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Abstract. Crowd counting aims to identify the number of objects and
plays an important role in intelligent transportation, city management
and security monitoring. The task of crowd counting is much challeng-
ing because of scale variations, illumination changes, occlusions and poor
imaging conditions, especially in the nighttime and haze conditions. In
this paper, we present a drone based RGB-Thermal crowd counting
dataset (DroneRGBT) that consists of 3600 pairs of images and covers
different attributes, including height, illumination and density. To ex-
ploit the complementary information in both visible and thermal infrared
modalities, we propose a multi-modal crowd counting network (MM-
CCN) with a multi-scale feature learning module, a modal alignment
module and an adaptive fusion module. Experiments on DroneRGBT
demonstrate the effectiveness of the proposed approach. 1
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1 Introduction

Crowd analysis is of great importance because of a great practical demands such
as assembly controlling and other security services. However, it is slow and unre-
liable to count people using any crowd monitoring system that relies on humans.
There is a need for an automatic computer vision algorithm that can accurately
count the number of people in crowded scenes based on images and videos of
the crowds. Therefore, crowd counting has been widely studied and a growing
number of network models have been developed to deliver promising solutions
for this mission. These methods usually generate the density map according to
the input image, and obtain the crowd counting by integrating the predicted
density map.

Previous work [1–4] for scene analysis are mostly based on visible data. How-
ever, visible data may have drawbacks of illumination changes and poor imaging
conditions in the nighttime. The thermal infrared data has been proven to be
effective in boosting image analysis [5–8], and allows scene perception in day and
night. However, the research of RGB-T crowd-counting is limited by the lack of

1 # these authors contributed equally to this paper as co-first authors
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a comprehensive image benchmark. Therefore, we construct a drone based RGB-
Thermal crowd counting dataset, named as DroneRGBT, which consists of 3600
pairs of images and covers different attributes, including height, illumination
and density. Compared with the existing crowd-counting datasets, the proposed
DroneRGBT has the following main characteristics: 1) Different from most of
the existing datasets, it is a drone-view datasets with multi-modalities. 2) Its
alignment across modalities is highly accurate, and does not require any pre-
or post-processing. 3) It is a large-scale dataset and collected in many different
scenes, with 175,698 annotated instances.

With the created benchmark, we propose a novel approach for RGB-T crowd-
counting. The main goals of our framework are: 1) The pipeline can predict den-
sity map according to a single modality only so that it can still work well when
any modality data is missing. 2) Two modalities reuse the model as much as
possible to reduce the amount of model parameters. 3) The fusion results are
better than the results based on single modality. Hence, our pipeline, named
Multi-Modal Crowd Counting Network (MMCCN), is based on ResNet-50 with
three specific modules, i.e., multi-scale feature learning module, modal align-
ment module, adaptive fusion module. All the modules are optimized jointly
and trained in an end-to-end manner. The pipeline can effectively extract low-
level modality-specific feature and high-level modality-aligned semantic feature,
and adaptively combine the prediction results to acquire a good fusion estima-
tion. We design some experiments to demonstrate that our proposed pipeline can
effectively utilize two modalities, RGB-Thermal, to estimate more accurate den-
sity map, resulting in more precise counting. Compared with other baselines in
different aspects, we conclude that our model is more efficient than two-stream
baseline and more precise than simple average baseline. Additionally, we also
propose a special modal transfer method for our MMCCN framework to solve
the problem of modal missing or the case of having single modality only. To be
specific, we present a DM-CycleGAN, which can effectively generate thermal in-
frared data through visible data. During the training process of DM-CycleGAN,
we introduce a density-map (DM) loss. It can make the generated image and
the real image as similar as possible in the space which is used to count the
instances. Extensive experiments prove that the transfer performance of DM-
CycleGAN is better than that of original CycleGAN in field of crowd-counting.
Fig. 1 demonstrates the flowchart of the proposed method.

This paper makes three major contributions for RGB-T crowd-counting.

* We create a new benchmark dataset containing 3600 registered RGB and
thermal image pairs with ground truth annotations for evaluating RGB-T
crowd counting methods.

* We propose a novel end-to-end pipeline, MMCCN, for RGB-T crowd-counting.
Extensive experiments on our benchmark dataset demonstrate the effective-
ness of the proposed approach and the importance of each component of the
pipeline.

* We prove a useful way to use massive pairs of registered multi-modal images
to train a modal transfer model. The proposed model, DM-CycleGAN, can
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Fig. 1. MMCCN and DM-CycleGAN can be trained by using DroneRGBT benchmark.
In the inference process, a pair of registered RGB-T data or data generated by DM-
CycleGAN can be used as the input of MMCCN to estimate the density map.

effectively generate thermal infrared data though visible data and improve
the counting performance in multi-modal tasks.

2 Related Work

2.1 Crowd Counting Datasets

According to image acquisition methods, the existing crowd counting datasets
can be divided into three parts: surveillance-view datasets, free-view datasets
and drone-view datasets. Surveillance-view datasets are collected by surveil-
lance camera, which usually contain crowd images in specific indoor scenes or
small-area outdoor locations. UCSD [9], Mall [10], WorldExpo’10 [11] and Shang-
haiTech Part B [12] are typical surveillance-view datasets. Free-view datasets

contain images collected from the Internet. The attributes of these type datasets
vary significantly. There are also many free-view datasets for evaluation criteria,
such as UCF CC 50 [13], UCF-QNRF [14] and ShanghaiTech Part A [12]. Our
dataset is a drone-view based dataset which is collected by UAV.

2.2 Crowd Counting Methods

In recent years, there are more and more researches on crowd counting and
more recent methods used CNNs to tackle crowd counting [12, 15, 1–3]. Zhang et
al. [12] propose a classical and lightweight counting model called Multi-Column
Convolutional Neural Network (MCNN), which can estimate density map by
learning the features for different head sizes by each column CNN. A spatial
FCN (SFCN) [3] is designed by Wang et al. to produce the density map. After
the spatial encoder, a regression layer is added in SFCN. In this work, we propose
a baseline network which is used to predict crowd number on RGB-T datasets.

2.3 Multi-Modal Learning

Multi-Modal learning has drawn more attentions in the computer vision com-
munity. In this paper, we focus on integrating RGB and thermal infrared data
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Table 1. Comparison of the DroneRGBT dataset with existing datasets.

Dataset Resolution Frames Thermal View Max Min Ave Total

UCSD [9] 158×238 2000 - surveillance 46 11 24.9 49,885
MALL [10] 640×480 2000 - surveillance 53 13 31.2 62,316
UCF CC 50 [13] - 50 - free 4543 94 1279 63,974
WorldExpo [11] 576×720 3980 - surveillance 253 1 50.2 199,923
SHT A [12] - 482 - free 3139 33 501 241,677
SHT B [12] 768×1024 716 - surveillance 578 9 123 88,488
UCF-QNRF [14] - 1535 - free 12,865 49 815 1,251,642
DroneRGBT 512×640 3600

√
drone 403 1 48.8 175,698

Dark Dusk Light Low Medium High

(a) (b)

Fig. 2. Some example image pairs in the DroneRGBT dataset.

[16–19]. The typical problems that use these two modalities are as follows. (1)
RGB-T Saliency Detection. Li et al.[16] propose a novel approach, multitask
manifold ranking with cross-modality consistency, for RGB-T saliency detection.
(2) RGB-T tracking. Li et al. [18] provided a graph-based cross-modal ranking
model for RGB-T tracking, in which the soft cross-modality consistency between
modalities and the optimal query learning are introduced to improve the robust-
ness. Different from these typical works, our work focus on crowd-counting and
it is the first benchmark and baseline for RGB-T crowd-counting.

3 DroneRGBT BENCHMARK

3.1 Data Collection and Annotation

Our DroneRGBT dataset is captured by drone-mounted cameras (DJI Phantom
4, Phantom 4 Pro and Mavic), covering a wide range of scenarios, e.g., campus,
street, park, parking lot, playground and plaza. After cleaning the unavailable
data, we use the Homography method to register RGB images with infrared
image. We label the number of people based on the head count of infrared images.
The ground truth annotation file is saved as xml format.

And then, we divide the training set and the test set according to the il-
lumination. We first divide the dataset into three categories: dark, dusk, and
light, and then divide each category into two parts, one part for training and
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Fig. 3. The distribution of illumination, height, and density attributes in the training
set and the testing set from left to right. Bars represent the percentage of this property
in the training and testing sets.

the other for testing, while ensuring that the training set and testing set have
different scenes to reduce the chances of overfitting to particular scenes.

3.2 Data Characteristic

The DroneRGBT dataset is the first drone-view crowd counting dataset with
both RGB and thermal infrared data and it contains images pairs taken at differ-
ent locations with large variations in scale, viewpoint and background clutters.
Tab. 1 compares the basic information of DroneRGBT and existing datasets.
In addition to the above properties, DroneRGBT is more diverse than other
datasets. Specifically, the following main aspects are considered in creating the
DroneRGBT dataset.

* Illumination. The image pairs are captured under different light conditions,
such as dark, dusk and light. Under different conditions, the difference in
illumination is obvious, which can be distinguished by experience..

* Scale. Like most of surveillance-view and free-view based benchmarks which
usually include instances with different scales, different object scales are also
taken into account for our dataset. So our dataset are collected in different
altitudes which significantly affects the scales of object. We delineate 30-50
meter as low altitude, 50-80 meter as medium, and 80-100 meter as high.

* Density. Density means the number of objects in each image pair. In our
dataset, the density varies from 1 to 403. The distribution of our dataset
based on these attributes is shown in Fig 3.

Some typical sample image pairs in different attributes from our DroneRGBT
dataset are shown in Fig. 2. It shows the diversity of our datasets.

3.3 Evaluation Metrics

Following previous works for crowd counting, we use the Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) to evaluate the performance of
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Fig. 4. The architecture of our multi-modal crowd counting network. The pipeline is
color-filled to represent the different modules as shown in the color legend on the right
side of the figure. Numbers in blue rectangles stand for the kernel size of convolution
and numbers of kernel. The block is corresponding to the Tab. 1 in the paper [20].

our proposed method. The MAE and RMSE can be computed as:

MAE =
1

n

n∑

i=1

∣∣∣Ci − Ĉi

∣∣∣ , RMSE =

√√√√ 1

n

n∑

i=1

(
Ci − Ĉi

)2

(1)

where n is the number of images, Ci is the counting label of people and Ĉi is
the estimated value for the i-th test image.

4 Proposed Approach

4.1 Multi-Modal Crowd Counting Network

The pipeline of Multi-Modal Crowd Counting Network (MMCCN) is shown in
Fig. 4. Our network is based on ResNet-50 [20] with three specific modules, i.e.,
multi-scale feature learning module, modal alignment module, adaptive fusion
module. The feature learning module is used to extract both generality feature
and modality-special feature of the input data. The pair of extracted features are
separately fed into the modal alignment module to further extract the high-level
semantic feature and each pair of semantic feature are aligned to same feature
space at the same time. After using the high-level semantic feature to regress the
crowd number, the pipeline fuse the prediction output based on visible spectrum
and thermal infrared data by adaptive fusion module to obtain the final result.

Multi-Scale Feature Learning Module Due to different principles of imag-
ing physics, the distributions between visible spectrum and thermal infrared data
are different. One intuitive thought will be to extract their discriminative fea-
tures respectively. However, it will increase the parameters of network and might
degrade efficiency. Besides, two-stream also ignore modality-shared feature learn-
ing. To reduce computational burden, we use generality extractor to obtain the
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common information and modality extractor to extract modality-special feature.
The generality extractor is the first two blocks of ResNet-50. Modality extractor,
where consists of a convolution layer, is used to extract modality-special feature
representations with a little computational burden.

In multi-scale feature learning module, each block has a modality extractor.
The outputs of each generality extractor and modality extractor is element-wise
added together. For example, the feature of thermal infrared data fT is computed
by Equ. 2.

fT = Fg(T ;σg) + FT
m(T ;σT

m) (2)

where Fg and FT
m stand for generality extractor and modality extractor of ther-

mal modality, respectively. And σg and σT
m are the parameters of the correspond-

ing extractors. So, the feature of thermal infrared data depends on both σg and
σT
m. Although the modality extractor only has less parameters, the module also

can effectively extract discriminative feature of visible spectrum and thermal
infrared data respectively. The reason is as follows. Firstly, Equ. 2 can be sim-
plified when we denote the transfer function as a convolution operation. And
then we can merge the matrix as follows.

fT = Wg ∗ T +WT
m ∗ T = (Wg +WT

m) ∗ T = MT ∗ T (3)

where Wg represents the parameter of generality extractor and WT
m stands for

that of modality extractor. Convolution operation is denoted as ∗. As a result, we
can find a new weight matrix MT which can focus on modality-specific feature.

Modal Alignment Module Our hypothesis is that the distribution changes
between bi-modality are low-level characteristics rather than high-level. The
high-level semantic information between visible spectrum and thermal infrared
data is similar, because these pairs of images are shot in the same place with
registration. Therefore, we try to reuse the latter network and attend to map the
RGB input to features which are aligned with thermal feature space. In the spirit
of adversarial training in GAN [21, 22], the modal alignment module is trained by
a minimax game. It consists of a aligner model and a discriminator model. The
aligner learn to align the feature maps between RGB and thermal infrared data,
and the discriminator differentiate the feature distributions. These two models
are alternatively optimized and compete with each other. Specifically, the back-
bone of aligner, which aims to align feature, is the Conv4 x of ResNet-50 with
1 stride for all convolution. In order to avoid gradient unstable, we explore the
least squares loss rather than the sigmoid cross entropy loss function to optimize
the our model, where the least squares loss function can relieves the problem of
vanishing gradients. Therefore, the loss for learning the aligner is:

min
A

J(A) = min
A

1

2
EfV ∼P

fV
[D(A(fV ))− c)]2 (4)

where A stands for the aligner and D means the discriminator. The low-level
modality-special feature of visible spectrum data extracted by multi-scale feature
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learning module is denoted as fV . The discriminator would differentiate the
complicated feature space, which has 3 convolution layers with 1×1 kernel size.
And it is optimized via:

min
D

J(D) = min
D

1

2
EfT∼P

fT
[D(A(fT ))− a]2 +

1

2
EfV ∼P

fV
[D(A(fV ))− b]2 (5)

The definitions of symbols are same as the earlier ones. To make A align the
modal features as close as possible, we set c = b. So, by using the 0-1 binary
coding scheme, the parameters is set by a = c = 1 and b = 0 in this model.
By alternative updating of D and A, decision boundary of the least squares
loss function can force the aligner to generate feature of both modality toward
decision boundary. Note that the discriminator model is only used in training
processing to provide the supervised signal for the align model. During the infer-
ence process, only the align model is used to obtain aligned high-level features.

Adaptive Fusion Module By using a regression module, we can obtain the
density map predicted through visible spectrum and thermal infrared input,
respectively. MT denote the density map predicted by our pipeline when the
input is thermal infrared data. MV is density map when the input is visible
spectrum data. In ensemble learning, the result of multiple-model fusion usu-
ally can achieve better than the direct result of single model. Therefore, the
prediction result of our model is a expectation, which combines MT and MV .

E(M) = MT × p(MT ) +MV × p(MV ) (6)

where p(MT ) is the probability of MT . Similarly, the probability of MV is de-
noted as p(MV ). The probability here means the confidence of corresponding
output. Given that the confidence depends on the pair of input, we use a addi-
tional network to regress the probability based on multi-scale feature. The details
of this module are shown in Fig. 4. Therefore, p(M) = p̃(M)× p̂(M), where p̃ is
the prior confidence and p̂ is the confidence predicted by network. Using Equ 6,
each modality density map multiplies corresponding confidence map to get the
final result. All the parameters of the pipeline are learned by minimizing the loss
function J(M).

J(M) =
1

MN

M∑

j=1

N∑

k=1

[(E(M)i,j −MGT
i,j )2

+ λT (M
T
i,j −MGT

i,j )2 + λV (M
V
i,j −MGT

i,j )2]

(7)

where MGT is the ground-truth of the density map. λT and λV are weighting
factors of loss.

Loss Function Our final objective for network becomes

J = J(M) + λa(J(D) + J(A)) (8)

where λa is the weight for the align loss. J(D) is just used to optimize the
discriminator model.
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Fig. 5. The framework of the DM-CycleGAN. The pipeline in blue color area is the
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area. Pre-trained model is shared and frozen.

4.2 DM-CycleGAN

In some cases, due to lack of the infrared acquisition equipment, the thermal
infrared data is not acquired. So, we consider whether we can utilize the visible
data to generate infrared data and use generated infrared data and visible data
as the input of our MMCCN network for crowd-counting. The original idea was
to use CycleGAN [23] to handle this modality transfer problem, which trans-
lates visible data into infrared data. However, given that the loss function of
CycleGAN do not constrain local details, original CycleGAN can not focus on
local patterns and texture features. So, we propose a modality translator, called
DM-CycleGAN, to generate meaningful infrared image.

Framework For making generated image meaningful, we assume that the dis-
tance between the generated image and the real image in the space which is
used to count the instances needs to as close as possible. In this pipeline, a pre-
trained crowd counter is viewed as the spatial mapping converter, which can
transfer the image from image space into density-map space. Therefore, the fake
image generated by the original CycleGAN and real infrared image are trans-
ferred into density-map space by this converter, respectively. And a Density Map
Mean Square Loss is introduced to force generated image to become close to real
image in density-map space. This extra loss can force GAN to focus on person
in the image. The specific description of the DM-CycleGAN framework is shown
in Fig. 5.

Loss Function Firstly, the symbol definitions are the same as CycleGAN.
Generator and discriminator are defined as G and D, respectively. R and T
stand for visible data and thermal infrared data. Therefore, the Density Map
Mean Square(DM) Loss is defined as:

LDM (GR→T , GT →R,R, T ) =
E(iT ,iR)∼IT ,R

[MSE(C(GR→T (iR)), C(iT )) +MSE(C(GR→T (GT →R(iT )), C(iT )))]
(9)
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where C stands for the space mapping by pre-trained crowd-counter, MSE rep-
resents the mean square error between the generated image and real image in
density-map space. Finally, the final objective of DM-CycleGAN is defined as:

Lfinal (GR→T , GT →R, DR, DT ,R, T )
= LGAN (GR→T , DT ,R, T )
+LGAN (GT →R, DR, T ,R)
+λLcycle (GR→T , GT →R,R, T )
+µLDM (GR→T , GT →R,R, T )

(10)

where the definition of LGAN and Lcycle are the same as original CycleGAN,

LGAN (GR→T , DT ,R, T )
= EiT ∼IT [log (DT (iT )]+EiR∼IR [log (1−DT (GR→T (iR))]

(11)

Lcycle (GR→T , GT →R,R, T )
= EiR∼IR [‖GT →R (GR→T (iR))− iR‖1]+EiT ∼IT [‖GR→T (GT →R (iT ))− iT ‖1]

(12)
And the λ and µ are the weights of cycle-consistent loss and density-map loss,
respectively.

5 Experiments

5.1 Experiments on DroneRGBT Dataset

Training Details The training dataset of DroneRGBT consists of 1800 pairs of
registered images and corresponding ground truth annotation files. The annota-
tion is converted into a binary map with a Gaussian filter of standard deviation
5. In addition, data augmentations like rotation, random crop are used to avoid
overfitting. The optimizer we use is Adam [24] with the following hyper param-
eters: learning rate 10−5 with stepped decay rate 0.995, β1 = 0.9, β2 = 0.999,
batch size=8. And λT , λV , λa are set by 1, 1 and 0.005. We alternatively op-
timized the aligner model and discriminator model of modal alignment module
with the adversarial loss for aligning two domain. In adversarial learning, we
utilized the Adam optimizer with a learning rate of 10−5 and a stepped decay
rate of 0.98 every 100 joint updates, with weight clipping for the discriminator
being 0.03. Prior confidence p̃(MT ) and p̃(MV ) are set as 1 and 0, respectively.

The backbone of our network is ResNet-50. What we should pay special at-
tention to is that there are several Batch-Normalization layers in the ResNet.
However, the calculation procedure of Batch-Normalization layer is different be-
tween training process and inference process [25]. In the training process, ‘mean’
and ‘variance’ are computed by the samples in the mini-batch. ‘mean’ and ‘vari-
ance’ used in the inference process are the ‘moving average mean’ and ‘moving
average variance’ counted by training data. In this pipeline, two domains (visible
data and thermal infrared data) are share the backbone network. So, ‘moving
average mean’ and ‘moving average variance’ may be computed by both visible
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Table 2. The performance of state-of-art methods with different modalities on
DroneRGBT. MAE and RMSE are shown.

Method Journal/Venue & Year
Thermal RGB

MAE RMSE MAE RMSE

MCNN [12] CVPR 2016 13.64 19.77 31.13 40.87
CMTL [26] AVSS 2017 19.35 27.05 19.14 28.46
MSCNN [27] ICIP 2017 14.89 20.41 23.38 28.40
ACSCP [28] CVPR 2018 13.06 20.29 18.87 28.31
SANET [29] ECCV 2018 12.13 17.52 14.91 21.66
StackPooling [30] CoRR 2018 9.45 14.63 14.72 20.90
DA-NET [31] Access 2018 9.41 14.10 13.92 20.31
CSRNet [15] CVPR 2018 8.91 13.80 13.06 19.06
SCAR [32] NeuCom 2019 8.21 13.12 11.72 18.60
CANNET [33] CVPR 2019 7.78 12.31 10.87 17.58
BL [34] CVPR 2019 7.41 11.56 10.90 16.80

data and thermal infrared data so that the distribution between train data and
test data becomes more and more different, and as a result it leads to a bad in-
ference result. In our experiment, when the Batch-Normalization layers is frozen
during training, the network is easier to overfitting. So, we use different routes
to calculate statistics of dataset, respectively.

Compared with Baseline Firsly, we try to prove that multi-modal fusion can
achieve better results than single mode. Therefore, we test the performance of
state-of-art models on the single modality of our benchmark dataset. We select
several advanced RGB crowd counter for evaluations, including MCNN [12],
CMTL [26], MSCNN [27], ACSCP [28], SANET [29], StackPooling [30], DA-
NET [31], CSRNet [15], SCAR [32], CANNET [33], BL [34]. Specifically, these
models are trained by a single modal data and tested in corresponding modal
test dataset, respectively. The experiment results is shown in Tab. 2.

In addition, in order to evaluate that our proposed model can more effectively
and efficiently integrate the two modal features, we compare our method with
other baseline models. Baseline #1 This pipeline is a two-stream network which
each stream is the first three blocks of ResNet-50 and is used to extract modal-
specific feature. And then the output of each stream are concatenated in channel
dimension. After reducing the dimension by a convolution layer with 1*1 kernel
size, the high-level fusion feature is learned by the backend network. The regres-
sion module of this pipeline is same as our proposed pipeline. Baseline #2 Apart
from the first convolution layer which is used to extract modal-specific feature,
the whole pipeline is share the same weight like siamese network [35]. The final
prediction result is the average of the prediction by each branch. Comparison
results are shown in Tab. 3.

It can be seen that our MMCCN performs favorably against the state-of-the-
art methods. Our MMCCN obtains 7.27 MAE score and 11.45 RMSE score, but
the most competitor BL [34] gets 7.41 MAE score and 11.56 RMSE score. The
result shows that modality fusion can further improve the counting result. Com-
pared with other two baselines, although the accuracy of our model is slightly
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Table 3. Comparison of our approach with other proposed baseline on DroneRGBT
dataset.

Method
Precision Model

Size(M)
Speed

(fps)
GFLOPs

MAE RMSE

Baseline #1 7.18 11.43 20.72 22 16.54
Baseline #2 11.07 17.15 9.39 24 15.00
MMCCN 7.27 11.45 10.47 17 16.55

Table 4. The performance of three heads on several break-down subsets.

Method
Overall dark dusky light

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MMCCN(RGB) 11.53 16.75 19.76 24.52 11.14 16.07 10.03 15.23
MMCCN(T) 7.49 11.91 11.35 15.95 7.09 11.19 7.16 11.69
MMCCN 7.27 11.45 12.02 15.96 6.92 11.00 6.83 10.69

lower than that of the baseline #1, our model has less parameters, and each
modality is decoupled in MMCCN so that it can work well even if the input
is only a single modality. Because there is no module coupling between MM-
CCN(T) and MMCCN(RGB), they can work independently and still achieve
competitive prediction results. Further more, the performance of three heads on
several break-down subsets is shown in Tab. 4.

Ablation Study To analyse the importance of each component of our proposed
MMCCN model, we additionally construct some variants and evaluate them on
the Drone-RGBT dataset. MMCCN(sBN) means that the Batch-Normalization
layer of model only has one route as the original ResNet. MMCCN(fBN) stands
for the Batch-Normalization of the pipeline is frozen when training the network.
MMCCN(w/o mam) indicates the model that removes discriminator model of
Modal Alignment Module. And the network is only trained by loss J(M). MM-
CCN(w/o me) denotes the method that further remove two modality extractors
of Multi-scale Feature Learning Module.

All variants are trained on the training set and tested on the testing set. The
training steps and other parameters are identical, and meanwhile the evaluation
protocol in different experiments are same too. From Tab. 5, it shows that our
MMCCN achieves better results than its variants.

Qualitative Results From the quantitative results, we find that fusion based
on confidence can improve the prediction results. To test the difference between
the density map predicted by MMCCN and MMCCN(T), we visualize the den-
sity map respectively shown in Fig. 6. In addition, we also visualize the con-
fidence map predicted by our Adaptive Fusion Module. From the qualitative
results, we find that due to the noise of infrared data, result of MMCCN(T)
may contain some false positives. By utilizing both RGB and Infrared feature,
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Table 5. Comparison of our approach with its variants to prove the importance of
each component.

Method
Overall

MAE RMSE

MMCCN(sBN) 17.56 (↓ 10.29) 22.34 (↓ 10.89)
MMCCN(fBN) 11.46 (↓ 4.19) 16.41 (↓ 4.96)
MMCCN(w/o me) 7.34 (↓ 0.07) 11.74 (↓ 0.29)
MMCCN(w/o mam) 7.28 (↓ 0.01) 11.76 (↓ 0.31)
MMCCN 7.27 11.45

        RGB                     Infrared               MMCCN(T)           MMCCN                Confidence

Fig. 6. Qualitative results of MMCCN.

model will reduce the confidence of false positive. As the result, the prediction
results improved.

5.2 Experiments on Single Modality

Training Details DM-CycleGAN is trained on the training set of DroneRGBT.
During the training phase, the λ and µ are set as 10 and 100, respectively. We use
the Adam solver with a batch size of 1. All networks were trained from scratch
with a learning rate of 0.0002. Data augmentations like rotation, random crop
are used to avoid overfitting.

Results on MMCCN without re-trained We generate fake infrared im-
ages by using the visible data in our testing set of DroneRGBT. To test the
meaningful of the generated image, we take the generated images as the input
of the MMCCN to test whether it can improve the prediction results compared
with the single modality. The MMCCN(RGB) method corresponds to the MM-
CCN method only accepting RGB image. The DM-CycleGAN∗ and CycleGAN∗

method receive both RGB image and infrared image. But the infrared image
in DM-CycleGAN∗ is generated from DM-CycleGAN, and CycleGAN∗ method
generates infrared image through CycleGAN. Results in Tab. 6 shows that DM-
CycleGAN∗ performs inferior than MMCCN(RGB) (i.e., 10.92 MAE score vs.
11.53 MAE score). It proves that multi-modality can improve the results though
the information content of fake infrared image is based on visible image. At
the same time, the Structural Similarity Index (SSIM) between the generated
image and real image are also shown in this table. This experiment proves DM-
CycleGAN and MMCCN can be used together to boost the result when we only
have one modal data.
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Table 6. The performance of generated image on pre-trained MMCCN.

Method
MMCCN

SSIM
MAE RMSE

MMCCN(RGB) 11.53 16.75 -
CycleGAN∗ 13.45 18.99 0.44
DM-CycleGAN∗ 10.92 16.19 0.49

RGB Infrared DM-CycleGAN CycleGAN Result of CycleGANResult of  Infrared Result of  DM-CycleGAN

AE:0.678

AE:1.031

AE:6.317 AE:12.12

AE:6.079

AE:5.044

AE:11.08

AE:20.74

AE:18.74

Fig. 7. Qualitative results of CycleGAN and DM-CycleGAN.

Qualitative Results Some generated images and corresponding real thermal
infrared images are shown in Fig. 7. Besides, we visualize the density map pre-
dicted by thermal infrared head of our model–MMCCN(T). From the results, we
find that the infrared images generated by CycleGAN will miss some local infor-
mation so that the MMCCN can not detect the person (red rectangle). At the
same time, without the constraint of DM loss, false positive will appear (yellow
rectangle). Our DM-CycleGAN can focus on the local details of people so that
it will be predicted by MMCCN. However, it will also miss some information
compared with real data due to poor visibility of visible data (green rectangle).

6 Conclusions

In this paper, we presented a benchmark for RGB-T crowd counting. This is
a drone-view dataset with different attributes. With the benchmark, we pro-
posed a Multi-Modal Crowd Counting Network for RGBT crowd-counting. DM-
CycleGAN is proposed for generating the infrared data for MMCCN when we
only have visible data. Through analyzing the quantitative and qualitative re-
sults, we demonstrated the effectiveness of the proposed approach.
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