
Learn more, forget less: Cues from human brain

Arijit Patra and Tapabrata Chakraborti

Department of Engineering Science, University of Oxford, UK
arijit.patra; tapabrata.chakraborty @eng.ox.ac.uk

Abstract. Humans learn new information incrementally while consoli-
dating old information at every stage in a lifelong learning process. While
this appears perfectly natural for humans, the same task has proven
to be challenging for learning machines. Deep neural networks are still
prone to catastrophic forgetting of previously learnt information when
presented with information from a sufficiently new distribution. To ad-
dress this problem, we present NeoNet, a simple yet effective method
that is motivated by recent findings in computational neuroscience on
the process of long-term memory consolidation in humans. The network
relies on a pseudorehearsal strategy to model the working of relevant
sections of the brain that are associated with long-term memory consoli-
dation processes. Experiments on benchmark classification tasks achieve
state-of-the-art results that demonstrate the potential of the proposed
method, with improvements in additions of novel information attained
without requiring to store exemplars of past classes.

Keywords: pseudorehearsal, continual learning, catastrophic forgetting.

1 Introduction

Humans learn continually throughout life in small steps: we acquire and consol-
idate new knowledge through abstract representations in the context of existing
knowledge. The idea of ‘lifelong learning’ [1], though natural to humans, has
proven difficult to replicate in connectionist architectures like deep networks,
where there is a tendency of losing the representation of a learned distribution
when presented with data from a different distribution. This issue of ‘catas-
trophic forgetting’ is not only encountered when learning a new task, but even
with the same task under conditions such as addition of new classes of data [2].

Multiple studies [1][3] have established the stability-plasticity dilemma to be
a central tenet of the forgetting problem in both biological and artificial neural
networks. The trade-off between stable memories from past learnt information
or acquired experiences tend to be in conflict with the desired plasticity to-
wards absorption of new knowledge in neural pathways [4]. Recent experiments
in computational neuroscience were able to shed light on this phenomenon, and
established that the formation of stable memories in the brain happens with-
out significant conflict with acquisition of new short-term memories by a process
called long-term consolidation [5]. In this hypothesis, memory consolidation hap-
pens over varying time horizons. It links primarily three regions in the brain -
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the hippocampus, which deals with the processing of immediate information,
which then associates learnt features to a region called prefrontal cortex that
consolidates very recent memories (‘working memory’), and a third region called
the neocortex assembles memories from the prefrontal cortex to form stable
long-term reservoirs of learnt knowledge, with the hippocampus being able to
independently access the neocortex for matching tasks between novel arrivals of
sensory inputs to old stable memories, completing a three-stage closed loop [6].

Fig. 1. Schematic diagram of proposed NeoNet and correspondences with brain regions.
Structures of the mammalian brain relevant to the study are labelled in orange and
the corresponding neural network modules in green. Memory formation pathways are
bold arrows (orange for brain pathways, green for the brain-inspired modules); recall
pathways are dotted. Detailed diagrams of modules are included in later sections.

While neural networks used in vision are not exact replica of actual neu-
ral pathways by a long shot, there have been analogous design choices over the
years. The stability-plasticity balance in artificial neural networks has often been
described as analogous to that hypothesized for mammalian brains [7] as discov-
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ered experimentally for the latter in memory modelling experiments [4][8]. Can
models based on discoveries in neuroscience regarding memory functions of the
human brain help to design neural networks better and mitigate the problem
of forgetting during continual learning? This is not a new problem in machine
vision, but still an open problem. Can the theories of complimentary learning
in the neocortex and the pre-frontal cortex help achieve this goal? The present
work explores this possibility by modelling multi-stage recall mechanisms along
with the learning tasks, similar to the three-stage model for long term consolida-
tion [6]. For the first stage where new information is obtained and decisions are
made on sensory inputs, the hippocampus is primarily responsible in the brain,
with information on past knowledge through memory recall from the prefrontal
cortex and the neocortex. We model the hippocampus with a classifier that has
access to the incoming inputs, and is responsible for the classification task. The
memory modules are modelled as autoencoders that can be trained to generate
prior representations to serve as ’snapshots’ of previously seen information. This
analogous design is summarized in Fig 1.

1.1 Related Work

In neuroscience studies, the dual-memory theory looks at the hippocampus and
the cortex as key units towards knowledge absorption from the environment.
This has been studied in memory retention evaluations in patients of anterograde
and retrograde amnesia [9]. Studies on long-term recall from the cortex [10][11]
propose a REM sleep driven consolidation mechanism [12], with learnt knowl-
edge being subsequently overwritten from the hippocampus. Advances in neuro-
science regarding the functioning of the human memory in context of informa-
tion acquisition, consolidation, storage and retrieval, has influenced the design
of recent bio-inspired neural network solutions to forgetting. GeppNet [13] and
FearNet [14] are two such examples.

GeppNet introduced by Gepperth and Karaoguz in 2016 [13], it is a bio-
inspired network that reorganizes the input onto a two-dimensional lattice via a
self-organising map (SOM) to form a “long term memory”, which is then used by
a linear classifier. GeppNet performs rehearsal on all previous training data, plus
if sufficiently new data is presented at any stage, the SOM is updated accordingly,
otherwise left as is, thus avoiding forgetting older data easily. GeppNet+STM
is a variant that employs a memory buffer to store new samples, such that the
oldest sample is removed when presented with a new sample. The main difference
between the two models is that GeppNet+STM only re-trains in specific time
intervals, and in between those intervals any new labeled incoming data is stored
in the buffer. Thus GeppNet+STM is better at storing old data, since the original
GeppNet is updated whenever new labeled data come in.

FearNet, introduced by Kemker and Kanan in 2017 [14] and published in
2018, draws inspiration from fear conditioning in mice [8] and presents a pseu-
dorehearsal scheme to approximate the recall of memories from the median pre-
frontal cortex (mPFC). They design a module inspired by the hippocampus
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to perform novelty detection on incoming data [15], and encode learnt repre-
sentations into the mPFC inspired autoencoder during ’sleep’ stages. FearNet
considers only feature representations and thus all models are fully-connected
and use feature representations in the form of ResNet-50 embeddings directly.

1.2 Research Gap and Solution Approach

Limitation of existing models. The main constraint of FearNet (2018) is
that the entire memory consolidation occurs in the PFC module modelled on
pre-frontal cortex of the brain. However, recent studies on memory consolidation
of the brain suggest that it occurs in multiple-stages: first, there is a plastic
storage of short term memory at the pre-frontal cortex, but there is a further
consolidation of long term memory in the neocortex. The latter part is not
modelled in FearNet, thus not taking the advantage of plasticity-stability balance
in the two sections of the brain, which if suitably exploited, can be expected to
yield higher robustness against forgetting during incremental learning. GeppNet
(2016) also suffers from similar drawbacks. The use of a single module inspired by
the pre-frontal cortex causes the stability-plasticity balance to be governed with
a single module. Thus, the representations learnt during initial learning sessions
are substituted over time. In the absence of a more stable retention module, the
quality of rehearsal representations declines over successive iterations, causing
diminishing performance over longer horizons of incremental class addition. We
find that inclusion of a separate module for stable long-term knowledge retention,
inspired by the stable memory consolidation in the Neocortex (NCT), addresses
the issue of diminishing retention performance over longer incremental task sets.

Contributions of proposed model. The proposed NeoNet adds the model
of the neocortex along with associated changes in the training protocol to enforce
a division of primary responsibility towards plasticity and stability between the
two generative components (unlike in prior art related to pseudorehearsal and
generative approaches) through two main contributions as follows:

1. A Neocortex (NCT) Module is added to take into account that human mem-
ory consolidation occurs in stages in different parts of the brain: short term
memory in pre-frontal cortex and long term memory in neocortex. We hy-
pothesize that in incremental learning scenarios where new class data can
arrive over extended time in a large number of increments, knowledge reten-
tion and a consequent generation of suitable rehearsal exemplars will become
progressively challenging. Thus, we need stable memory components that are
relatively unaffected when adapting to more recent information.

2. A Multi-stage Pseudo-Rehearsal process is proposed to improve the training
regime. This helps to strike a balance between accommodating new knowl-
edge while maintaining previous knowledge: plasticity in the pre-frontal cor-
tex and stability in the neocortex.
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2 Methodology

In this section, we explain first the main new functionalities of the proposed
network and the benefits thereof. Then we go on to describe the technical details
of the main modules that constitute the network architecture.

2.1 Main functionalities of the proposed model

1) Short-long term memory balance.
Model components are motivated by the process of memory consolidation

from short-term working memory to long-term memory and subsequent recon-
solidation processes. In mammals, such systems-level consolidation has been ob-
served to occur in a circuit beginning with immediate processing in the hip-
pocampus, followed by transfer of information to the pre-frontal cortex which
acts as the primary reservoir of working memory. Finally, long-term consoli-
dation occurs over extended time by transferring memories to the synaptically
stable neocortex from the plastic prefrontal cortex [5]. This biological process
serves as an analogy for the proposed machine learning method.

We consider the hippocampal processing to represent the detection of novel
classes in input data streams (Step 1, Fig.2). The storage of temporary work-
ing memory (which occurs to a lesser degree in the hippocampus as well, but
is confined to the PFC in our task for simplicity) is implemented in an autoen-
coder module inspired by the pre-frontal cortex. The encoding of seen classes
happens immediately after the HC training for the session is completed as class
exemplar representations are extracted in the form of first fully-connected log-
its and treated as inputs and target outputs for the PFC autoencoder (Step 2,
Fig.2). Over the next sessions, when the HC module is being adapted to data
from new classes, the PFC decoder utilizes the stored class mean and the diag-
onalized covariance matrices to generate class feature representations which are
used to encode stable long term memories into the encoder-decoder architecture
representative of the neocortex (NCT) (Step 3, Fig.2). This second encoding pro-
cess is carried out in parallel with the HC training stages beyond the first session.

2) Stability-plasticity balance through multi-stage pseudo-rehearsal.
The intuition behind having two stages of pseudo-rehearsal is that the trans-

fer and consolidation of information over several stages from plastic to stable
memories [5]. Computationally, such a pipeline enables us to implement a dis-
tributed stability-plasticity balance. The neocortex (NCT) module imposes a rel-
atively strict regularisation on its parameters in terms of the encoding-decoding
processes and thus represents stability in memory storage. The pre-frontal cor-
tex (PFC) module allows for a more flexible encoding of exemplar features over
multiple sessions with relatively weak guarantees of parameter preservation re-
sulting in a comparatively relaxed regime, thus representing plasticity in memory
storage.

Sequential learning is performed as a sequence of training sessions over which
the architecture needs to demonstrate competitive accuracy while retaining past
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knowledge. There are N sessions considered, each with K classes consisting of a
variable number of instances. Feature representations from each class in a session
are used to compute class means and covariance matrices that are utilised for
pseudo generative replay in later stages.

1. HC module: In a training session M (1 < M ≤ N), the HC module learns a
classification task on available classes. Note that a secondary input branch
is used after the convolutional layers of the HC network during incremental
training to enable the introduction of generated embeddings for previously
seen classes. In subsequent incremental learning stages, these embeddings
are generated through the dual pseudo-rehearsal scheme.

2. PFC module: The learning in the HC stage is followed by extraction of repre-
sentations over validation set instances per class considered. These exemplar
feature representations are then used to train the autoencoder based PFC
module where a reconstruction error is coupled with the classification loss
to learn reproducible class reconstructions

3. NCT module: For long-term stable memory storage, the representations so
generated are encoded on to the NCT module inspired by the neocortex.
The long-term storage interval is approximated within L successive training
sessions, and thus, when the HC network is trained on the M th session, the
encodings from the PFC are written on to the NCT, which thus far would
have been exposed to representations up to the (M − L)th session only.

2.2 Design of components

1) Hippocampus (HC) Module. This is designed for immediate knowl-
edge absorption upon arrival of labeled data by means of a convolutional model
enforcing a Bergman distance based classification scheme, inspired by the prob-
abilistic framework of [15] with the minimization objective formulated as:

P (c|x) =
zc∑
c1
zc1

(1)

Where,

zc = 1/δ +min
j

|x− wc,j |
2 (2)

δ is a small correction factor to ensure boundedness, wc,j is the jth stored
example for class c, and x is the incoming sample. The architecture is schemat-
ically represented in Fig.1, and implements a sequence of convolutional opera-
tions, followed by fully-connected layers. The network is so implemented as to
be able to take dual input: the auxiliary input layer is appended directly to the
fully connected set, allowing 1-D feature representations. This allows generated
exemplars of a past task to be a feature representation from the autoencoder
modules instead of stored past exemplars. This is analogous to the mammalian
ability to encode salient information about surroundings with very few exem-
plars and the ability to form associations with prior knowledge.
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Fig. 2. Three modules of the architecture, HC (for immediate processing), PFC (for
short-term storage), NCT (long-term stable storage of learnt representations) shown
with encoding and rehearsal pathways.

2) Pre-frontal Cortex (PFC) Module. Mimicking the function of its
namesake in the human brain, the PFC module encodes memories of the current
task while the data is still available after the HC training, with the decoder
arm learning to reconstruct these exemplars with a high degree of fidelity. The
encoder and decoder branches are constructed as fully-connected autoencoder
layers being downsampled and upsampled respectively. To allow adaptation to
novel data and allow for encoding steps to occur with a sufficient plasticity (mod-
eling short term memory handling in human brain), the reconstruction error is
used only between the finally generated representations and the input without
intermediate regularization. Class mean features and class specific covariance
matrices are retained in the memory and used to sample representations to be
used as input to the PFC to generate pseudo-exemplars through the decoder.
Such attempts at pseudo-rehearsal, proposed by [16] and revived by [14] allow
generating past representations without requiring actual storage of exemplars.

3) Neocortex (NCT) Module. In the human brain, the long term po-
tentiation of memories (synaptic consolidation) occurs over extended time, and
manifests as a transfer of relevant working memories from the pre-frontal cortex
into the neocortex. The neocortex inspired NCT module is treated as a stan-
dard autoencoder deriving reconstructed class exemplars from the PFC module
to create more stable encodings. The schematic details of the NCT module along
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Fig. 3. Long term memory consolidation in the proposed Neocortex (NCT) module

Algorithm 1: NeoNet Training Protocol

1 Define parameters
– K = no. of classes, p = no. of classes per incremental learning step.
– S = max no. of increments = K/2/p+ 1.
– L = no. of increments between HC to PFC and between PFC to NCT.

Perform base class training

– K = Base train HC with K/2 classes.
– S = Fine-tune HC → PFC, PFC → NCT.
– L = Retain base µ, σ for incremental learning.

Perform incremental learning
Initialise counters M = 0;M ′ = 0;
while M < S do

M = M + 1;
while M ′ < M do

M ′ = M ′ + 1;
Short consolidation: fine-tune HC → PFC;
Long consolidation: if M ′ < M − L then fine-tune PFC → NCT;

end

Update µ, σ;
Rehearsal: Feeback NCT representation into HC;
Adaptation: Adapt HC on incremental classes;

end
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with the long term memory consolidation process therein is presented in Fig. 3
and also represented in Algorithm 1. The design considerations are as follows:

– Contrary to the relaxed regularization requirements in the PFC reconstruc-
tion to ensure plasticity, the NCT module attempts to facilitate stability in
the learnt representation memories, and hence requires more specific regu-
larization. For the choice of the intermediate regularization, we focus on the
possibility to include a formulation that inherently prioritizes the preserva-
tion of the most salient learnt knowledge and ensure minimal disruption to
the task specific parameter importance. Such a formulation should ideally
be expressible as an information content measure.

– Because of the possible interpretation of intermediate representations as nor-
malized values for feature salience probabilities, the corresponding stages of
the encoder and decoder are mutually regularized with a KL divergence
measure. This allows implicit consolidation of parameters most pertinent to
such encoding generation as the KL divergence is used between the decoder
arm optimized for an immediate previous set of classes and the encoder arm
being exposed to the new arriving representations.

– The usage of a KL divergence approach enables an implicit measure of pa-
rameter importance because of the correspondence with the Fisher informa-
tion matrix. The second derivative of the KL divergence that yields a Fisher
metric in a product form with parameter perturbation squared [17].

– As the objective function minimized in this module is essentially a sum-
mation over the KL divergences computed across corresponding normalized
encoder and decoder layers, the gradient descent algorithm optimizes the
derivative of this summation of KL divergences.

3 Experiments and Results

3.1 Experimental Setup

Model Setup: The model architectures are shown in Fig.2 and Fig.3. All
layers in all the modules are initialized with a Xavier scheme [18]. The number
of fully-connected units at the encoder input/decoder output is kept the same
for the PFC and NCT modules and equal to the first fully-connected layer in the
HC to ensure compatibility of feature representations. The specific dimensions
of the features were established through a grid search on the number of units,
checking for suitability from 128 to 1024 units. The suitable number of layers
used in the encoders and decoders and in the HC module were found for each
dataset and the finally chosen configurations were the ones that performed the
best on average across datasets with 50% of classes considered. The training,
validation and test split was maintained at 60:20:20 in all cases.

Training: Initial training of the HC is carried for 500 epochs, followed by
PFC consolidation over 200 epochs. The learning rate in the encoder is kept
the same as the HC model and that of the decoder is initially kept at 1/10th
of the HC learning rate and is decreased by a factor of 10 every 50 epochs.
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This is to ensure that the decoder arm efficiently learns to regenerate prior
representations. In the NCT module, the learning rate regime is kept similar to
the PFC but training is carried out for 250 epochs to ensure a stable consolidation
of representations. Replay settings involve representations generated from both
the PFC and NCT modules supplied together to the auxiliary input of the HC.

Baselines: Considering the class-incremental focus here, we consider the
multi-class adaptation of learning without forgetting (LwF.MC), iCaRL [19],
LwM [20] and incremental rebalancing classifier (ICR) [21]. Also, due to our neu-
roscience motivations, we also compare with FearNet [14] and GeppNet+STM
(GeppSTM) [13]. Since our test performances are evaluated using the HC mod-
ule (with pseudorehearsal inputs), we modify architectures of iCaRL, LwM, ICR
and LWF.MC to have the same sequence of convolutional and fully-connected
layers while implementing their methods for exemplar storage and replay (details
in Appendix) for a fair comparison. A cosine distance based distillation loss is
implemented for the ICR baseline in line with the setting in the original paper.

Datasets: Incremental learning tasks are performed on the CIFAR 100
dataset [22], CalTech 256 [23] and CUB-200 [24] datasets. CIFAR-100, consisting
of 100 classes of images of 32 x 32 pixels. CUB-200 has 200 classes of images of
birds, curated for a fine-grained classification task. We use the 2011 version of
CUB-200. CalTech-256 provides 256 categories of at least 80 images per cate-
gory, including images with clutter and an overall increased difficulty compared
to CIFAR-100. The datasets are chosen to evaluate the model on progressively
difficult image classification tasks.

Evaluation Metrics: We adapt metrics of evaluation proposed by Kemker
et al. [25] to our incremental learning performance in terms of prior task accuracy
retention, and the present task accuracy. Normalized accuracy of learning new
tasks is the average validation performance on the test data of all classes in the
current session and indicates generalization ability over new data distributions.
Mathematically it may be formulated as Enew = 1

N−1

∑N

2

Anew

Aall

, where Anew

is the validation accuracy on the new classes seen in the most current session.
Normalized accuracy of retaining old knowledge is the accuracy on the initial
set of classes after all classes have been trained. Mathematically this may be
formulated as Einit =

1

N−1

∑N

2

Ainit

Aall

, where Ainit is the accuracy for the classes
considered on the initial training session after all sessions are completed and
Aall is the accuracy on the validation data of all classes in the dataset. The
past performance at current session is an average over all the prior sessions with
respect to class-wise mean validation performances.

3.2 Results and Analysis

Quantitative Results: In the first session, a proportion of the classes are used
to train the models (initially half of available classes are trained for in the first
session, with subsequent ablations of 25% and 75%), followed by increments of
2, 5 and 10 classes in successive sessions. Results for the method in these set-
tings with baselines are shown in Table 1. On the ability to preserve knowledge,
the model is seen to resist losing out salient information over prior tasks, post
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the overall completion. In order to capture the overall dynamics of information
retention, the final overall performance obtained by testing the finally obtained
HC configuration on validation data across all classes has been used to normal-
ize the metrics (Aall in Einit and Enew expressions). Thus, higher the values
of Enew, better is the generalization on new tasks, and higher values of Einit

imply superior knowledge retention. So, higher values for both imply the agent
is better both in mitigating forgetting and improving generalization.

Table 1. Performance on CIFAR 100, Caltech 256, CUB 200

CIFAR 100 CALTECH 256

Model 2 classes 5 classes 10
classes

2 classes 5 classes 10
classes

Einit Enew Einit Enew Einit Enew Einit Enew Einit Enew Einit Enew

iCaRL 0.912 0.807 0.903 0.795 0.822 0.821 0.830 0.582 0.837 0.608 0.813 0.612

LwF.MC 0.796 0.752 0.813 0.764 0.817 0.832 0.653 0.547 0.681 0.566 0.692 0.580

LwM 0.857 0.705 0.783 0.805 0.876 0.813 0.847 0.661 0.853 0.655 0.825 0.657

FEL 0.801 0.814 0.797 0.820 0.809 0.836 0.773 0.672 0.784 0.658 0.861 0.603

FearNet 0.929 0.820 0.937 0.802 0.941 0.829 0.873 0.673 0.871 0.658 0.896 0.670

ICR 0.861 0.697 0.795 0.812 0.837 0.786 0.851 0.684 0.858 0.634 0.837 0.621

NeoNet 0.935 0.885 0.945 0.874 0.952 0.893 0.922 0.731 0.907 0.756 0.918 0.768

CUB 200

Model 2 classes 5 classes 10
classes

Einit Enew Einit Enew Einit Enew

iCaRL 0.874 0.573 0.792 0.610 0.881 0.601

LwF.MC 0.638 0.471 0.743 0.541 0.675 0.572

LwM 0.858 0.612 0.853 0.632 0.840 0.629

FEL 0.703 0.784 0.710 0.682 0.673 0.791

FearNet 0.879 0.637 0.883 0.677 0.902 0.683

ICR 0.825 0.570 0.794 0.630 0.805 0.675

NeoNet 0.913 0.721 0.923 0.668 0.954 0.775

One of the objectives of proposing a separation between primarily plastic and
primary stable generative modules was to ensure that long-term consolidation of
the learnt representations can be effectively accomplished. This is necessary for
adequate retention when adding a new classes over a large number of incremen-
tal sessions, such as the cases where 2 classes per stage are added beyond the
base class training (leading to 25 incremental stages for the CIFAR 100, 50 for
CUB-200, 64 for Caltech 256 when starting with base model pre-trained on 50%
of classes). In such long incremental horizons, we find our model to have a much
better retention of knowledge as seen by the mean class accuracies over these in-
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Fig. 4. Mean test accuracy on already learnt classes for the CIFAR 100 experiments,
upon new increments of 2 classes (left), 5 classes (middle) and 10 classes (right). Num-
ber of base classes is 50. The X-axis shows the number of classes the model has been
exposed to at that point, and the Y-axis shows the mean accuracy on all these classes.

Fig. 5. Mean test accuracy on already learnt classes for the CUB 200 dataset, upon
new increments of 2 classes (left), 5 classes (middle) and 10 classes (right). Number of
base classes is 100. X-axis shows the number of classes the model has been exposed to
at that point, Y-axis shows mean accuracy on all these classes. The decline in mean
accuracy is much slower for the NeoNet in the 2-class and 5-class long-range incremental
additions, due to the separation of stable and plastic generative components.

Fig. 6. Mean test accuracy on already learnt classes for Caltech 256 dataset, upon
new increments of 2 classes (left), 5 classes (middle) and 10 classes (right). Number
of base classes is 112. The decline in mean accuracy is much slower for the NeoNet in
the 2-class and 5-class long-range incremental additions, due to the separation of the
stable and plastic generative components.
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cremental stages (Fig. 4, Fig. 5, Fig.6) even with relatively difficult datasets such
as CUB-200 and CalTech 256. Compared to other brain-inspired architectures
that explicitly relied on a memory consolidation module, our incorporation of
an NCT module to mimic long term memory formation leads to a more gradual
decline in overall performance. Thus, a more robust pseudorehearsal strategy is
formed by utilising concepts from long-term memory consolidation research.

Table 2. Effect of variation in PFC to NCT consolidation volumes

CIFAR 100 CUB

200

CALTECH

256

Einit Enew Einit Enew Einit Enew

L=0.25M 0.922 0.823 0.902 0.653 0.899 0.677

L=0.50M 0.947 0.828 0.910 0.649 0.907 0.672

L=0.75M 0.949 0.826 0.917 0.649 0.910 0.671

Table 3. Effect of variation in NCT regularization extent

CIFAR

100

CUB

200

CALTECH

256

Einit Enew Einit Enew Einit Enew

KL
(1+2+3+4)

0.947 0.828 0.910 0.649 0.907 0.672

KL (1+2+3) 0.902 0.813 0.869 0.637 0.871 0.671

KL (1+2) 0.887 0.814 0.843 0.629 0.835 0.672

KL (2) 0.801 0.809 0.782 0.626 0.779 0.668

Table 4. Effect of variation in initial session base class volume

CIFAR 100 CUB 200 CALTECH

256

Einit Enew Einit Enew Einit Enew

Base = 25% 0.912 0.819 0.892 0.636 0.903 0.668

Base = 50% 0.946 0.825 0.910 0.643 0.902 0.672

Base = 75% 0.948 0.837 0.913 0.648 0.908 0.689

Ablation studies:

– Table 2: We evaluate the balance in plasticity and stability between the
PFC and NCT modules by varying the number of classes L to be written
in a session from the PFC to the NCT between 1 to M , which is the to-
tal number of classes available in a session. In the 10-stage class increment
experiment with half of classes available at the initial training, we consider
L to be 25%,50% and 75% of M (M = 10 here) and report the results in
Table 2. The differential consolidation implemented by varying L impacts
the overall knowledge retention of the model as seen by the decline in Einit

being inversely proportional to the percentage of classes per session that is
directly transferred from PFC to NCT. Over multiple sessions new classes
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arrive and the PFC being relatively plastic preferentially adapts parame-
ters to new distributions. So its decoder is relatively impaired in its ability
to generate representations of previous classes as compared to those gener-
ated right after the original encoding session. This causes the efficiency of
rehearsal to diminish over multiple sessions. New class accuracies are prac-
tically unaffected by this change as the HC module is directly validated on
the data without reliance on external exemplars.

– Table 3: In the NCT module, varying the extent of KL divergence measure,
can affect the quality of the generated representations and the ability of the
model to retain important weights close to optimal values. This affects the
overall ability to preserve prior information and is evident in the alterations
in performance on recall of past tasks. For this experiment, we consider the
setting of 50% classes being available at initial training and L set at 50%
on 10-class increment stages. There are four levels of the KL regularization
corresponding to the four sets of encoder decoder layers. It is observed in
Table 3 that the post completion base knowledge accuracy shows a steady
decline with the removal of KL divergence regularization stages in NCT, as
evident from the steadily declining Einit values. Adaptations to new data
remain relatively unaffected as the rehearsal only sporadically impacts new
representation learning except in cases where the joint training with past
exemplars leads to particularly optimal initializations allowing for improve-
ments in learning on new data.

– Table 4: We show the overall effects of changing the proportion of classes
trained for in the initial training session. Unlike in Table 2, where the as-
sumption was that 50% of the classes in a dataset are trained for in the first
session itself, here we consider initial availability of 25% and 75% with the
remaining subjected to 10-class incremental stages. The last stage accounts
for the remaining classes, which may be less than 10, thus the discrepancy
in the 10-class stage metrics for the otherwise similar experimental state in
Table 2. The inclusion of more classes in the initial session is seen to im-
prove the final knowledge retention. The learning regime is seen to prioritize
initial sessions more than subsequent replays and a more voluminous base
knowledge translates into higher final accuracies.

4 Conclusion

We show that incorporating recent understanding of multi-stage short-long term
human memory consolidation into deep incremental/continual learning helps
in limiting forgetting previously learnt information, especially when presented
with incrementally arriving significant numbers of new class sessions. We do
this by designing modules of a deep architecture based on three sections of the
brain: Hippocampus for initial processing of incoming data and working memory,
Prefrontal cortex for short term memory with plasticity and Neocortex for long
term memory with stability. These modules work in tandem and improved results
are obtained in standard incremental learning experiments against benchmark
methods on public datasets.
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