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Abstract. Low Rank Representation (LRR) based unsupervised clus-
tering methods have achieved great success since these methods could
explore low-dimensional subspace structure embedded in original da-
ta effectively. The conventional LRR methods generally treat the data
as the points in Euclidean space. However, it is no longer suitable for
high-dimension data (such as video or imageset). That is because high-
dimension data are always considered as non-linear manifold data such
as Grassmann manifold. Besides, the typical LRR methods always adopt
the traditional single nuclear norm based low rank constraint which can
not fully reveal the low rank property of the data representation and
often leads to suboptimal solution. In this paper, a new LRR based clus-
tering model is constructed on Grassmann manifold for high-dimension
data. In the proposed method, each high-dimension data is formed as
a sample on Grassmann manifold with non-linear metric. Meanwhile,
a non-convex low rank representation is adopt to reveal the intrinsic
property of these high-dimension data and reweighted rank minimiza-
tion constraint is introduced. The experimental results on several public
datasets show that the proposed method outperforms the state-of-the-art
clustering methods.

1 Introduction

Unsupervised clustering is a fundamental topic in machine learning, artificial
intelligence and data mining areas [1, 2], which attempts to group data into dif-
ferent clusters according to their own intrinsic pattern. In past decades, a large
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number of clustering methods have been proposed and achieved great success
in many applications[3, 4]. The representative ones are the statistical method-
s [5], the conventional iterative methods [6], the factorization-based algebraic
methods [7], and the spectral clustering methods [8]. Among them, the spectral
clustering methods are considered having promising performance. In this kind
of methods, an affinity matrix is usually learned, and then Normalized Cuts (N-
Cut)[9] or other standard clustering algorithms are then used to obtain the final
clustering results. Inspired by Sparse and Low Rank representation method, a
series of classical methods have been proposed. Elhamifar and Vidal adopted ℓ1
norm to explore the sparse relationship within data and proposed Sparse Sub-
space Clustering (SSC) [10] for data clustering. Liu et al. used nuclear norm
to construct a low-rank representation matrix for data and proposed Low-Rank
Representation (LRR) clustering method [11]. Later, Liu et al. proposed Laten-
t Low-Rank Representation (LatLRR) method [12] for clustering. Zhang et al.

proposed Robust Latent Low Rank Representation (RobustLatLRR) clustering
method [13]. To get better representation matrix, some researchers adopt the
kernel trick and proposed some kernel based clustering methods, such as the
kernel SSC clustering method [14] and the kernel LRR clustering method [15].

In the aforementioned methods, vector feature and Euclidean distance are
combined for building the affinity matrix by self-expression approach for sample
data. However, this conventional linear approach would be no longer suitable for
complex or high-dimension data, such as imagesets or video clips data. That is
because high-dimension data are always treated as a sample point on non-linear
manifold space with non-linear metric. For example, an imageset or a video clip
is can be modeled as a data sample on Grassmann manifold [16, 17]. Therefore,
to address the high-dimension data clustering task, researchers try to extend
the traditional methods and proposed a series of effective clustering approaches
for these complex data. Turaga et al. proposed a statistical computations based
manifold representation method (SCGSM) [18]. Shirazi et al. proposed a kernel
embedding clustering method on Grassmann manifold (K-GM) [19]. Inspired by
low rank and sparse theory, Wang et al. first proposed low rank based cluster-
ing method on Grassmann manifold (G-LRR) [20]. Liu et al. adopted kernel
method and proposed kernel sparse representation based clustering method [21].
Wang et al. proposed Cascaded Low Rank and Sparse Representation on Grass-
mann manifold method (G-CLRSR) [22]. Later, Wang et al. proposed Partial
Sum Minimization of Singular Values Representation on Grassmann manifold
method (G-PSSVR) [23], in which partial sum minimization of singular values
norm was adopted for better low rank representaion. Piao et al. proposed Double
Nuclear norm based Low Rank Representation clustering method on Grassmann
manifold (G-DNLR) [24]. Further, combined with the Laplacian regularizer, re-
searchers proposed Laplacian Low-Rank Representation on Grassmann manifold
method (G-LLRR) [25], Laplacian Partial Sum Minimization of Singular Values
Representation on Grassmann manifold method (G-LPSSVR) [23] and Lapla-
cian Double Nuclear norm based Low Rank Representation clustering method
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Fig. 1. The pipeline of the paper.

on Grassmann manifold [24], in which authors constructed the affinity matrix
by original Grassmann manifold data samples.

Although these current low rank representation and their extension based
methods on Grassmann manifold show good performance in clustering task,
they generally adopt traditional nuclear norm based low rank constraint for the
data representation. This traditional norm treats all singular values equally and
prefers to punish the larger singular values than the small ones, which would
deviate the optimal solution and lead to suboptimal solution [26, 27]. Recently,
to overcome the limitation of convex and smooth nuclear norm, non-convex or
non-smooth low rank approximation (such as logarithmic function and Schatten-
p norm for 0 < p < 1) [28] are adopted to replace the traditional nuclear norm
for low rank based problems, which could recover a more accurate low rank
matrix than the traditional nuclear norm [29]. Especially, these non-convex and
non-smooth low rank based methods could increase the punishment on smaller
values and decrease the punishment on larger values simultaneously [30]. In-
spired from these methods, we propose a novel low rank based clustering model
on Grassmann manifold. In the proposed model, the high-dimension data sam-
ples are firstly represented as Grassmann points, then a Reweighted Non-convex
and Non-smooth Rank Minimization based model on Grassmann manifold (G-
RNNRM) is built, where the data representation matrix is constrained by non-
convex and non-smooth low rank constraint. The NCut method [9] is used to
obtain the final clustering results. Figure 1 shows the pipeline of our paper and
the contributions of this paper are following:

– Proposing a novel non-convex and non-smooth low rank representation mod-
el on Grassmann for high-dimension data clustering;

– Reweighted approach is introduced in the proposed non-convex and non-
smooth low rank approximation norm to reveal low-rank property more ex-
actly. To our best knowledge, this the first reweighted low rank based method
on Grassmann manifold;

– An effective algorithm is proposed to solve the complicated optimization
problem of the proposed model.
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The paper is organized as follows. We introduce the notation and definition of
Grassmann manifold in Section 2. Section 3 reviews the related works. We will
introduce the formulation and optimization of the proposed G-RNNRM model
in Section 4. Section 5 assesses the proposed method on several datasets. Finally,
conclusions are discussed in Section 6.

2 Notation and Definition of Grasssmann Manifold

2.1 Notation

We use bold lowercase letters for vectors, e.g. x,y,a, bold uppercase for matrices,
e.g. X,Y,A, calligraphy letters for tensors e.g. X ,Y,A, lowercase letters for
scalars such as dimension and class numbers, e.g. m,n, c. xi represents the i-th
column of matrix X. xij represents the i-th element in j-th column from matrix
X. R represents the space of real numbers.

2.2 Definition of Grassmann Manifold

According to [31], a Grassmann manifold is always denoted as G(p,m), which
consists of all linear p-dimension subspaces in m-dimension Euclidean space
R

m(0 ≤ p ≤ m). It also could be represented by the quotient space of all the
m× p matrices with p orthogonal columns under the p-order orthogonal group.
Thus, we could construct a Grassmann manifold as below:

G(p,m) = {Y ∈ R
m×p : YTY = Ip}/O(p), (1)

where O(p) represents the p-order orthogonal group. For two Grassmann mani-
fold data samples Y1 and Y2, there are two metric approaches: one is to define a
consistent metrics in tangent spaces for Grassmann manifold data [32], the other
one is to embed Grassmann manifold data into the symmetric matrix space [33].
The later one is easier and the Euclidean distance could be applied, which could
be defined as below :

distg(Y1,Y2) =
1

2
‖Π(Y1)−Π(Y2)‖F , (2)

where ‖X‖F =
√

∑n

i=1,j=1 x
2
ij represents the Frobenius norm, Π(·) is a mapping

function defined as below:

Π : G(p,m) −→ Sym(m), Π(Y) = YYT , (3)

where Sym(m) represents the m-dimension symmetric matrix space. With the
function Π(·), Grassmann manifold could be embedded into the symmetric ma-
trices. Each sample data on Grassmann manifold could be regarded as an e-
quivalent class of all the m × p orthogonal matrices, any one of which can be
converted to the other by a p×p orthogonal matrix. Thus, Grassmann manifolds
is naturally regarded as a good representation for video clips/image sets, thus
can be used to tackle the problem of videos matching.
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3 Related Works

We first introduce related clustering methods on the Euclidean Space. Given
a set of sample vectors Y = [y1,y2, ...,yn] ∈ R

m×n drawn from a union of c
subspaces {Si}

c
i=1, where m denotes the dimension of each sample yi and n

represents the number of samples Y. Let Yi ⊂ Y come from the subspace Si.
The task of subspace clustering is to segment the sample set Y according to the
underlying subspaces. Researchers have proposed a large number of methods
to solve this problems. As we mentioned in Section 1, the spectral clustering
methods are considered as the state-of-the-art ones, in which the data could be
self-represented by introducing a representation matrix X ∈ R

n×n with linear
combination as Y = YX. To avoid the trivial solution, some matrix constraints
are adopted on X such as Frobenius norm [34]:

min
X

λ‖X‖2F + ‖Y −YX‖2F . (4)

In the past decade, sparse and low rank theories have been applied to sub-
space clustering successfully. Elhamifar and Vidal [10] proposed Sparse Subspace
Clustering (SSC) method, which aimed to find the sparsest representation matrix
X by using ℓ1 norm ‖ · ‖1. The SSC model is formulated as follows,

min
X

λ‖X‖1 + ‖Y −YX‖2F , (5)

where λ is balance parameter and ‖X‖1 =
∑n

i=1,j=1 |xij |. Instead of adopting
the sparse constraint, Liu et al. [11] proposed Low Rank Representation (LRR)
method for clustering by using nuclear norm ‖ · ‖∗ for the representation matrix
X, which is formulated as follows,

min
X

λ‖X‖∗ + ‖Y −YX‖2F , (6)

where ‖X‖∗ =
∑r

i σi(X) and σi(X) represents the i-th singular value of X,
σ1 > σ2 > ... > σr, r represents the rank of X.

All above related works all construct the representation matrix of data sam-
ples by employing Euclidean distance. However, the high-dimension datum are
always assumed as Grassmann manifold samples and the Euclidean distance is
no longer suitable. Therefore, researchers proposed a series of clustering methods
for Grassmann manifold based on the non-distance defined in (2). For a set of
Grassmann samples Y = {Y1,Y2, ...,Yn} where Yi ∈ G(p,m), Wang et al. [20]
proposed a Low Rank model with non-linear metric for Grassmann (G-LRR) by
generating the (6) on Grassmann,:

min
X

λ‖X‖∗ +

n
∑

i=1

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G , (7)

where ‖Yi⊖
⊎n

j=1 Yj⊛xji‖G represents the reconstruction error of the sampleYi

on Grassmann manifold,
⊎n

j=1 Yj ⊛ xji denotes the “combination” of {Yj}
n
j=1
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with the coefficients {xji}
n
i=1,j=1, the symbol ⊖,

⊎

,⊛ are abstract symbols which
are used to simulated the “linear” operations on Grassmann manifold. They also
proposed a cascaded Low Rank and Sparse model on Grassmann manifold (G-
CLRSR) model:

min
X,Z

λ‖X‖∗ + α‖Z‖1 + β‖X−XZ‖2F

+

n
∑

i=1

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G .
(8)

Further, to achieve a better low rank representation matrix for clustering,
Wang et al. [23] adopted Partial Sum Minimization of Singular Values (PSSV)
norm to instead the nuclear norm for formulating PSSV Low Rank model on
Grassmann manifold (G-PSSVLR) model:

min
X

λ‖X‖>r +
n
∑

i=1

‖Yi ⊖
n
⊎

j=1

Yj ⊛ xji‖G , (9)

where r represents the expected rank of X and ‖ ·‖>r represents the PSSV norm
defined as below [35]:

‖X‖>r =

n
∑

i=r+1

σi(X), (10)

Although the above methods achieve great performance in Grassmann manifold
clustering problem, the traditional convex nuclear based norm is adopted, which
would reduce the ability to represent the correlation among data.

4 Reweighted Non-convex and Non-smooth Rank

Minimization model on Grassmann manifold

In this section, we will introduce the formulation and optimization of the pro-
posed G-RNNRM model in detail.

4.1 Model Formulation

For a set of Grassmann samples Y = {Y1,Y2, ...,Yn} where Yi ∈ G(p,m), i =
1, 2, ..., n, we could formulate a self-expression clustering model as below:

min
X

λf(X) + g(X,Y), (11)

where f(X) represents a function satisfying some specific conditions for matrix
X, g(X,Y) represents a function of self-representation of samples {Yi}

n
i=1 with

representation matrix X. According to the preliminary knowledge in Section 2,
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Fig. 2. The illustration of three terms on one dimensional data.

{Yi}
n
i=1 could be self-represented by X with non-linear metric. Therefore, (11)

could be rewritten as below:

min
X

λf(X) +

n
∑

i=1

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G . (12)

As we discussed in Section 1, to obtain a better low-rank representation matrix,
we intend to replace the traditional nuclear norm by Schatten-p norm (0 < p < 1)
which is a non-convex low rank norm. Then the (12) could be rewritten as below:

min
X

λ

r
∑

i=1

ρ(σi(X)) +

n
∑

i=1

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G , (13)

where r represents the rank of matrix X, ρ(·) : R
+ → R

+ is a proper and
lower semicontinuous on [0,+∞). In this paper, we choose the Schatten-p norm
(0 < p < 1) as the low rank constraint. Figure 2 is an illustration of three
terms on one dimensional data. The function of Schatten-p norm (p = 1

2 ) is a
neutralization between rank norm (p = 0) and nuclear norm (p = 1), which
could increase the punishment on smaller values and decrease the punishment
on larger ones simultaneously. Then, to further reduce the influence of smaller
singular values to the matrix X, we introduce the reweighted approach inspired
by [36] and (13) could be rewritten as below:

min
X,w

λ
r

∑

i=1

wiρ(σi(X)) +
n
∑

i=1

‖Yi ⊖
n
⊎

j=1

Yj ⊛ xji‖G , (14)

where w = (w1, w2, ..., wr) represents the weighting vector with w1 < w2 < ... <
wr, which could be regarded as the adaptive weights for the singular values of X.
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Therefore, the first term in (14) could be regarded as a reweighted Non-convex
and Non-smooth Rank Minimization based low rank norm, and we call this the
reweighted Non-convex and Non-smooth Rank Minimization based clustering
model on Grassmann manifold (G-RNNRM).

The objective function in (14) is hard to solve directly owing to the non-
linear metric on Grassmann manifold. According to the property and definition
in Section 2, we could use the embedding distance defined in (2) to replace the
construction error in (14) as below:

‖Yi ⊖

n
⊎

j=1

Yj ⊛ xji‖G = dist2g(Yi,

n
⊎

j=1

Yj ⊛ xji)

= ‖YiY
T
i −

n
∑

j=1

xjiYjY
T
j ‖

2
F .

(15)

With this measurement, the function in (14) could be rewritten as below:

min
X,w

λ

r
∑

i=1

wiρ(σi(X)) +

n
∑

i=1

‖YiY
T
i −

n
∑

j=1

xjiYjY
T
j ‖

2
F . (16)

Denoting gij = tr((YT
j Yi)(Y

T
i Yj)) according to [20], we could rewrite (16) as

below:

min
X,w

λ

r
∑

i=1

wiρ(σi(X)) + tr(XTGX)− 2tr(GX), (17)

where matrix G = {gij}n×n ∈ R
n×n is a symmetric matrix, tr represents the

inner product of matices. With these transformation, the original non-linear self-
representation function in (14) could be converted into a linear one, which could
be solved by standard optimization.

4.2 Optimization of G-RNNRM

The proposed G-RNNRM model is a complicated optimization problem which
is difficult to solve directly. According to [36], we have the following proposition:

Proposition 1 : Let ρ(·) : R+ → R
+ be a function such that the proximal

operator denoted by Proxρ() is monotone. For λ > 0, let Z = UZSZV
T

Z
, where

SZ = diag(σ1(Z), σ2(Z), ..., σr(Z)) and all weighting values satisfy 0 ≤ w1 ≤
w2 ≤ ... ≤ wr . Then, the optimal solution to X could be written as below:

σi(X) ∈ Proxρ(σi(Z))

= arg min
σi(X)≥0

λwiρ(σi(X)) +
1

2
(σi(X)− σi(Z))

2.
(18)

According to Proposition 1, we could obtain the optimal solution to (17). First,
let h(X) = tr(XTGX) − 2tr(GX). Then we linearize h(X) at X(t) and add a
proximal term as below:

h(X) ≈h(X(t)) + 〈∇h(X(t)),X−X(t)〉+
µ

2
‖X−X(t)‖2F , (19)
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where µ is larger than the Lipschitz constant Lh, ∇h(X(t)) represents the first

derivative of h(X) at X(t). In our paper, µ = 2‖G‖2 and ∇h(X(t)) = 2GX(t) −
2G. Therefore, we could obtain the update function of X in (17) as below:

X(t+1) = argmin
X

λ

r
∑

i=1

wiρ(σi(X)) + h(X(t))

+ 〈∇h(X(t)),X−X(t)〉

+
µ

2
‖X−X(t)‖2F .

(20)

(20) could be rewritten as below:

X(t+1) = argmin
X

λ
r

∑

i=1

w
(t)
i ρ(σi(X)) +

µ

2
‖X− Z(t)‖2F , (21)

where Z(t) = X(t) − ∇h(X(t))
µ

. According to (18), we could obtain the solution

to (21) by solving the optimal singular values and we select p = 1
2 for examples.

The closed-form of singular values is as below [27, 37]:

– if σi(Z
(t)) > ϕ(λw

(t)
i ):

σi(X
(t+1)) =

2

3
σi(Z

(t))(1 + cos(
2

3
(π − φ(σi(Z

(t)))))), (22)

– otherwise:

σi(X
(t+1)) = 0, (23)

where φ(σi(Z
(t))) = arg cos(

λw
(t)
i

4 (σi(Z
(t)

3 )−
3
2 ), and ϕ(λw

(t)
i ) = 3 3√2

4 (2λw
(t)
i )

2
3 .

After updating X(t+1), we could update the weighting vector w as below:

w
(t+1)
i ∈ ∂ρ(ρ(σi(X

(t+1)))), i = 1, 2, ..., r. (24)

In our algorithm, the stopping criterion is measured by the following condition:

‖X(t+1) −X(t)‖ ≤ ε. (25)

We summarized all update steps in Algorithm 1 for the proposed G-RNNRM.

4.3 Converge and Complexity Analysis

For the proposed G-RNNRM, we first transform the original complex objective
function (14) into the standard function (21). Therefore, the algorithm conver-
gence analysis in [36] could be applied to Algorithm 1. Besides, these algorithms
always converge in our experiments.

Further, we discuss the complexity of the proposed model. In each iteration
step, the complexity of updating X is O(nr2). The complexity of updating w
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Algorithm 1 The solution to G-RNNRM

Require: The Grassmann sample set Y = {Y1,Y2, ...,Yn}, the parameters λ.
1: Initialize : X(0) ∈ R

n×n and w(0) ∈ R
r, ε = 10−4, the number of maximum

iteration MaxIter = 1000.
2: Calculate matrix G by gij = tr((YT

j Yi)(Y
T
i Yj));

3: t = 0;
4: while not converged and t ≤ MaxIter do

5: Update X by (18) to (23);
6: Update w by (24);
7: Check the convergence condition defined as (25);
8: t = t+ 1.
9: end while

Ensure:

The matrices X and weighting vector w.

is O(r). Therefore, the total complexity of G-RNNRM is O(nr2 + r). We also
list the complexities of other methods in Table 1. Meanwhile, we test all the
methods on Extended Yale B dataset as an example. The running time is also
shown in Table 1. It demonstrates that the proposed G-RNNRM have acceptable
executive time. All methods are coded in Matlab R2014a and implemented on
an Intel(R) Xeon(R) Gold 5115 CPU @ 3.60GHz CPU machine with 8G RAM.

Table 1. The complexity and running time (second) on Extended Yale B dataset of
various methods.

Method Complextiy Running Time

SSC O(tn2(1 + n)) 2.78
LRR O(2tn3) 27.67
LS3C O(tn2(sn2 + 1)) 39.02

SCGSM O(m3p3d2t(n+ d)) 2198.84
G-KM O(3n3) 1.43

G-CLRSR O(tn2(3n+ 1)) 108.32
G-LRR O(2tn3) 25.42

G-PSSVLR O(2tn3) 29.94

G-RNNRM O(t(nr2 + r)) 32.74

5 Experimental results

We test the proposed method for facial imageset and action video clip clustering
tasks, and the whole experiments are evaluated on four datasets, including the
Extended Yale B face dataset [38], CMU-PIE face dataset [39], Ballet action
dataset [40] and SKIG gesture dataset [41]. Facial images are usually corrupted
by rich expression, different pose, various illustration intensities and directions,
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which affect the performance of facial clustering task. Action clustering task is al-
so difficult since human actions are always captured by large range of scenes and
viewpoints. Besides, small movement, the illumination and background would
change great. These problems would make the clustering task challenging.

The performance of the proposed method is compared with some state-of-the-
art clustering algorithms, such as SSC [10], LRR [11], LS3C [42], SCGSM [18],
G-KM [19], G-LRR [20], G-PSSVLR [23] and G-CLRSR [22]. In our method,
after learning the representation X, we use the NCut method [9] to obtain the
final clustering results. The clustering results are measured by the clustering
Accuracy (ACC), Normalized Mutual Information (NMI), Rand Index(RI) and
Purity (PUR). The details of data setting and results analysis are given below.

5.1 Data setting

In our experiments, we first transform each image into a m-dimension vector.
For vector based LRR, SSC and LS3C methods, we stack all image vectors from
the same imageset as a long vector and adopt PCA to reduce the dimension
which equals to the dimension of PCA components retaining 95% of its variance
energy. For other Grassmann manifold based methods, we form all image vectors
from the same imageset as a matrix. Then SVD is applied on the matrix and
we pick up the first p columns of the left singular matrix as a sample data on
Grassmann manifold G(p,m). The detailed data setting for Grassmann manifold
based methods is as below:

Extended Yale B face dataset Extended Yale B face dataset contains 2,414
frontal face images of c = 38 subjects under different light directions and illu-
mination conditions, and each subject has about 64 images. In our experiments,
we resize images into 20 × 20. To construct Grassmannian data, we randomly
choose 8 images from the same subject to construct an image-set for clustering.
We set the subspace dimension of Grassmann manifolds as p = 4.

CMU-PIE face dataset The CMU-PIE face dataset is composed of 68 sub-
jects with 1632 front face images. Each subject has 42 images under different
lighting conditions. In our experiments, each grey image is down-sampled as a
fixed size of 32× 32. Every 4 images from the same subject are selected to form
an imageset sample. The image-sets are also represented as Grassmannian points
G(4, 1024).

Ballet action dataset This dataset comprises of 8 basic ballet actions per-
formed by 3 persons. The 8 ballet actions are left-toright hand opening, right-to-

left hand opening, standing hand opening, leg swinging, jumping, turning, hop-

ping and standing still. In our experiments, we resize each image into 30×30 and
divide each video clip into sections of 12 images to form the imagesets. We set
the dimension of Grassmann manifolds as p = 6, then we construct a Grassmann
manifolds G(6, 900) for clustering.
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Fig. 3. The clustering accuracy of the proposed method on four datasets with different
λ: (a) Extended Yale B dataset; (b) CMU-PIE face dataset; (c) Ballet action dataset;
(d) SKIG gesture dataset.

SKIG gesture dataset The SKIG dataset consists of 1080 RGB-D videos
collected from 6 subjects captured by a Kinect sensor. In this dataset, there are
10 gesture types: circle, triangle, up-down, rightleft, wave, Z, cross, comehere,

turn-around, and pat. All the gestures are performed by fist, finger, and elbow,
respectively, under three backgrounds (wooden board, white plain paper, and
paper with characters) and two illuminations (strong light and poor light). In
our experiments, each image is resized as 24× 32 and each clip is regarded as an
imageset.

5.2 Parameters setting

To obtain the suitable parameter for the proposed model, the influence of λ on
the clustering accuracy is learned by some pre-experiments. λ is tuned within
[10−10, 108] and Figure 3 shows the influence of λ on Extended Yale B dataset,
CMU-PIE face dataset, Ballet action dataset and SKIG gesture dataset respec-
tively. The parameter for each dataset is set as: λ = 0.1 for Extended Yale B
dataset; λ = 0.15 for CMU-PIE dataset; λ = 20 for Ballet dataset; λ = 2.5 for
SKIG dataset.
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Table 2. The clustering results of various methods on four datasets: (a) Accuracy
(ACC), (b) Normalized Mutual Information (NMI), (c) Rand Index(RI) and (d) Purity
(PUR).

(a)

Method SSC LRR LS3C SCGSM G-KM G-CLRSR G-LRR G-PSSVLR G-RNNRM
Extended Yale B 0.4032 0.4659 0.2461 0.7946 0.8365 0.8194 0.8135 0.9035 0.9872

CMU-PIE 0.5231 0.4034 0.2761 0.5732 0.6025 0.6289 0.6153 0.6213 0.6418

Ballet 0.2962 0.2923 0.4262 0.5613 0.5699 0.5931 0.5912 0.6013 0.6143

SKIG 0.3892 0.2537 0.2941 0.3716 0.5308 0.5083 0.5022 0.5502 0.5949

avg. 0.4029 0.3538 0.3106 0.5733 0.6349 0.6374 0.6306 0.6691 0.7127

(b)

Method SSC LRR LS3C SCGSM G-KM G-CLRSR G-LRR G-PSSVLR G-RNNRM
Extended Yale B 0.6231 0.6813 0.4992 0.9326 0.9341 0.9103 0.8903 0.9262 0.9921

CMU-PIE 0.7865 0.7321 0.6313 0.5736 0.5976 0.8132 0.8103 0.7926 0.8341

Ballet 0.2813 0.2910 0.4370 0.5646 0.5779 0.5862 0.5762 0.5837 0.6405

SKIG 0.4762 0.3343 0.3421 0.5367 0.5671 0.5679 0.5450 0.5692 0.6342

avg. 0.5418 0.5097 0.4774 0.6519 0.6692 0.7194 0.7055 0.7179 0.7752

(c)

Method SSC LRR LS3C SCGSM G-KM G-CLRSR G-LRR G-PSSVLR G-RNNRM
Extended Yale B 0.9503 0.9581 0.9525 0.9537 0.9647 0.9772 0.9793 0.9812 0.9868

CMU-PIE 0.9727 0.9752 0.9737 0.9235 0.9482 0.9721 0.9811 0.9727 0.9878

Ballet 0.8135 0.8273 0.8202 0.8301 0.8319 0.8321 0.8377 0.8382 0.8496

SKIG 0.8595 0.7223 0.8160 0.8135 0.8392 0.8577 0.8782 0.8763 0.8910

avg. 0.8990 0.8707 0.8906 0.8802 0.8960 0.9098 0.9191 0.9171 0.9288

(d)

Method SSC LRR LS3C SCGSM G-KM G-CLRSR G-LRR G-PSSVLR G-RNNRM
Extended Yale B 0.4347 0.4932 0.2375 0.8104 0.8582 0.8375 0.8275 0.9017 0.9937

CMU-PIE 0.5371 0.4415 0.2695 0.5637 0.5976 0.6559 0.6429 0.6711 0.6941

Ballet 0.4175 0.4302 0.4581 0.5854 0.5867 0.6281 0.6298 0.6376 0.6578

SKIG 0.4352 0.3577 0.3102 0.3502 0.6097 0.5819 0.5322 0.6268 0.6630

avg. 0.4311 0.4307 0.3188 0.5774 0.6631 0.6759 0.6581 0.7093 0.7522

5.3 Results analysis

We show clustering results in Tables 2. Each clustering experiment is repeated
20 times and the average results are reported. The best results are bold, the
second ones are underlined. From the results, Grassmann manifold representa-
tion based methods always have better performances than the vectors based
ones (SSC, LRR, LS3C), which explains that the manifold representation have
the advantage of revealing the complicated relationship within the imageset or
video data effectively. In all the methods, the low rank representation based ones
always obtain the top results, which shows the benefit of low rank representa-
tion. From the results, our proposed G-RNNRM always obtains the best results.
Especially, G-RNNRM outperform the second ones with about 4 to 5 percent-
age points gap in terms of ACC, NMI and PUR on avenges respectively. The
significant improvement of our method is analyzed and own to the superiority
that the proposed method not only adopts the Non-convex Non-smooth Rank
Minimization but also constructs reweighted approach.
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6 Conclusion

In this paper, we propose a new low rank model on Grassmann manifold for
high-dimension data clustering task. Instead of the traditional convex nuclear
norm, we adopt non-convex and non-smooth rank minimization approach to for-
mulate a novel clustering model on Grassmann manifold with non-linear metric.
Further, reweighting approach has been introduced to obtain a better low-rank
representation matrix. In addition, an effective alternative algorithm is proposed
as solution. The proposed model has been evaluated on four public datasets. The
experimental results show that our proposed model outperforms state-of-the-art
ones.
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