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Abstract. We design a deep learning framework that generates land-
scape images that match a given emotion. We are working on a more
challenging approach to generate landscape scenes that do not have main
objects making it easier to recognize the emotion. To solve this problem,
deep networks based on generative adversarial networks are proposed.
A new residual unit called emotional residual unit (ERU) is proposed
to better reflect the emotion on training. An affective feature matching
loss (AFM-loss) optimized for the emotional image generation is also
proposed. This approach produced better images according to the given
emotions. To demonstrate performance of the proposed model, a set of
experiments including user studies was conducted. The results reveal a
higher preference in the new model than the previous ones, demonstrat-
ing the production of images suitable for the given emotions. Ablation
studies demonstrate that the ERU and AFM-loss enhanced the perfor-
mance of the model.

1 Introduction

Computer vision and graphics applications, such as image classification [1-10],
object detection [11-16], and image transformation [17-21], are effectively using
deep learning techniques. Also, there have been ongoing studies on image gener-
ation using deep learning in recent years [22—29]. These are studies that produce
images that match a given condition, for example, images that match the con-
tent of a given sentence or word [30-32]. On a higher level, recent studies have
shown that machine learning effectively recognizes the emotions expressed in im-
ages [33-37]. However, studies that create images from scratch that reveal input
emotions are rare due to the inherent ambiguity and abstraction of emotion.
Research on emotion-based image creation has mainly focused on image cre-
ation, including objects that express some specific emotions. In particular, stud-
ies related to the transformation or generation of human facial expressions based
on given input emotions have been successful [38-42]. However, if objects such
as people are not clearly present in the image, we must recognize emotions in
the feeling and landscape of the whole image. For example, when the scenery
in the image is night time, we can feel calm. Daytime images can have energy
and excitement. However, the perception of the emotions felt in the image varies
from viewer to viewer. As a result, the process of understanding the emotions
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of an image without an explicit object is complicated and confusing for both
people and computers.

Thus, generating landscape images have the advantage of being able to ex-
press emotion with the entire image itself, unlike creating an image that includes
a specific object. Even if the specified object exists in front of the background, we
can change the feeling of the image by replacing the landscape behind the object.
Besides, landscape images representing emotions can be used for behavioral ther-
apy and can be used for psychological research, such as investigating how well
people perceive emotions or analyzing brain waves from the landscape images
[43-48]. So, we will deal with the creation of landscape images that represent
emotions. Although there have been studies on how to create a landscape image
[49-51], this work will be the first to create a landscape image from emotions.

There are several ways to represent emotions. One way is by categorizing
them into classes such as happy, sad, angry, and relaxed, which is the most
widely used method and has the advantage of expressing emotion through in-
tuition. The drawback of this method, however, is that the emotions are classi-
fied into several other categories that cannot define various emotions in detail,
and the criterion for judging a particular emotion is ambiguous. Osgood et al.
[52] proposed a dimensional representation called the VA model for representing
emotions with two variables, V' (valence) and A (arousal). Valence represents the
level of pleasure. The lower value of valence indicates a negative emotion, and
the higher value indicates a positive emotion. Arousal is a level of excitement.
The smaller the arousal value, the calmer the emotion. The larger the value,
the more active the sensation. We are using this dimensional representation in
describing the emotions that are the input conditions in this study.

In this paper, we propose a deep learning-based model using generative ad-
versarial networks (GAN) [53] for generating landscape images from a given
emotion. We design the model in a gradually increasing form according to the
training process based on Karras et al. [54]. The proposed model also contains
new residual units and a new loss function to understand the emotional con-
cepts and generate the image based on that emotion. The former is an Emo-
tional Residual Unit (ERU), and the latter is Affective Feature Matching loss
(AFM-loss). The ERU and AFM-loss gradually change features in networks in
the training process so that generated images are close to the target emotions.

We conducted various experiments to ensure that the output image suffi-
ciently reflects the given emotions. These experiments compare different results
when varying the structure of the network and the arrangement of units of ERU.
The experiment also includes user surveys and emotional measurements using
the trained emotional prediction model to measure the proposed model’s perfor-
mance.

The contributions of the paper can be summarized as follows:

— We propose a novel deep learning-based approach that can generate land-
scape images fitting to target given emotions.

— We propose a new residual unit that can train a deep neural network to
adjust emotions.
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Fig. 1: The overall structure of emotional landscape image generation network.
Based on the progressive structure, it shows the process of gradually training
from low resolution to high resolution. Incrementally increases from 4 x 4 struc-
tures to 128 x 128 images. Emotional residual unit (ERU) is inserted into gener-
ator and discriminator, which is responsible for accepting emotional conditions
and training according to emotion.

— We propose a GAN based generation approach to expressing the emotions.
— We propose an affective feature matching loss to express emotions on the
generated landscape images effectively.

In this paper, we focus on creating an image representing a particular emotion
from scratch, rather than transforming an image that already exists to fit a
specific emotion. When we feel an emotion, it is natural to close our eyes and
recall an image of that emotion. For human nature, this process of thinking of an
image representing the emotions we feel can be more natural than transforming
an existing image to match the emotions we feel. Likewise, if artificial intelligence
is drawing art, it will be more valuable to create a new image that does not exist
by taking emotion into account. Therefore, our work can be used for artificial
intelligence that can express emotions. Our work will be a more critical step
in that artificial intelligence fundamentally understands emotions than image
transformation.

2 Methods

2.1 Overview of Landscape Image Generation Network

The proposed network (Fig. 1) is based on a progressive structure. The whole
structure is divided into three parts: generator, discriminator, and ERU. The
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generator takes a noise vector as input and outputs an image with the target
emotion according to the VA value representing the target emotion. The discrim-
inator takes the output image of the generator and the real image as the input
with the emotion values so that it can learn to determine if the image is real.
ERUs are inserted in the middle of the generator and discriminator. The embed-
ded ERUs play an important role in helping the generator and discriminator,
allowing the entire model to produce images that match the target emotions.
It should be noted that, as the network structure and size are increased, more
ERUs are added. That is the number of ERUs doubles as the resolution of the
output image of the network doubles.

2.2 Emotional Residual Unit (ERU)

Long short-term memory (LSTM) [55] and Gated recurrent unit (GRU) [56]
continue to transfer features of the previous state to the next state through
the cell state structure. Then, the cell state adds or removes features using gate
elements with a refined structure. These gates are devices that allow the selected
features of the previous state to flow into the next state. When they pass through
the gate, features judged significant are retained, and those judged meaningless
are discarded.

We apply the gate structure of LSTM and GRU to our model and propose
a new unit. The ERU, the new unit, is designed for emotion-based landscape
image generation whose structure is shown in Fig. 2. Let [-, -] denote concatena-
tion, Conv(z) denote convolution on z, ® denote element-wise multiplication, ¢
denote element-wise addition, and f(x) be a activation function. X is a feature
map given as input to ERU, which is fed from the generator or discriminator
these are from the layer before entering ERU.

Single-channel valence and arousal maps, V and A, are generated, whose
width and height are equal to input X. The two maps are fed with valence
and arousal values representing the current target emotion. Then, V and A
are concatenated with X channel-wise, respectively. After passing through the
convolution layer and sigmoid activation function in turn, the two feature maps
can be represented as v and a, respectively. At this time, the sum of each channel
of v and a is set to 1.0 like the soft attention method experimentally, as follows:

v = f(Conv([V, X])) and a = f(Conv([A, X])). (1)

For instance, let us assume that the valence and arousal values of the current
target emotion are 3.6 and 6.7, respectively, and the size of X given as input is
4 x 4 x 32. Then we create the maps of valence and arousal with dimensions of
4x4x1 and fill the maps with 3.6 and 6.7, respectively. And then we concatenate
X with the maps of valence and arousal respectively to generate the two feature
maps v and a of size 4 x 4 x 33 (see Eq. (1)). After the two feature maps pass
through the convolution and activation layers, respectively, their sizes become
equal to the input feature map X.
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Fig.2: Structure of the emotional residual unit (ERU). After concatenation of
the VA emotional maps to the input feature X of the ERU, respectively, 3 x
3 convolution and sigmoid function are performed, followed by the element-
wise multiplication with input X. After adding the results element-wise, we
concatenate the VA map again to the result, and finally, get the output Y after
the convolution and activation functions.

Now, v and a are element-wise multiplied with input X, respectively, and
the results are combined using element-wise addition as follows:

m=weX)® (e X). (2)

The combined feature map m in Eq. (2) is concatenated with [V, A], the concate-
nation of the emotional maps of valence and arousal, and then passed through
the convolution layer followed by tanh activation function in turn. Finally, we
get Y, the output of ERU, as follows:

Y = f(Conu(m, [V, A]})). 3)

2.3 ERU In Landscape Image Generation Network

Our model, which is modeled using the progressive structure as the underly-
ing infrastructure, has features that allow the generator and discriminator to
gradually evolve. Because of the image resolution of the data set, the training
process is repeated after iterating up to 128 x 128 resolution. Since GAN tends
to capture only the subset of variation found in the training data, we use the
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minibatch discrimination technique proposed by Salimans et al. [57], which adds
a minibatch layer to the end of the discriminator. Additionally, to disallow the
scenario where the magnitudes of the generator and the discriminator spiral out
of control as a result of competition, we use the pixel-wise feature normalization,
instead of the batch normalization commonly used to normalize the generator.

In Fig. 1, we can see that ERUs exist as the intermediate unit in the gen-
erator and discriminator. In the case of the generator, there is one ERU in the
4 x 4 resolution training process, and as the resolution increases, the number
of ERUs also increases. In other words, there are £k — 1 ERUs in the generator
trained using images with resolution 2k x 2’“7 (2 < k < 7). At the same time,
the dimensions of the input and output feature maps of ERUs also depend on
the image resolution currently being processed. Note that because the discrim-
inator has the inverted structure of the generator, the arrangement of ERUs in
the discriminator also follows a reverse order. Since the proposed model grows
gradually, it has the advantage of the progressive structure, which reflects both
global and local features.

In our dataset, valence and arousal values are on a scale of 1 to 9, respectively.
When the values are assigned to the ERU, the values are normalized to between
0 and 1. Each time an image is trained, the valence and arousal values of the
image are given. At this point, the generator’s ERU lets the generator learn in
the direction of generating an image that expresses a given emotion. Similarly,
the ERU in the discriminator is trained to determine if the generated image
matches the conditions of the given emotion.

2.4 Affective Feature Matching Loss

Wang et al. [20] suggested the feature-matching loss that minimizes the statisti-
cal difference between the generated image and the ground truth image by min-
imizing the difference between the corresponding convolution maps (i.e., feature
maps) of discriminator when the generated image and the ground truth image
pass through the discriminator. In this work, we propose a new feature-matching
loss function called affective feature-matching loss (AFM-loss) by enhancing the
existing method to emphasize the reflection of emotional features in the land-
scape image generation process.

Suppose a generated image and a ground truth image in the dataset have the
same target emotion value. The AFM-loss computes the element-wise difference
between the feature values (v,a) (i.e., the results of the sigmoid function in
Fig. 2) of ERU obtained by Eq. (1) of the generator’s output image and the image
in the dataset, where the two images are both passing through the convolution
layer inside the discriminator’s ERU block. The proposed method compares only
the features of the convolution layer, where the information of V' and A are
concatenated. In other words, it does not just make the resulting image similar to
the ground truth image but makes the emotion-affected features in the resulting
image as similar to the corresponding features in the ground truth image as
possible. As a result, the resulting image can be gradually transformed into an
image having an emotion close to the target emotion.
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Let x be a ground truth image, ¢, and ¢, be constant valence and arousal val-
ues, respectively, and z be an input noise vector. G(z, ¢,, ¢,) represents the image
generated from the generator module. The affective feature matching losses L,
and L, for valence and arousal are respectively defined by:
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where D, is the feature of the layer to be compared in the ERU block of the
discriminator. The average of all differences between the features in & ERUs
becomes the respective feature matching loss for V and A. We take the average
experimentally instead of the minimum and maximum.

2.5 Objective Function

The total objective function of the proposed model is defined by:

Lywean (D) =Ezopipag [D(T, o, Ca)]
—E.o.p.[D(G(2, cv, ca))]

+A(Ly + La), (6)

Lwean(G) =E..p [D(G(2, ¢y, ca))]- (7)

In Eq. (6) and (7), we use the Wasserstein GAN [58] loss to stabilize the training.
x and z refer to image and noise as in Eq. (4) and (5), respectively. Note that
the ¢,, ¢, values in the loss functions are given as the emotional maps in the
ERU. X is a hyper parameter that balances the AFM-loss and GAN loss. For
this experiment, we use A = 100.

3 EXPERIMENTS

3.1 Experimental Data

The CGnA10766 is an emotional image dataset built by Kim et al. [37], where
10,766 images are labeled with emotion values, V and A, through the user study.
The original CGnA10766 dataset has many images containing objects such as
people, animals, and cars. We selected only natural landscape images from the
original CGnA10766 dataset, excluding images that contain objects that can
have a significant impact on our emotions. Images containing objects that did
not significantly affect emotions, such as small boats or bicycles, were classified
as valid natural landscape scenes. We obtained a total of 1,453 images (we call
this reduced dataset V-A2) through this classification of the original CGnA10766
dataset (see Fig. 3). We collected more images because there were not enough
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Fig. 3: Sample images of natural outdoor scenes without objects such as people,
animals, or cars selected from the CGnA10766 dataset.

V-A2 dataset v V-A3 dataset

Fig. 4: The valence-arousal distribution of V-A2 dataset (left) and V-A3 dataset
(right). The horizontal and vertical axes represent the valence and arousal values,
respectively.

images in the V-A2 data set, and obtained their VA values using the emotion
predictor trained by Kim et al. [37]. We collected 1,204 images from [59], 1,523
images from [60], and 5,039 images from [61], resulting in 10,453 images. We
call this final dataset V-A3. The valence-arousal distributions of the V-A2 and
V-A3 dataset are shown in Fig. 4. In the figure, the images in our dataset have a
slightly lower valence, and slightly higher arousal value than the center, which is
clearly shown by the V-A2 dataset’s distribution based only on user studies. We
guess that the distribution of the dark colors in the landscape images is probably
causing a negative and active feeling rather than positive and calm. Fortunately,
both datasets have relatively even distributions of emotion values between the
minimum and maximum values, which is one of the conditions that a dataset
for machine learning must-have.

3.2 Experimental Settings

We trained our model using both the V-A2 and the V-A3 dataset with 100,000
iterations for the first 4 x 4 resolution and 200,000 iterations for other resolutions.
We set the batch size to 16. After the input noise vector of size 126 was generated,
the valence and arousal values were concatenated with the noise vector, and
eventually, the input size was 128. In the final stage of generating images of size
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Fig.5: Example results of proposed model with V-A3 dataset. Valence is small
on the left and large on the right. Arousal is small on the top and large on the
bottom.

128 x 128, the batch size was set to 8, to prevent memory out. The learning rate
was set to 0.001, and leaky ReLU [62] was used as the activation function of
the generator. When concatenating the input feature map X and the emotional
map in the ERU, the former is concatenated behind the valence or arousal map.
Additionally, in the second concatenation in the ERU, a combined valence and
arousal map is concatenated forward. In ERU, we used soft attention instead
of hard attention because when compared with the Frechet inception distance
of the training results with the V-A3 dataset, the soft attention method was
as good as compared to the hard attention method. We performed the training
with one Nvidia GTX 1080 Ti for a total of (approximately) 10 days.

3.3 Results

Fig. 5 shows the example results of the images generated by the trained model.
We aligned the resulting images in order of successive valence and arousal values.
The results with lower valence have broader sea areas with darker brightness than
those with higher valence. On the contrary, high valence results are relatively
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Table 1: Ablation study in terms of FID scores: Non-ERU and Non-AFM loss
represent the model without both of ERU and AFM-loss, and AFM-loss, in the
proposed model, respectively. E-FID is an averaged FID score computed only
from images with similar emotion values.

Dataset Method FID |E-FID
Non-ERU 4.07| 3.53
V-A2 | Non-AFM loss [3.02| 2.45
Proposed method|2.78| 2.11
Non-ERU 3.82| 3.30
V-A3 | Non-AFM loss [2.82| 2.30
Proposed method|2.51| 1.87

bright. The results with average valences have both low and high valence char-
acteristics. The resulting images with higher arousal have darker colors and are
more versatile than with lower arousal, consistent with the emotions expressed
by the high arousal representing more active emotions. In Fig. 5, the resulting
images on the 4*" rows are considered to represent a red sky, which means that
an image containing the ruddy glow in the sky usually has high arousal. Addi-
tionally, images with low arousal include the blue sea, which is thought to be
due to the calmness of the blue sea. Although the results have some artifacts,
the proposed model is demonstrably well-controlled according to the conditions
of arousal and valence.

To evaluate the results, we measured the FID score [63]. Also, we conducted
an ablation study to verify the ERU and AFM-loss performance of the proposed
model (see Table 1). In both the V-A2 and V-A3 datasets, the proposed model
with both ERU and AFM-loss shows the lowest FID score (see FID column in
the table) based on the total data, which means that the output of the proposed
model (with both ERU and AFM-loss) is most statistically similar to the original
dataset. Let us consider a 2D space with the mean of valence and arousal values
in the dataset as origin and valence and arousal as two axes. The E-FID column
in Table 1 shows the average value of the four FID scores computed using only
the images in the dataset and output images belonging to each quadrant of
the 2D space. In other words, it can be said that the proposed model produces
outputs with a feature distribution statistically similar to images in a dataset
with target emotions.

3.4 User study

To evaluate the results objectively, a series of user studies were conducted on the
Amazon Mturk platform [64]. In these experiments, images were given to the
subjects, and then they were instructed to select the valence and arousal values
they considered appropriate. Fig. 6 shows how the valence and arousal were
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Fig. 6: Example of a scene during a user study

selected in the user experiments. The valence and arousal values were divided
into five ranges, from low to high, respectively, and the subject had to choose
one. Selecting the interval was easier, more intuitive than numbering valence
and arousal, for the subjects who did not have a good understanding of the VA
model. We use the results of our model that was trained with both V-A2 dataset
and V-A3 dataset in the user study.

Before the evaluation phase, the user first learned about the VA representa-
tion through the training phase. We presented a randomly selected image from
the dataset, and the subject was instructed to select VA values of the image.
Users who answered outliers that were very different from the average answer
were excluded from the next evaluation phase. In the evaluation phase, 200
resulting images were used respectively for the V-A2 and the V-A3 dataset,
including 60 results from the model with neither ERU nor AFM-loss, 60 re-
sults with ERU only, and 80 results from the complete proposed model. Ap-
proximately 10,000 evaluations were performed on 400 images by nearly 1000
subjects. In other words, an image was rated by an average of 25 users. The
evaluations were performed for VA values in one of five intervals, each with
[1,2.6),]2.6,4.2),[4.2,5.8),[5.8,7.4), and [7.4,9]. The average of user answers was
then calculated using the median of the selected intervals. The error is the dif-
ference between the average of evaluated emotion value and the target emotion.
Outlier answers were removed using the method of inter-quartile range (IQR).
Table 2 shows average of error margins with the target emotion. The complete
proposed method was measured to show the least error with the target emotion
for both datasets. Considering that the size of one interval is 1.6, the figure is
quite low. Besides, the valence error of most images was within 2, as was with the
case of arousal. This result demonstrates that our model generates appropriate
images for the condition of the target emotion.

Additionally, we conducted an ablation study to verify the ERU and AFM-
loss performance of the proposed model. As shown in Table 2, the objects to
be compared are the results of the proposed model, the non-ERU model, and
the non-AFM model. The non-ERU model eliminates the ERU from the model,
and the non-AFM model eliminates AFM-loss in the loss function. In the case
of non-ERU models, AFM-loss cannot be applied because there is no ERU. As
a result of the statistical analysis of the average error difference between the
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Table 2: Comparison of average error between target emotion and results of the
user study.

Dataset Method Valence-error|Arousal-error
Non-ERU 2.73 2.51
V-A2 | Non-AFM loss 1.92 1.71
Proposed method 1.67 1.45
Non-ERU 2.62 2.54
V-A3 | Non-AFM loss 1.81 1.68
Proposed method 1.56 1.38

Table 3: Performance comparison of the three models

Method |The Emotional GAN|MHingeGAN|Our method
Valence-error 2.58 1.81 1.56
Arousal-error 2.56 1.77 1.38

Preference 15.7 34.5 49.8
FID 4.85 2.53 2.51
E-FID 4.14 1.88 1.87

non-ERU model and the complete model with the independent samples’ z-test,
a significant difference was found in the 95% confidence interval. The average
error difference between the non-AFM loss model and the complete model was
not statistically significant under the same conditions but showed numerically
noticeable differences.

3.5 Comparison with Other Model

We trained the V-A3 dataset that produced better results than the V-A2 dataset
to produce results for comparison with the Emotional GAN [65], which is the
baseline for comparing the proposed method. The V-A3 dataset has a continuous
emotional condition, however, the Emotional GAN receives this condition as
a categorized discrete value. Therefore, only the images in the VA plane with
emotion values within 0.5 of the difference in both the valence and arousal values,
representing anger, anxiety, disgust, etc., were used. For instance, according
to Kuperman et al. [66], anger has values of 2.5 and 5.65 in the VA plane.
Thus, we classified images with valence between [2.0, 3.0] and arousal between
[5.15,6.15] as anger. We also compared the results of our model with Kavalerov et
al. (MHingeGAN) [67] model having the best performance among the conditional
GANSs. Because our model was not a method of transforming an existing image,
but a method of creating a new image with a target emotion from noise, our
method was compared only with other works that create an image from noise.
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Table 4: The averages of predicted VA errors using the machine learning model
of Kim et al. [37]

Dataset Method Valence-error|Arousal-error
Non-ERU 2.74 3.05
V-A2 dataset Non-AFM loss 1.94 1.68
Proposed method 1.74 1.59
Non-ERU 2.5 2.8
Non-AFM loss 1.87 1.75
V-A3 dataset| The Emotional GAN 2.35 2.68
MHingeGAN 1.85 1.79
Proposed method 1.69 1.51

The comparison results between the different methods are shown in Table 3.
The average of user preference and VA value errors were collected through user
studies. In particular, the average of errors was investigated in the same way
as in Section 3.4. The meaning of FID and E-FID is as in Table 1. In the case
of FID and E-FID scores, the proposed model showed similar performance to
MHingeGAN. However, there were significant differences in the error for the tar-
get emotion VA values, and our model recorded nearly 1.5 times more preference
values.

3.6 Comparison using Machine Learning Model

To conduct a quantitative method of the ablation study rather than a qualitative
one, we measured the emotion in the resulting images of both models trained
from V-A2 and V-A3 dataset using the emotion predicting deep learning model
of Kim et al. [37]. In the case of using V-A3 dataset, we additionally measured the
emotion in resulting images of the Emotional GAN and MHingeGAN. For each
method, 100 result images were used. Table 4 lists the valence and arousal error
values for each method. The proposed method showed the lowest errors which
imply that our method of using ERU and AFM-loss is the most appropriate also
about the perspective of the machine learning model.

4 CONCLUSIONS

In this work, we designed a machine learning framework with a novel structure
and generated emotion-based landscape scene images. To create an image that
fits well with a given target emotion, we proposed a new structure called ERU
that includes a unique concatenation structure. This structure had a significant
and positive effect on emotional conditioning. We also presented a new feature
matching loss that could highlight emotion-related features. We demonstrated
that this model could generate landscape images that have target emotions. The
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Fig.7: The limitations of our model. The target emotion was given very large
or very small Valence and Arousal values. The arousal changes vertically, with
1 on top and 9 on the bottom. The valence changes horizontally, with 1 on the
left and 9 on the right (a) semantic location failure case (b)

suggested model had the limitation of generating images that contained artifacts
or did not match the target emotion when valence and arousal were so small or so
large (see Fig. 7(a)). When people watch natural landscape scenes, they usually
do not feel extremely small or large arousal or valence. As a result, there are not
enough natural landscape scene images in the data set that incorporates these
extreme emotions. Another limitation is the case that the semantic position of
the object in the resulting image is wrong, as in the left part of the figure (see the
left image in Fig. 7(b)). In the figure, dark seas and gloomy skies were included in
the results to represent depressed emotions with low valence and arousal values,
with the positions of the sea and sky swapped up and down. In some cases, colors
that are not typically seen in natural landscapes appear in the resulting image
(see the right image in Fig. 7(b)). These cases appear because the model focuses
only on expressing specific emotions and fails to set the correct semantic position
or misses natural colors. It is not easy to strike a balance between expressing
the target emotion and creating a realistic image.

We studied only natural scenes without objects in this work. In future works,
we will be able to study how to create emotion-based images with scenes in which
objects and backgrounds perfectly synchronize in terms of the given emotion. In
addition to images, we can also apply the method in this work to video domains.
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