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Abstract. We present a meta-learning framework for weakly supervised
anomaly detection in videos, where the detector learns to adapt to unseen
types of abnormal activities effectively when only video-level annotations
of binary labels are available. Our work is motivated by the fact that ex-
isting methods suffer from poor generalization to diverse unseen exam-
ples. We claim that an anomaly detector equipped with a meta-learning
scheme alleviates the limitation by leading the model to an initialization
point for better optimization. We evaluate the performance of our frame-
work on two challenging datasets, UCF-Crime and ShanghaiTech. The
experimental results demonstrate that our algorithm boosts the capa-
bility to localize unseen abnormal events in a weakly supervised setting.
Besides the technical contributions, we perform the annotation of missing
labels in the UCF-Crime dataset and make our task evaluated effectively.

Keywords: Anomaly detection; meta-learning; weakly supervised learn-
ing

1 Introduction

Humans easily identify unusual events from a video by generalizing prior knowl-
edge spontaneously despite the ill-defined nature of anomaly detection. On the
contrary, computer vision algorithms rely on an extensive learning process based
on a large number of annotated training examples to obtain a model for abnormal
event detection. There exist various approaches proposed for anomaly detection
in videos. The methods based on generative models [1, 2] claim the capability to
reconstruct normal patterns while [3, 4] propose discriminative techniques based
on binary classifiers. Despite the significant advance in anomaly detection on
videos [1-5], existing methods in both categories may suffer from critical draw-
backs. A recent study [3] presents that generative approaches are not suitable
for the recognition problems on videos with substantial scene variations since
they are prone to predict unseen normal patterns as abnormal. Also, the gen-
erated videos often have limited diversity, especially having the same viewpoint
as the cameras used to construct training examples. On the other hand, the dis-
criminative classifiers may not be robust to unseen types of normal or abnormal
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Fig. 1: Limitation of the existing abnormal event detection approaches in videos.
The generative models (e.g., auto-encoder) attempt to learn normal patterns
in training data; they successfully reconstruct the normal videos seen during
training (Normal_2) while they fail to reconstruct the videos captured from new
viewpoints (Normal_3). Meanwhile, the discriminative approaches (e.g., binary
classifier) focus on classifying each frame into two classes, abnormal and normal,
by learning abnormal patterns from the given data. Therefore, the discrimina-
tive classifiers detect the abnormal events that have been seen during training
(RoadAccidents) while they fail to recognize unseen types of abnormal events
(Explosion) at test time. The bold-faced letters in red correspond to the wrong
predictions of individual approaches.

activities. In particular, they can detect the predefined types of abnormal events
only and tend to overfit to training data. Fig. 1 illustrates the limitations of the
existing methods mentioned above.

Since it is infeasible to collect the videos containing all kinds of normal and
abnormal activity patterns, the detector should be able to spot the eccentricity
even with limited prior information. Here, one crucial question arises. When we
learn a model to detect unseen patterns in videos, how can we take advantage
of prior knowledge? The simplest solution would be pretraining a model using
the data of seen patterns followed by fine-tuning it with the examples of unseen
types. To address this problem in spite of a practical limitation—weak diversity
of training examples, we formulate anomaly detection as learning to adapt to
various unseen abnormalities rather than learning the universal representation.
To this end, we harness the meta-learning concept [6, 7], which claims that the
model parameters of a deep neural network can be located at a desirable initial
point for better optimization, not necessarily fast convergence, by simulating
the learning process for adaptation to new data distribution. By constructing
learning episodes containing diverse abnormal events, where the variance across
individual examples is large, the model learns to reach the appropriate initial-
ization point, which leads the model to adapt well to novel abnormal events.

Moreover, we explore whether detecting unseen abnormal events can be effec-
tively performed under weak supervision in the meta-learning framework. Since
it is expensive to obtain precise annotations of temporal locations of individ-
ual abnormal events in videos, we prefer constructing base-learner models using
the examples with video-level binary labels, normal vs. abnormal. Note that we
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aim to localize abnormal activities in the temporal domain via learning a model
based on binary annotations of abnormality in video level.

We validate the proposed training scheme on two challenging datasets, UCF-
Crime [3] and ShanghaiTech [8]. Since the UCF-Crime dataset provides temporal
annotations of abnormal events only for a small portion of videos, we annotated
the examples without ground-truths for our experiments. The experimental re-
sults show that the proposed algorithm outperforms the baseline in detecting
novel abnormal events. The source codes and new annotations are available at
our project page'.

The main contributions of the proposed approach are summarized below:

e We formulate anomaly detection in videos as a learning-to-adapt task to
unseen abnormal activities to address the limitations of existing approaches.

e We propose a novel meta-learning approach under weak supervision, where
the base-learner utilizes video-level binary labels only for training, while the
final model estimates the localization information of unseen abnormal events.

e We labeled the missing ground-truths for temporal locations of abnormal
events in the UCF-Crime dataset.

e The experiment on UCF-Crime with label augmentations and ShanghaiTech
shows that our method is effective in learning novel types of abnormal events.

The rest of the paper is organized as follows. We first discuss related work in
Section 2. The overall procedure and the experimental results with their analysis
are described in Section 3 and 4, respectively. Section 5 concludes this paper.

2 Related Work

2.1 Anomaly Detection

Many researchers have been interested in anomaly detection in the video [1-5,
9-11]. Given a video, the detector localizes unexpected incidents that are rarely
observed. The task is challenging due to its ill-defined nature, its innate com-
plexity, and the diversity of examples.

The advances in generative modeling techniques based on deep neural net-
works allow us to construct the anomaly detector in a generative manner [2,
12-14]. They attempt to find the general pattern of in-distribution data points
with the generative models such as auto-encoder [1,2,15] and generative adver-
sarial network [16]. Based on the assumption that abnormal events are rare, the
generative models learn how to reconstruct normal and usual patterns. These
models consider the examples that have large reconstruction errors as the out-
of-distribution samples. However, they assume that all the videos have the same
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viewpoint. As a result, the models are prone to overfit to training data and
predict unaccustomed normal patterns as abnormal.

A recent study [3] claims that the classic generative approaches are unable
to generalize normal patterns captured by the camera from a novel viewpoint.
It also introduces a novel dataset for anomaly detection, UCF-Crime, which
consists of more complex and diverse events than existing ones. Based on the
dataset, [3, 4] suggest predicting abnormality scores in a discriminative manner.
They treat the anomaly detection task as a binary classification problem under
weak supervision, where the model classifies whether the video contains abnor-
mal or normal events based only on video-level labels. Specifically, [3] proposes
a binary classifier based on multiple instance learning, and [4] employs a label
noise cleaner using a graph convolutional neural network. Nevertheless, those
methods still suffer from a lack of generalizability, especially when they face un-
seen types of abnormality. This fact raises the need for a reasonable initial model
that handles unseen abnormality effectively. Hence, we propose a meta-learning
framework to obtain basic information from prior knowledge.

2.2 Meta-Learning

The objective of meta-learning is to realize the learn-to-learn capability, where
the meta-learner supervises the learning process of the base-learner [6,17,18].
The common approaches to address this problem include 1) metric learning-
based methods, where the meta-learner focuses on the similarity metric within
the task [19-21], 2) memory augmented methods, where the meta-learner stores
training examples or class embedding features [22-25], and optimization-based
methods, where the meta-learner is directly parameterized by the information
from the base-learner (e.g., gradients, etc,.) [6,26-28]. Our work employs a popu-
lar optimization-based framework, Model-Agnostic Meta-Learning (MAML) [6].
Further description of MAML will be provided in Section 3.3. Following the re-
cent works in other applications that take advantage of meta-learning schemes [29—
34], we facilitate anomaly detection in videos using the meta-learning framework.
Our work is distinct from existing models because we construct the meta-learning
model upon base-learner under weak supervision, i.e., when only video-level la-
bels are available. There is a prior study that focuses on the generalization
capability of meta-learning in domain generalization task [35]. Recently, [36]
addresses an anomaly detection problem based on meta-learning. However, its
direction is different from ours in the sense that it attempts to learn the normal-
ity of scenes using generative models, while our approach aims adapt to novel
anomaly via discriminative models.

3 Method

3.1 Overview

Our goal is to learn an anomaly detection model that adapts to novel types of
abnormal events effectively using weakly labeled examples. Since it is infeasible
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to capture common abnormal patterns generally acceptable in the videos with
huge diversity, we formulate anomaly detection as learning to adapt to various
abnormal events rather than learning universal representations.

We assume that there exists a video dataset Dpqs with two different types of
annotations per video—binary label whether a video contains abnormal events
or not, and ¢pese abnormal event categories (subclasses) for the positive videos.
We learn to identify the initial model parameters optimized for adapting to novel
abnormal events in the videos that belong to Dy, pe; With cpove; subclasses. Note
that the subclasses in Dygse and Dippe; are disjoint although we do not use the
subclass information in the training procedure of the proposed framework. An-
other assumption is that, given a video v = {v;}}¥; € D (= Dpase U Dnovel)
with N segments, we only have the video-level label y € {0,1}, where 1 indi-
cates that the video has at least one abnormal segment, 0 otherwise. Note that
our weakly-supervised detector should predict per-segment label, § = {g}i}ij\;l,
without segment-level or localization ground-truths.

We propose to harness meta-learning to boost the localization accuracy of
unseen abnormal events based on weak supervision. We claim that simple knowl-
edge transfer from pretrained models may not work well in our scenario since
the variations of abnormality is significant and the prior knowledge obtained
from seen abnormal events is difficult to be generalized to unseen ones. Hence,
by exploiting meta-learning based on the episodes with large variations, we alle-
viate the limitation of transfer learning and facilitate to learn models for unseen
anomaly detection via meta-testing. Specifically, we construct an episode by
sampling a small subset of videos from Dy, se, and perform an iteration of meta-
training using the episode. In the meta-testing phase, we fine-tune the model
using the videos sampled from D,,,,¢; to obtain the final model. Note that the
entire training procedure relies only on video-level binary class labels.

The rest of this section describes the details about the individual components
of our framework, which include 1) the base anomaly detector relying on weak
labels, and 2) the meta-learning algorithm to obtain better generalizable models.

3.2 Weakly Supervised Anomaly Detector

We adopt the anomaly detection method proposed in [3] as our base detector.
The detector learns to score how abnormal each video segment is under weak su-
pervision. The score of each segment is given by a binary classifier distinguishing
between abnormal and normal events. To train a segment-wise anomaly detec-
tor based only on video-level annotations, we employ Multiple Instance Learning
(MIL) with a ranking loss.

MIL The concept of MIL is employed in our problem to learn the rank between
normal and abnormal bags. We divide a video into N segments, each of which is
denoted by v; (i =1,...,N). A video v = {v;}}¥.; with N segments is regarded
as a positive bag B, if at least one of the segments is abnormal, i.e., 3i,y; = 1.
Otherwise, the video is normal and its segments construct a negative bag B,,.
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The segments in B, and B,, pass through a scoring function f(-), which consists
of three fully-connected layers with ReLLUs and sigmoid functions, to predict
abnormality scores.

Ranking loss We employ a ranking loss for MIL as in [3], which produces higher
scores for abnormal segments than normal ones. Since segment-level labels are
not available in our setting, the loss for a pair of a positive bag and a negative
one is defined by the segments with the maximum scores in both bags as

L(0;{B,,B,}) = max(0,m — max f(vi; 0) + max flu; ), (1)

where 6 denotes model parameters, v; means the i-th segment in a bag, and m
indicates the score margin between the two bags. In addition, the loss function
has two regularization terms—a temporal smoothness loss and a sparsity loss.
The former encourages temporally adjacent segments to have similar scores,
while the latter enforces only a small subset of segments in a video to have high
scores upon the assumption that abnormal activities rarely happen in videos.
By combining all the loss terms, the final loss function is given by

L(0;{Ba,Br}) = max(0,m — ryleaéc f(vi;0) + mEaBX f(vi;0))

+ A1 Z (f(0is0) = f(vi41;0))* + Ao Z fvs;0),  (2)
v; €Bq v; €Bq
where A\; and A9 are the hyperparmaters to control the impact of individual
terms. Following [3], we set m = 1 and A\; = Ay = 8 x 10~° throughout our
training procedure. Note that, since f(v;;8) is the output of a sigmoid function
and always positive, the last term in Eq. (2) is equivalent to £; norm of a segment-
wise score vector.

Training base detector We train the anomaly detector based on the objec-
tive function in Eq. (2) using Dpase. To train the detector, we split a video into
multiple segments, where each segment consists of 16 consecutive frames, and
extract 3D convolutional features from I3D networks [37] pretrained on the Ki-
netics dataset. We represent each variable-length video using 32 non-overlapping
transformed features as described in [3] and feed them to our base detector model
for training.

3.3 Meta-training

In the meta-training phase, our goal is to make the model learn to adapt to novel
types of abnormal examples by repeatedly simulating the learning procedure
using the data sampled from the distribution with large intra-class variations. To
achieve this goal, we adopt a meta-learning approach based on MAML [6]. Our
meta-learning scheme aims to find an optimal set of initial model parameters,
which is suitable for adapting to unseen types of data. Since there is no external
meta-learner in MAML, the model parameters are solely updated by the gradient
descent method.
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Fig.2: Comparison of the methods to construct episodes between the conven-
tional N-way K-shot classification and our anomaly detection. (a) The tasks
are different across episodes and the intra-class variation is relatively small. The
images are sampled from minilmageNet [38] dataset. (b) Every episode is for
binary classification between abnormal and normal classes. The abnormal class
consists of the subclasses in Dyqse, so the intra-class variation is large.

Episode in anomaly detection We first describe how to construct episodes
for anomaly detection. Most of the few-shot classification studies formulate an
episode as a classification task, where a model for each episode is optimized for
a unique set of classes, and have the target tasks for meta-testing separate from
the ones for meta-training. We refer to this kind of strategy as the conventional
meta-learning in the rest of this section.

In contrast, all the tasks in anomaly detection are identical: binary classi-
fication between normal and abnormal. We sample both normal and abnormal
videos from Dygse With cpese subclasses to construct a task 7. Note that the
sampled abnormal videos belong to any subclass but the subclasses for meta-
training and meta-testing should be disjoint. The major difference between the
conventional and our meta-learning lies in the source of diversity. The intra-
class variation in anomaly detection is much larger than that of the conventional
meta-learning. While the existing few-shot learning studies attempt to general-
ize models over the task distribution, our approach focuses on the generalization
of the model over the data distribution within the individual classes, abnor-
mal and normal, during meta-training. The difference between the conventional
meta-learning and our approach is illustrated in Fig. 2.

Training method We construct each task 7;, which is divided into training
and testing denoted respectively by 7" and 7!, by sampling abnormal and
normal videos from Dpgse. Using the training and testing splits, meta-training
is performed by the bi-level optimization on the base detector.

We first, as in a typical training scenario, adapt the base detector to 7™
based on the objective function in Eq. (2). This adaptation step is referred to as
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the inner loop. For the i-th task 7;, the model parameters of the base detector,
denoted by 6, are then updated to 67; by the gradient descent method using the
loss function L7(6; 7;"™), which is expressed as

07, = 0 — aVeLy (6; /™), 3)

where « is the learning rate for the base detector.

Next, the adapted base detector is evaluated by 7;'*!, and the meta-learner
is optimized using the resulting error. Since the meta-optimization contains the
adaptation step, it is also referred to as the outer loop. The meta-learner is
optimized by L7 (f7;T*"). In MAML-based approaches, the meta-update is
performed by updating the model parameters, denoted by 6, of the base detector
before the adaptation step using the meta-objective function, which is given by

min 3 Lr@m T = Y Lrl0-aVelr G T T ()

Tirep(T) Tirep(T)

Therefore, the model parameters are meta-updated as

0=0-8Ys > Lr.(0r:T), (5)

Ti~p(T)

where 3 is the meta-learning rate.

3.4 Meta-testing

In the meta-testing stage, we evaluate whether the model adapts to the novel
types of abnormal events well. To this end, we fine-tune the model for the abnor-
mal events in ¢,yye; Subclasses, which are disjoint from c¢pqs. normal subclasses,
by constructing episodes for meta-testing using sampled examples from Dy, ,pe;-
Since we do not have a validation set DZ%el due to the small size of the datasets,

we perform 10-fold cross-validation by exploiting D™ , to decide the number
of iterations for fine-tuning.

4 Experiments

4.1 Datasets

We conduct the experiments on two benchmark datasets, UCF-Crime [3] with
our label augmentation and ShanghaiTech [8].

UCF-Crime This large-scale dataset consists of real-world surveillance videos
captured in various circumstances. It contains 13 subclasses of abnormal events
including Abuse, Arrest, Arson, Assault, Burglary, Explosion, Fighting, RoadAc-
cidents, Robbery, Shooting, Shoplifting, Stealing, and Vandalism. The dataset has
1,900 untrimmed videos, including 950 abnormal videos and 950 normal ones.
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Table 1: Over-estimated performance issue in the existing evaluation method.
The AUC score of our base detector is approximately 84% when evaluating the
entire test videos using the anomaly split in [3]. The value is slightly higher
than the one reported in [3] because we employ two-stream features from I3D
network [37] for video representations. However, when we exclude the normal
videos from the test set, the performance drops to about 68%.

Class ‘ AUC (%) ‘ # of test samples
Abnormal 68.35 140
Abnormal+Normal 84.39 290

There exist a couple of critical limitations in this dataset that hamper direct
compatibility with our task. First, the subclass distribution in the original train-
ing and testing splits given by [3] for anomaly detection is severely imbalanced.
Hence, we conduct our experiments using the action recognition split provided
by [3]. In the action recognition split, every subclass has 38 videos for training
and 12 videos for testing. Second, [3] provides the temporal durations of abnor-
mal events for the test videos in its anomaly detection split while some videos in
the test set of the action recognition split do not have such annotations. To make
the dataset complete for performance evaluation, we annotate the ground-truth
intervals of abnormal events for some videos in the dataset.

ShanghaiTech This is a medium-scale dataset composed of 437 videos from 13
different scenes. Since all training videos are normal, we use a new split proposed
by [4]. In addition, we employ this dataset only for meta-test since there are not
a sufficient number of videos containing abnormal events for meta-training. We
believe that the experiment in this dataset shows the cross-dataset generalization
performance of the proposed method.

4.2 Evaluation Metric and Protocol

Following the previous works [2-4], we draw the frame-wise receiver operation
characteristic (ROC) curve and compute its area under curve (AUC) score. How-
ever, our evaluation method is different from the existing ones in the following
two parts.

First, we only evaluate the AUC performance on the abnormal videos. Since
there is a significantly larger number of normal frames than abnormal ones,
especially if we count both abnormal and normal videos, performance evaluation
using the videos in both classes leads to a biased result towards accuracy over-
estimation as illustrated in Table 1. Therefore, we exclude normal videos for the
computation of the AUC scores in our experiments. Note that we use the original
splits and annotations instead of the revised ones to obtain the statistics.

Second, we evaluate the average frame-wise AUC score for each video while
existing methods estimate the scores using all frames collected from all videos in
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their test datasets. This is because the overall performance is often dominated
by a small subset of extremely long videos, which are as long as 10° frames and
substantially longer than the average length, about 4 x 10% frames.

4.3 Experimental Settings and Implementation Details

To validate our claim that meta-learning provides a proper initialization point,
we compare the following three scenarios, which are given by fine-tuning the
detector on Dyper starting from 1) the randomly initialized model, 2) the pre-
trained model on Dpyse, and 3) the meta-trained model on Dpgse.

For the experiments, we re-implemented the detector proposed in [3] and use
it as the base learner. Our implementation is identical to [3] except the follow-
ing three parts. First, we utilized the pretrained two-stream I3D features [37]
trained on the Kinetics dataset instead of C3D features [39] employed in [3];
the optical flows are computed by the TVL1 algorithm [40] and the fusion of
two modalities—RGB and optical flow—is given by the concatenation of their
features. Second, we removed the dropout layers [41] since training the MAML
model [6] was unstable. Finally, we used the Adam optimizer instead of Adagrad.

For pretraining, we sampled 30 videos from both the abnormal and normal
classes to form a mini-batch. After splitting Dpqse into train and validation videos
following the action recognition split, we trained the model with a learning rate
103 until the validation AUC score arrives at the peak.

For meta-training, we construct each episode using 10 samples for training
and 30 for testing from both categories, abnormal and normal classes. The learn-
ing rate of the inner loop is set to 10~3 while the learning rate for the outer loop,
which is a meta-learning rate, is set to 10~°. We trained the model for 3,000 outer
iterations with meta-batch size 15, and used an SGD optimizer for inner loop
optimization.

Fine-tuning is performed on D, regardless of the initialization methods
with the learning rate 10~3. We fine-tuned the model for 300 iterations at max-
imum and performed 10-fold cross-validation to choose the best model.

4.4 Quantitative Results

UCF-Crime We conduct our experiments on two action recognition data splits
in the UCF-Crime dataset. Even though UCF-Crime is the largest dataset for
anomaly detection in videos, it is still too small to conduct meta-learning exper-
iments. We generated 13 subtasks for the experiment, where each subtask has a
different novel subclass while the rest of 12 subclasses are employed to construct
,Dbase~

Table 2 reports the AUC scores for all 13 subtasks, where we compare the
results from the three scenarios described in Section 4.3. Since the statistics of
each subclass are different from each other, it is not straightforward to identify
the optimal model for a fair comparison. Hence, we choose the following two
different models for the evaluation of each subtask. First, we sample 10 models
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Table 2: AUC score (%) comparisons among three different scenarios on each
target subclass. The fine-tuning process of all the compared methods is identical
while the initial point of fine-tuning is different. In the algorithm denoted by
S, the model is fine-tuned from a random scratch model. In the scenario P, the
model is pretrained with Dp,s. before fine-tuning. Two versions of the meta-
learning approach, denoted by Mg and Mg, which performs meta-training with
Dpase to obtain the initial model, correspond to two different model selection
strategies, “sampling” and “global”. Details of “sampling” and “global” are de-
scribed in Section 4.4. The bold-faced numbers correspond to the best accuracy
for each subclass.

Split‘Algo.‘Abus Arre Arso Assa Burg Expl Figh Road Robb Shoo Shop Stea Vand‘ Avg

S |62.99 67.91 56.93 80.05 72.02 63.62 70.94 73.19 77.86 75.81 57.70 66.77 72.86|69.13
P |69.71 67.57 60.22 81.18 77.51 71.85 70.65 77.11 80.48 82.69 52.37 65.41 74.61|71.64
Ms |70.93 72.05 61.26 82.67 81.08 73.32 71.35 76.72 82.56 82.85 59.19 70.75 77.30|74.00
Mg [69.89 71.30 59.97 82.19 78.75 73.32 69.96 74.85 82.56 82.85 56.20 66.37 75.33|72.58
S |79.64 61.08 77.57 77.86 74.10 77.31 79.24 74.96 80.02 79.60 67.29 65.63 75.26 | 74.58
P |73.60 73.91 83.81 79.62 75.22 73.62 83.21 74.27 71.32 80.13 64.96 72.56 78.56 | 75.75
Ms |79.01 76.36 82.34 79.75 77.20 73.32 84.39 74.14 76.16 81.58 67.27 77.41 79.26|77.55
Mg [ 76.01 72.22 83.82 79.08 76.83 68.34 84.62 75.07 73.92 80.92 65.97 77.02 79.25|76.39

for each subtask from the uniformly sampled meta-iterations, and select the
best model for each subclass. We call this model selection strategy “sampling”.
Second, to make the evaluation more strict, we choose a global model from
the same meta-iteration to handle all subclasses, which is called “global”. For
both splits, a meta-trained model shows better average performance than the
others; the proposed model improves accuracy in most of the subclasses while we
observe accuracy drops by pretraining and meta-training in a few cases including
Ezplosion and Shoplifting in the second split. This is probably because their
data distributions of these two subclasses are substantially different from the
others and the prior knowledge is not helpful. However, in the case of Stealing,
our approach outperforms the pretraining method by about 5% margin, which
indicates the proposed technique is effective even for the scenario that pretraining
does not help.

ShanghaiTech To validate the generalization capability of our model, we con-
duct an additional experiment on the ShanghaiTech dataset [8]. As mentioned
in Section 4.1, it is not feasible to perform meta-training on this dataset due to
its small size. Since the examples in ShanghaiTech belong to abnormal events in
campus life, which are unique compared to UCF-Crime, we consider the Shang-
haiTech dataset as Dy, ope; and use UCF-Crime as Dpyqse to learn the prior knowl-
edge. All hyperparameters of the experiments for ShanghaiTech are identical to
those for UCF-Crime.
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Table 3: Quantitative results on the ShanghaiTech dataset. For P and Mg, UCF-
Crime dataset is employed to train the model. Then, each model is fine-tuned
with a train split of ShanghaiTech, and the final evaluation is conducted on
the test split of ShanghaiTech. The results show that the meta-initialized model
adapts better to novel anomaly than the others, S and P.

Algorithm ‘ AUC (%)
S 79.53
P 79.34
Ms 84.70

Table 3 presents the results of the three training scenarios. The proposed
strategy also outperforms the other training methods, which implies that the
knowledge from one dataset learned by our meta-learning approach is trans-
ferable to other datasets; the proposed framework provides a promising initial
model for localizing abnormalities in diverse situations.

4.5 Qualitative results

Fig. 3 demonstrates the qualitative results from three training scenarios on two
test videos in (a) the UCF-Crime and (b) ShanghaiTech datasets. The shaded re-
gions in the graphs correspond to the ground-truth intervals of abnormal events.
The area under the ROC curve (AUROC or AUC) for each video and model is
also reported in the graph. Since the AUC metric is computed by the rank of
scores, the performance of all the three methods looks comparable. However, the
scores given by the meta-trained model are more discriminative than the other
two methods. In other words, the models trained from scratch or pretrained
models are prone to suffer from mis-detections and/or false alarms. This obser-
vation implies that the proposed approach would be more robust than the others
in more challenging examples. We will enclose more sample results of anomaly
detection with scores in the supplementary document.

4.6 Further Analysis

To analyze whether the meta-learning scheme has a real impact on adapting
to novel abnormalities, we plot performance curves during fine-tuning at the
meta-testing stage with the UCF-Crime and ShanghaiTech datasets and present
the results in Fig. 4. The followings are the lessons from the observation of the
fine-tuning curves.

First, the anomaly detection benefits from prior knowledge. In most cases,
both of the pretrained model and the meta-trained model demonstrate better
performance at the initial epoch than the scratch case. From this observation,
we conclude that the model has the utility to detect the novel types of abnormal
events even without their direct prior knowledge. Second, the performance of a
model is sometimes degraded during the fine-tuning procedure. Fig. 4(b), and
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Fig.3: Qualitative results from (a) the UCF-Crime and (b) the ShanghaiTech
datasets. The scores of three different methods are presented together with the
ground-truths represented by the shaded regions.

(d) illustrates that the learning curves go downward with iterations. For these
cases, we conclude that there are data samples with significant noise or large
intra-class variations; it is challenging for a model to detect anomalies with weak
supervision only. This stems from the inherent weakness of the detector trained
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Fig. 4: Fine-tuning curves of individual subclasses for three training scenarios

based only on weak supervision. Due to space limitations, the learning curves
for the rest of the subclasses are included in the supplementary document.

5 Conclusion

We presented a weakly supervised learning-to-adapt formulation of anomaly de-
tection in videos, which alleviates the limitation of existing methods in the gen-
eralization to diverse unseen data samples. To this end, we proposed a learning
strategy to adapt to unseen types of abnormal events effectively by taking advan-
tage of meta-learning. We meta-train the model by constructing episodes that
are well-aligned with anomaly detection. Our experimental results from chal-
lenging UCF-Crime and ShanghaiTech demonstrate that the models given by
the proposed technique learn to adapt to new types of abnormal videos success-
fully and verify the efficacy of meta-learning in adaptation quality compared to
the pretrained models. In addition, we pointed out the limitation of UCF-Crime
dataset in terms of annotation completeness and data imbalance, and supple-
ment temporal annotations of abnormal activities for the videos which do not
have such ground-truths.
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