72.64 51.82 44.21 68.86 49.19 42.24
Ours M+D 71.35 53.54 45.74 67.01 49.77 43.09

4 Experiments

Datasets. We evaluate our approach on the widely used KITTI 3D detection
benchmark [24]. The KITTI datasets contains 7,481 RGB images sampled from
different scenes with corresponding 3D objects annotations and LiDAR data for
training and 7,518 for testing. The calibration parameters are also provided for
each frame and the objects are labeled into three classes for evaluation: Car,
Pedestrian and Cyclist. To compare with previous works, we split out 3,769
images for validation and remaining 3,712 for training our networks, following
[21]. Samples from the same sequence are avoided being included in both training
and validation set.
Evaluation metric. For KITTI, average precision (AP) calculated from precision-
recall curves of two tasks are evaluated in our experiments: Bird’s Eye View
(BEV) and 3D Object Detection. According to the occlusion/truncation and
the size of an object in the 2D image, the evaluation has three difficulty setting
of easy, moderate and hard under IoU ≥ 0.5 or 0.7 per class. We show the major
results on Car to compare with previous works.

4.1 Results on KITTI

We conduct our experiments on KITTI split [21]. The results on KITTI valida-
tion set are shown in table 1 and table 2(IoU ≥ 0.5 and IoU ≥ 0.7, respectively).
We only list the monocular image-based methods here for fair comparison. For
our model without depth map input, we just remove our DDT (Dynamic Depth
transformation) module and replace Adaptive Depth-guided Instance Normal-
ization (AdaDIN) layer with normal Instance Normalization. Then our results
still outperforms all approaches who take only single image as input under easy
and hard difficulty, and we also show a close accuracy with M3D-RPN [26] under
moderate difficulty.
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For our full model, we achieve state-of-the-art among all methods under
moderate and hard difficulty at IoU ≥ 0.5, and also performs closely with AM3D
[20]. For results at IoU ≥ 0.7, we can observe that comparing with previous
works, our method improves the performance by a large margin from table 2.
Some qualitative examples are shown in figure 6. We also report our full model
results on KITTI test set at IoU ≥ 0.7 in fugure 3, showing superior performance
to previous works.

Table 2. Bird’s eye view and 3D detection results: Average Precision (in %) of bird’s
eye view boxes and 3D bounding boxes on KITTI validation set at IoU ≥ 0.7

Method
APBEV AP3D

easy moderate hard easy moderate hard

MonoDIS [37] 18.45 12.58 10.66 11.06 7.60 6.37
M3D-RPN [26] 20.85 15.62 11.88 14.53 11.07 8.65
Ki3D [38] 27.83 19.72 15.10 19.76 14.10 10.47
Ours 34.97 26.01 21.78 23.12 17.10 14.29

Table 3. Evaluation results on KITTI test set at IoU ≥ 0.7.

Method
APBEV AP3D

easy moderate hard easy moderate hard

FQNet [39] 5.40 3.23 2.46 2.77 1.51 1.01

ROI-10D [27] 9.78 4.91 3.74 4.32 2.02 1.46

GS3D [25] 8.41 6.08 4.94 4.47 2.90 2.47

MonoPSR [40] 18.33 12.58 9.91 10.76 7.25 5.85

Ours 18.71 13.03 11.02 11.52 8.26 6.97

4.2 Ablation study

We conduct our ablation study and experiment analysis on KITTI split [21]
on Car class. We adopt moderate setting on Bird’s eye view detection and 3D
detection task to show our analysis results.
Adaptive depth-guided instance normalization. AdaDIN is designed to
adaptively transfer spatial depth information to the color context feature. We
compare three versions of our methods to verify its effectiveness: (1). Base

model. The baseline model of our approach, where the AdaDIN and DDT are
removed. (2). Base+AdaDIN. Our baseline model with AdaDIN layer, and
this model needs generated monocular depth map as input for AdaDIN layer.
From table 4, we can observe that our AdaDIN greatly increases the performance
of 3D detection performance thanks to the information transferred from depth
feature.
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Table 4. Comparisons of models with each component. The validation results on
KITTI 3D detection results are shown.

Method easy moderate hard

Base 51.6 38.9 33.7
Base+DDT 59.53 44.30 40.82
Base+AdaDIN 62.37 45.08 37.61
Full model 67.01 49.77 43.09

Table 5. Comparison of our dynamic offsets generation strategy and deformable con-
volution.

Method easy moderate hard

Deformable [30] 33.34 27.58 23.49
Ours 67.01 49.77 43.09

Dynamic depth transformation. Our Dynamic depth transformation (DDT)
module is able to address occlusion issue in very common urban scenes. From
table 4, we can see that DDT also shows improvements for 3D detection.

Offsets in DDT module. As elaborated in section 3.3, to tackle occlusion
problem, we apply a dynamic offset to a uniform sampling kernel for recovering
correct object depth. Different to Deformable Convolution [30], our kernel offsets
are generated from image feature and then apply to another source input – raw
depth map. We compare these two strategies and show the result in table 5.

We can observe from table 5 that our offset generation strategy outperforms
Deformable convolution with a large margin. The reason is that our RGB normal-
ized feature affined with parameters generated from depth map feature contains
not only high level color context but also 3D depth information. On the other
hand, very limited information could be exacted by a few convolution layers from
raw depth map. Therefore, more accurate local depth offset could be estimated
by our approach.

5 Conclusion

In this paper, we proposed a novel monocular 3D detection approach. One of our
key components is Adaptive Depth-guided Instance Normalization, which could
effectively fuse 3D spatial information obtained from depth map features with
the color context message from RGB features for accurate 3D detection. Another
crucial module is Dynamic Depth transformation, which is helpful when the
detector encounters occlusions. Extensive experiments show our method achieves
state-of-the-art performance on the KITTI 3D detection benchmark among other
monocular image-based methods.
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