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Abstract. Detecting anomalies in videos is a complex problem with a
myriad of applications in video surveillance. However, large and complex
datasets that are representative of real-world deployment of surveillance
cameras are unavailable. Anomalies in surveillance videos are not well
defined and the standard and existing metrics for evaluation do not quan-
tify the performance of algorithms accurately. We provide a large scale
dataset, A Day on Campus (ADOC?), with 25 event types, spanning
over 721 instances and occurring over a period of 24 hours. This is the
largest dataset with localized bounding box annotations that is available
to perform anomaly detection. We design a novel metric to evaluate the
performance of methods and we perform an evaluation of the state-of-
the-art methods to ascertain their readiness to transition into real-world
surveillance scenarios.

1 Introduction

Surveillance cameras have become an integral part of public and private infras-
tructures. They provide a mechanism to actively monitor spaces for events and
consequently enhance security. The advancement of sensor technology and the
availability of affordable sensors has led to frequent deployment of large camera
surveillance networks. Today, a university can have up to a thousand cameras,
cities and casinos can have up to tens of thousands of cameras. These networks
produce large quantities of video data and it is not possible to manually moni-
tor and identify events. Computer vision algorithms that analyze videos find a
natural place in these scenarios.

Given all events that may occur in the view of a surveillance camera, one
would like to analyze the video to identify a subset of events that require atten-
tion. If the subset of events were known, the problem reduces to that of event
detection [1, 2], where the goal is to model the events and identify them in videos.
However, the events that may occur in a camera view are conditioned on a mul-
titude of contextual factors, like view-point, geo-spatial factors, and etc. These
factors are typically unknown and vary from camera to camera as well as events
of interest.

! Dataset available at gil.uh.edu/datasets
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To address this challenge researchers have resorted to the idea of identi-
fying discordant observations. Edgeworth [3] described discordant observations
“as those which present the appearance of differing in respect of their law of
frequency from other observations with which they are combined” [3]. Most
methods have defined anomaly as a deviation from the normal [4]. Given all
observations that may occur and their frequency of occurrences, normal events
can be defined as those that have a higher frequency of occurrence, and con-
versely anomalous events are defined as the complementary set of normal
events (those that have lower frequency of occurrence). We will extrapolate and
argue that the less probable an event is, the more anomalous it is. While we
acknowledge that extremely less probable events do not necessarily imply that
they are of greater significance from a video surveillance stand point.

1.1 Challenges in Anomaly Detection

Datasets for Anomaly Detection: Today vision algorithms are heavily data
driven. One can see the difficulty in gathering a dataset of anomalous events.
Such events are not well defined and are defined with respect to normal events,
which again are not well defined. Furthermore, anomalous events have a low
probability of occurrence and add to this difficulty. Figure 1 shows an example
of an image acquired from a surveillance camera deployed at a university cam-
pus. An event can be anything happening in the scene including global events
such as a weather anomaly to localized events such as a person falling down.
We concern ourselves with events that are performed by humans, are affecting
humans, and are consequences of human actions. The set of such events may
not be independent of other events. For example, a person running can be con-
ditioned on the fact that it is raining. However, we assume that the set of events
concerning humans is independent.

Fig. 1. Anomalous Events.

With this assumption, we define events as holistic actions realized over time,
and not their realization at individual time instants. For example, in the sce-
nario shown in Figure 1 (left), the most common action is humans walking across.
The blue bounding box shows a person distributing information (in the form of
fliers) and their corresponding trajectory (shown in red). While the action of
this person at any time instant can be looked as either standing or walking.
The holistic action of distributing information is less probable compared to the
action of a person walking, and is arguably more anomalous. Another example



ADOC - Anomaly Detection Dataset (qgil.uh.edu/datasets) 3

in the image is the red bounding box that shows a crowd gathered around an-
other person holding a sign. While the individual realization of the people in
the crowd is the action of standing, the holistic action of crowd gathering as a
consequence of a person holding a sign is unique. Most existing datasets do not
contain such complex events, and label simple actions as anomalies. We distin-
guish them as separate events, where a person walking and standing could have
a high frequency of occurrence, and a crowd gathering and a person distributing
information are events of low frequency. It is in this respect that we distinguish
our definition of anomalous events, and provide a dataset in pursuit of solutions
for anomaly detection.
Anomaly Detection in Surveillance Cameras: Surveillance cameras are de-
ployed in a variety of scenarios and are expected to function through varying
global conditions like natural illumination changes such as day, night, dawn, etc.
and weather changes such as rain, snow, and fog. They are deployed in a variety
of scenarios such as indoor, outdoor, crowded areas, etc. Such events also result
in a deviation from normal and often tend to produce false positives. A dataset
for anomaly detection in surveillance videos should include sufficient variety of
global changes, and low and high frequency events to test the effectiveness of
algorithms.
Evaluation criteria: Existing evaluation metrics evaluate anomaly detection as
a binary class (normal and anomaly) problem. The current evaluation schemes
evaluate how well a method is capable of detecting anomalies while producing
the least false positives. They tend to ignore the probability of occurrence of
the event. Anomalies are not well defined, and the algorithms can encounter
novel anomalies. We argue that it is advantageous to quantify the ability of the
algorithm to detect anomalous events based on their probability of occurrence.
For example, in the scenario shown in Figure 1, while it is not as probable as
the action of a person walking, it is common to notice a person riding a bicycle.
It is much less probable to notice a person walking a dog than a person riding
a bicycle. We argue that an algorithm that detects the event that a person is
walking a dog, and misses a few detections of a person riding a bicycle is more
efficient than one that efficiently detects a person riding a bicycle and misses the
less probable events. Most current evaluations weigh the detection of the person
riding an bicycle and a person walking a dog equally. We propose an evaluation
criteria to account for the probability of occurrence of anomalous events. In this
paper we aim to address the above challenges. Our contributions are:

— We introduce a large surveillance dataset consisting of 24H of video from a

single camera for anomaly detection with event annotations.
— We introduce an new evaluation criteria for anomaly detection algorithms.
— We perform benchmarking using state-of-the-art algorithms.

2 Existing Datasets

Anomaly detection in videos has been a widely researched problem in vision
for decades. Traditional approaches were aimed at modeling local [10, 11, 7] and



4 P. Mantini et al.
Table 1. Comparison of existing dataset.

Datasets # Abnormal|# Abnormal Events|# Scenes|Annotations hours
UMN [5] 1,222 3 3 1222 Frame level ~0.07
SubwayExit [6] 720 9 1 720 Frame level ~0.72
SubwayEntrance [6][2,400 21 1 2400 Frame level 1.6
Avenue [7] 3,820 a7 1 3820 Bounding boxes |~0.5
Pedl [4] 4,005 40 1 2000 Pixel masks 1.5
Ped2 [4] 1,636 20 1 2100 Pixel masks 0.4
ShanghaiTech [8]  [17,090 130 13 40791 Pixel masks 3.6
Streetscene [9] 19585 205 3 19585 Bounding boxes | 4
ADOC 97030 721 1 284125 Bounding boxes|24

holistic [12,13] features to perform classification. More recently, various deep
learning architectures have been used for anomaly detection viz. Convolutional
Neural Networks (CNNs) [14], Long Short Term Memory Networks [15], Auto-
encoders (AE), and Generative Adversarial networks (GANSs) [16]. For a detailed
review of the approaches for anomaly detection we direct readers to existing
surveys [17-19].
Anomaly detection is used interchangeably to address two problems. First, a
video classification problem, where given numerous videos, the task is to identify
if a video contains anomaly or not. The latter is a temporal analysis problem,
where, given continuous video from a camera, the task is to decide if each frame is
either normal or anomalous. Anomaly detection is challenging because there is no
consensus on what the exact definition is. Known activity labels including those
to describe criminal or malicious activities is one definition. The other is one that
represents rare events, or events that have a lower probability of occurrence. We
use the latter in this paper, and hence, we refrain from using the term anomalous
events in the paper and rather define them as low-frequency events. Sultani et al.
[20] proposed a dataset for anomaly detection called UCF-Crime dataset that
captures criminal activity well, while we focus on capturing the natural frequency
of all human-related events in the scene of a surveillance video. Simple events
such as “riding a bike” may not be a meaningful event under the first definition,
but if we can construct algorithms that can understand the frequency of this
event remains as an open problem. The UCF crime dataset has 128 hours from
1900 videos. The average video length is 4 minutes (70% of videos are < 3 mins
long), making it a valuable dataset for the task of video classification. However,
this dataset is unsuitable for the task of temporal analysis. Furthermore, major
reason vision algorithms fail to transition to real-world is that they produce
too many false alarms. There is no comprehensive way of assessing the number
of false positives an algorithm produces over a persisted amount of time (eg.
a day) when deployed on a single camera. The proposed dataset is the only
dataset that provides data for illumination and weather changes for a complex
scene throughout an entire day. The proposed dataset is more in alignment with
UMN [5], Subway [6], Avenue [7], etc.

Since our objective is to introduce a benchmark dataset that will spur re-
search in anomaly detection as a comprehensive, multi-faceted problem. We
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briefly review existing datasets and compare their size, scene, complexity and
diversity. Table 1 shows the list of existing datasets.

In comparison, we introduce the largest dataset for anomaly detection in
video surveillance cameras, consisting of 721 anomalous events localized using
284125 bounding box annotations. The dataset consists of 259123 frames cap-
tured over 24 contiguous hours and encapsulates the complexities of a typical
surveillance camera.

3 A Day on Campus

The data is acquired from a surveillance camera deployed on a large university
campus. It overlooks a walkway leading to various buildings and captures the
events performed by students, faculty, and staff on a busy day. The camera cap-
tures video at a resolution of 1080p and a frame-rate of 3 frames per second. The
video is compressed using H.264 format, which is a lossy compression method
and is standard of the surveillance industry. We create a dataset from video
captured over a period of 24 contiguous hours. The video encapsulates varying
illumination conditions, crowded scenarios with background clutter. The data is
annotated with a number of events ranging from low to high frequency.

o M e -

Top: Night Dawn

Bottom: regular crowded clutter

Fig. 2. Natural illumination changes occurring in camera view.

Data Variability: Outdoor surveillance cameras undergo regular variations in
the scene throughout the day due to illumination changes. Figure 2 (Top) shows
example images from the camera, representative of the captured changes in il-
lumination through the day. The camera switches to infrared (IR) mode in ex-
tremely low illumination conditions which is typical of surveillance cameras, this
produces a large shift in global image features. Currently, there are no exist-
ing datasets for anomaly detection that captures such variations in surveillance
cameras. Furthermore, crowded scenarios, background clutter, and occlusion af-
fect the performance of computer vision algorithms. Figure 2 (Bottom) shows
example of the regular view of the camera (left), crowded (middle), and view
with cluttered background (right: top right corner has a walkway and driveway
with various people and cars moving by)

Events and Their Frequencies: There are a wide variety of events that occur
in the scene from students walking, riding a bicycle or skateboard, staff driving
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Event Frequencies
Event name (frequency) 13. Walking a dog (10)

1. Riding a bike (196) 14. Riding a mobility scooter (9) 1
2. Walking on grass (141) 15. Running (8) 5
3. Driving golfcart (102) 16. Group of people (7)
4. Walking with suitcase (41) 17. Cat/Dog (5) 9
5. Having a conversation (38) 18. Crowd gathering (3)
6. Riding a skateboard (34) 19. Holding a sign (3) € 13
7. Birds flying (27) 20. Walking with balloons (2) [}
8. Walking with a bike (24) 21. Bag left behind (2) o 17
9. Pushing a cart (21) 22. truck on walkway (1) 21
10. Person vending (16) 23. person on knee scooter (1)
11. Standing on walkway (14) 24. camera overexposure (1) 25
12. Bending (14) 25. person smoking (1)

0 50 100150

Frequency
Fig. 3. Events and their frequency of occurrence.

golf carts to an occasional student walking a dog or carrying balloons. Figure 3
shows a list of the events and their distribution of occurrence rate. There are
a total of 721 events in the scene that are considered as low frequency events.
The most common activity in the scene is persons walking from one end to the
other along the walkway. We estimate a total of 31675 people walking. This is
considered as a high frequency event. If we consider the low frequency events as
abnormal and the high frequency events as normal. Then the probability of an
abnormal event is 0.022.

Event Annotations: The data is annotated using a combination of manual
and automatic techniques.

interpolated interpolated interpolated key

Fig. 4. Manual Annotations.

Annotating Low Frequency Events: We manually annotate each low fre-
quency event in the dataset. The annotations are performed using Computer
Vision Annotation Tool (CVAT). We annotate key frames for each event and
the annotation for the frames between are obtained through interpolation. Each
event is annotated and then reviewed for accuracy by two annotators with com-
puter vision background. Figure 4 shows the annotation for an event (riding a
bicycle). The annotations are provided in the Multiple Object Tracking (MOT)
format. Every event is localized using a tight bounding box, a frame id and
contains a unique association ID to form trajectories.

Annotating High Frequency Events: We annotate the high frequency event
of walking using automated technique. Given the set of all events occurred on
the day, we assume that all the events excluding walking are low frequency and
have already been annotated manually. We perform object detection and refine
the results to automatically annotate walking. The results of the object detector
are refined as shown in Figure 5 to generate automatic annotations. In step 1,
any object that is not a person (car, bicycle, etc) is considered a low frequency
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event and has been manually annotated. The output from the object detector
is filtered and the bounding boxes labeled as person are retained and other
are removed. In Figure 5, the unrefined images show all the detections from the
object detector in blue. The green bounding box shows the manual annotation of
the person riding a bike. The object detector detects the person on the bicycle,
and the bicycle (among other detections). In the first step, all the bounding
boxes that are not humans are removed. The resulting annotations are shown in
the center image. The set of bounding boxes represents all events that involve

Unrefined step 1: Refined step 2:Refined

Fig. 5. Automatic Annotations. Blue BB: Automatic annotations, Green: Manual an-
notations, and Red: Deleted detections

humans including low and high frequency events. In the second step, we compute
a disjoint set of bounding boxes from the manual annotations by removing all
bounding boxes that have and Intersections Over Union (IOU) greater than a
threshold value (0.2). The resulting set is assumed to be people walking. This
is shown in Figure 5, the detection from object detector for the person on the
bicycle is removed (IOU > 0.2). The deleted detections are shown in the red
bounding box.

Fig. 6. Estimating frequency of people walking, yellow: bounding box is crossing the
line, red: bounding box is not crossing the line

We rely on the accuracy of the object detector for these annotations. Anomaly
detection algorithms designed for this scene would consider walking as normal
events and is not aimed at detecting and localizing such occurrences, the accu-
racy of the detection are irrelevant. The annotations provide a way to estimate
the comprehensive counts of each event, and subsequently estimate their prob-
ability of occurrences. Furthermore, unlike other datasets, they can enable the
estimation of the false positives produced as a result of humans walking. The
automatic annotations are provided in the YOLO format [21] and they do not
contain any association across frames to form trajectories of walking. Figure 5
shows an example of automatically generated and filtered annotations.
Estimating the count of people walking: We estimate the total frequency of
people walking to infer the probability of each event, and subsequently perform
a more accurate evaluation of the performance of the algorithm. Most people
that are annotated and that are detected are within this area of interest marked
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by the red box in Figure 6 (left). To count the total number of people walking
across this area. We first perform a perspective projection using the parallel lines
in the scene to obtain a birds eye view as shown in Figure 6 (right) we project
the area marked by the red box. Then, we estimate the count of total people
walking over the entire video by counting, all the bounding boxes that cross the
green line. Given the average pace of a pedestrian, we manually estimate the
count of average number of frames over which a pedestrian crosses the line. We
divide the total count by the number of bounding boxes detected crossing the
line by this number to estimate the total number of walking events.

Numbers: Table 2 lists the count of frames, annotations, and events in the
dataset. The dataset is made of 259123 frames, of which 97030 have low frequency
events, and 142962 have either low, high or both frequency events. There are a
total of 721 events annotated in the dataset. The 721 events are annotated using
13290 manually annotated bounding boxes, and 270835 interpolated bounding
boxes. There are total of 284125 annotations representing low frequency events
in the dataset. There are a total of 5082993 annotations that capture 31675
human walking over a period of 24 hours.

Table 2. Count of frames, annotations, and events in the dataset.
[Description [Count |

Low frequency events
Trajectories 721

Manually Annotated bounding boxes 13290
Interpolated bounding boxes 270835
Total bounding boxes 284125

High frequency events
Automatically annotated bounding boxes|[5082993

Estimated number of persons walking 31675
Frame Count

Frames with low frequency events 97030
Frames with events (low and high) 142962
Total Frames 259123

4 A Revised Evaluation Metric

Anomaly detection algorithms are evaluated as a binary class problem, where
anomalous events are considered as the positive class and the normal as negative.
By our definition, anomalous events occur with a low probability. In general
one can assume that the distribution is biased towards the negative class. For
example, in the ADOC dataset, there are 31675 samples that belong to negative
class and 721 samples that belong to positive class. Currently accuracy and
precision are the common metrics to evaluate the performance of the algorithms.
Accuracy is defined as %, where TP are true positives, FP are
false positives, TN are true negatives, and FN are false negatives. An algorithms
that detects all events as belonging to the negative class and fails to detect
any anomalous event has an accuracy of 0.97 ((0 + 31675)/32396). Precision
is defined as TP:’;_%, While this metric can quantify the ability of the system
to detect anomalies, it does not capture the ability of the system to identify
negative samples. It is necessary to quantify the overall capability of the system

by aggregating the algorithms capability to detect individual types of events.
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Let there be n events that may occur in a surveillance scenario, denoted by
{e1, e, ..., e, } with probabilities {p1,pa, ..., pn} such that X;p; = 1. Now given
various algorithms, according to Expected Utility Theory, the decision of which
algorithm to choose is dictated by maximizing the expected utility [22].

where Fu(A) is the expected utility for the algorithm, and U(e;) is an assigned
numerical utility.

For example, if {a1,as,...,a,} be the accuracy with which the algorithm
A detects events {ey,ea,...,e,}, respectively. If U(e;) = a;, then the expected
utility reduces to that of computing the expected accuracy E, = X;p;a;.

Note that similar to computing the accuracy under a binary class assumption,
the expected accuracy is high when the system is capable of detecting the high
probability events, and the effect of detecting low probability events with a high
accuracy is insignificant.

Our motivation to quantify the ability of an algorithm to perform anoma-
lous event detection has roots in prospect theory [23], where we depart from
the expected utility theory by overweighting the small probabilities and under-
weighting the large [24]. The decision of one algorithm over the other is defined
by the prospect value m4 = Z;w. (p;)a;, where w,(p) is the probability weighting
function. A simple weighting function is to assume that all events occur with
equal probability, i.e. wy(p;) = 1/n, where the prospect value reduces to the
average of the accuracy of the algorithms ability to detect each event. However,
considering that the normal class can have a large number of samples, and such
probability weighting can undermine the effect of the algorithms inability to de-
tect these events. This can translate to choosing algorithms that produce too
many false positives.

Linear in Log Odds (lilo): We adopt the two parameter probability weighting
function defined as [25]:

_ op”
) = G =) )

where the v controls the curvature and ¢ controls the elevation independently.
Note when 6 = 1, and v = 1 the function reduces to w,(p) = p. Figure 7 show the
weighting function for § = 1, and v = 0.2. We compute the expected accuracy
value using lilo weighted probabilities (liloAcc) as a metric to quantify the per-
formance of anomaly detection methods. Figure 7 (right) shows the transformed
probabilities using the lilo function for each event in the dataset.

Note that the liloAcc metric is bounded, as the accuracy and the probability
values are bounded. The maximum value occurs when the accuracy of detect-
ing each event is 1. The maximum value is X;w. (p;), sum of the lilo weighted
probabilities. We use this value to obtain a normalized metric (nliloAcc):

3. Nas
nliloAcc = Ziwy (pi)a; (3)

Yiw (pi)
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Linear in Log Odds

104 — wip)=p

LILO, delta=0.5, gamma=0.1
—— LILO, delta=0.5, gamma=0.2
0.8 4{ — LILO, delta=1, gamma=0.1
—— LILO, delta=1, gamma=0.2

LILO weighted anomaly Pty
= actual pty = weighted pty
Riding a bike

Walking on grass

0.6 q

Driving golfcart

wip)

0.4 4 Walking with suitcase

Having a

Riding a d

Anomaly

0.2 9

Walking with a bike
0.09

[
[
Birds flying p——
——
——

Pushing a cart

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
p

o

.0 0.1 0.2 0.3

Fig. 7. (left) Linear in Log Odds function, (right), few event probabilities in ADOC
dataset weighted by lilo (blue: original probability values, red: lilo weighted probability
values)

5 Experimental design

The goal of the experiments is to ascertain the performance of existing state-
of-the-art video anomaly detection algorithms on ADOC dataset. The dataset
includes a variety of complex events that are novel, and numerous illumination
changes. The experiments provide insight into the readiness of the existing al-
gorithms to transition to real time analysis for anomaly detection.

The dataset consists of 259123 frames captured over 24 hours of video. We
divide the dataset into two 12 hour parts and use them as training and test-
ing patterns. Both partitions contain a combination of day time and night time
images. To account for this complexity, we separate the dataset into two parti-
tions, first containing exclusively day images and the latter night. We quantify
the capability of algorithms to perform in day time, night time, and overall. We
perform the following experiments:

— Experiment 1: Training: Day, Testing: Day images
— Experiment 2: Training: Night, Testing: Night images
— Experiment 3: Training: Day+Night, Testing: Day+Night images

5.1 State of the art methods

We choose popular methods from the recent literature and evaluate their perfor-
mance on the ADOC dataset. We choose methods that have been largely cited
and ascertain their readiness to transition into real world analysis of surveil-
lance videos. Anomaly detection methods can be designed to capture a variety
of features. Some methods can exclusively encode spatial information or they
can encode a combination of spatial and temporal information. Some methods
perform analysis on image patches and accumulate information to make deci-
sions while others make an inference on the entire frame. We choose one method
that performs analysis on patches by encoding only spatial information, and two
other methods that make frame level decisions and encode temporal patterns for
anomaly detection. We evaluate the following methods:
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— Abnormal Event Detection in Videos using Spatiotemporal Autoencoder
(SPAE) (ISNN 2017): The method consists of a spatial feature extractor
and a temporal encoder-decoder, which together learn the temporal patterns
in videos. This method processes images as a whole and captures temporal
patterns among them. We use an input frame size of 227X227 for training
and testing.

— Adversarially Learned One-Class Classifier for Novelty Detection [26] (ALOCC)
(CVPR 2018): This work proposes a method for novelty detection by training
a one class classifier. The framework consists of two modules. The former
acts as a pre-processing step for representation learning. The latter per-
forms discrimination to detect novel classes. The paper uses two methods
to perform anomaly detection, where a test image is input to the discrim-
inator and the likelihood value is used to detect anomalies. In the second
method, the likelihood value for the reconstructed method is used to detect
anomaly. Results from the experiments performed in this paper demonstrate
that the latter outperforms the first. If D represents the discriminator and
R the encoder-decoder. In the first, the value D(X) is compared against a
threshold to infer if X is an anomalies. In the second the value D(R(X))
is thresholded to make a decision. We evaluate both methods. The input to
the network are patches of images. We use an input frame size of 256X354
for training and testing. We set the patch size to 64X64.

— Future Frame Prediction for Anomaly Detection — A New Baseline [8] (FFP)
(CVPR 2018): This method proposes to predict frames into the future, and
exploit the inability to predict anomalous events to detect them. A good pre-
diction would imply that it is normal, and vice versa. A UNET is trained by
minimizing a loss function that encodes both spatial intensity features and
temporal features (optical flow). This method performs analysis at a tem-
poral level and encode both temporal and spatial information for anomaly
detection. We use an input frame size of 2566X256 for training and testing.

— Memorizing Normality to Detect Anomaly [28] (MemAE) (ICCV 2019): The
overall approach involves augmenting an autoencoder with a memory mod-
ule that is records the prototypical elements of the encoded normal data.
This method consist of an encoder, a decoder, and a memory module. The
input image is encoded, which is used to retrieve the relevant items from
the memory module, which is then reconstructed by the encoder. A larger
reconstruction error implies an anomaly. We use the the pre-trained weights
on the Ped2 [4] dataset available from the authors for this evaluation.

— Learning Memory-guided Normality for Anomaly Detection [29] (Mnad)
(CVPR 2020): This method is similar to the MemAE [28]. It improves the
memory module by recording diverse and discriminative normal patterns,
by separating memory items explicitly using feature compactness and sep-
arateness losses, and enabling using a small number of items compared to
MemAE (10 vs 2,000 for MemAE). We use the the pre-trained weights on
the Ped2 [4] dataset available from the authors for this evaluation.
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5.2 Benchmarks

We compare and quantify the performance of the algorithms under a two class
assumption, and then compare them using the proposed lilo weighted expected
accuracy metric. The decision of normal and abnormal is made at each level
or for a series of frames. Assuming the normal frames to be the negative class,
and abnormal as the positive, we quantify the overall accuracy by plotting the
Receiver Operating Characteristic (ROC) curves along with their corresponding
area under the curve (AUC) as shown in Figure 8. Then we quantify the ca-
pability of each method at the optimal threshold. We define optimal threshold
as the point on the ROC curve where the difference between TPR and FPR
is maximum. The threshold at which the method detects maximum anomalies
while reducing false positives. The results are shown in Table 3.

ROC Curves ROC Curves

1.0 { — ALOCC_D(R{X)), AUC=0.252377
—— ALOCC_D(X), AUC=0.247187
—— FFP, AUC=0.605481
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—— MemAE, AUC=0.570533

—— Mnad, AUC=0.523819
Y=X
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—— ALOCC_D(X), AUC=0.377329
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Fig. 8. ROC Curve

Experiment 1: Three models are trained and tested on exclusively day time im-
ages from the dataset. ALOCC produces a large number of false negatives. FFP
does better at prediction than ALOCC, but produces too many false positives.
SPAE captures the largest number of true positives, compared to other methods.
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SPAE has an AUC score of 0.846, with an accuracy of 0.735 and outperforms
the other models. Figure 9 shows a bar plot where the x-axis consists of various
events ordered by their occurrence rate in ascending order. The plot shows the
accuracy of each method in detecting a particular event. SPAE shows an ability
to detect events of varying frequency and this is reflected in the nlilo Accuracy
score. SPAE and FFP perform temporal analysis while ALOCC performs only
spatial analysis. This suggests that temporal analysis is essential when detecting
anomalous events.
Experiment 2: Three models are trained and tested on exclusively night im-
ages. ALOCC and SPAE tend to produce a large number of false positives. FFP
labels most of all frames as negative, and fails to detect abnormal events. SPAE
produces a significantly lower false positives than ALOCC. The AUC score sug-
gests that SPAE performs best in this scenario. Despite the fact that FFP fails
to detect abnormal events, the accuracy score suggests that it performs best
followed by SPAE. Figure 9 shows that SPAE captures abnormal events across
varying frequencies best, followed by ALOCC and the FPP. The nlilo Accuracy
suggests that SPAE is the best performing algorithm with its relatively high
true positives and significantly low false positives. This demonstrates the need
for probability distorted metric to evaluate anomaly detection methods.
Experiment 3: In this experiment three models are trained and tested on

Table 3. Comparison of performance the state-of-the-art methods at optimal thresh-
old, Acc - accuracy, liloAcc - lilo weighted expected accuracy.

Experiment|Method Year/conf | TN FN TP FP AUC [Acc |nliloAcc
1 ALOCCD(R(X>> CVPR 18’(10432(53072|1083 |113 0.257(0.178/0.299
ALOCCD(X> CVPR 18’(10427(52970(|1185 |118 0.247(0.179/0.307
FFP CVPR 18’|7477 [29166|24989|3068 |0.605(0.501|0.583
SPAE ISNN 17’ |9831 [16429|37726|714 0.846(0.735|0.698
MemAE ICCV 19’ 8381 [35283|18872|2164 [0.570(0.421|0.598
Mnad CVPR 20’|9082 [43607|10548|1463 |0.523|0.303|0.588
2 ALOCCD(R(X)) CVPR 18’(1187 (191 20581(48441(0.383|0.309(0.627
ALOCCD(X> CVPR 18’(1352 (202 20570(48276|0.377|0.311(0.656
FFP CVPR 18’(49625|20766 |6 3 0.346(0.704|0.583
SPAE ISNN 17’ |22226(514 20258(27402|0.641|0.603(0.819
MemAE ICCV 19’ (3080 (608 20164|46548(0.407|0.330(0.596
Mmnad CVPR 20’|12041|3239 |17533]|37587|0.522|0.420[0.651
3 ALOCCD(R(X)) CVPR 18’(45071(14845|60082|15102|0.795(0.778|0.824
ALOCCD(X) CVPR 18’(44415(19042|55885|15758(0.740(0.742|0.795
FFP CVPR 18’(47733(22835|52092|12440(0.727|0.738|0.824
SPAE ISNN 17’ |53374(63426|11501|6799 |0.445|0.480(0.309
MemAE ICCV 19’ |60173|74911|16 0 0.252(0.445|0.192
Mmnad CVPR 20’|49589|23294|51633|10584(0.700|0.749|0.881

a combination of day time and night time images together. All methods pro-
duce higher false positives compared to Experiment 1. MemAE labels most of
all frames as negative, and fails to detect abnormal events. AUC and Accuracy
scores suggests ALOCC perform better than other methods. Interestingly, Un-
like the first two experiments ALOCC outperforms SPAE in Experiment 3. Our
inference is that the method generalizes better on exposing to varied illumina-
tion. Figure 9 shows that it is able to capture events across frequencies better
than SPAE and is comparable to ALOCC. nlilo Accuracy aggregates a similar
score for ALOCC and FPP. SPAE underperforms in Experiment 3. This suggests
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that the model is inefficient at learning features and performing abnormality de-
tection across illuminations. Furthermore, performing patch level analysis seems
to be beneficial when learning representation across illuminations. It is able to
capture local features better compared to other methods. We conclude that there
is need to perform both temporal analysis and a patch level analysis to build
robust algorithms for anomaly detection. Overall Mnad outperfroms the other
methods in this experiment.

Accuracy Per Event Accuracy Per Event Accuracy Per Event
= ALOCC_D(R(X)) ® ALOCC_D(R(X)) = FFP ® SPAE = ALOCC_D(R(X)) ® ALOCC_D(R(X)) = FFP ® SPAE ® ALOCC_D(R(X)) ® ALOCC_D(R(X)) = FFP ® SPAE
= MemAE ® Mnad = MemAE ® Mnad = MemAE ® Mnad
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Fig. 9. Bar plot showing the accuracy of detecting example individual events for each
method in experiment 1,2, and 3, x-axis shows event numbers as used in Figure 3

Discussion: MemAE and Mnad use pretrained weights and are not trained on
the adoc dataset (due to the lack of trianing code and optimal hyper-parameters)
unlike the former four methods. Specifically training them on the adoc dataset
can improve the detection accuracy. Experiment 1 demonstrates that the state-
of-the-art methods fail at detection anomalies and tend to generate too many
false negatives. Experiment 2 suggests that the methods tend to produce large
numbers of false positives at night time. Experiment 3 suggests that there is
much work needed towards designing algorithms that can adapt to varying illu-
minations. These improvements and the pursuit of robust methods designed with
the goal of detecting holistic anomalous events is necessary to realize anomaly
detection in surveillance cameras. Experiments also showcase the inconsistencies
in adopting generic sensitivity and specificity metrics that are used for binary
classification. Given the biased nature of anomaly detection datasets, we advo-
cate the need for probability distorted metrics.

6 Conclusion

We have introduced a complex and a large scale dataset with video from a
surveillance camera to enable development of robust algorithms for anomaly
detection. We have defined events that are relevant to surveillance cameras in
pedestrian environments, and provided a dataset with numerous event anno-
tations. We have defined metrics to account for the biased nature of anomaly
detection datasets. We have evaluated the state-of-the-art methods available for
anomaly detection on the ADOC dataset. We have accumulated the results and
established the required research direction to enable robust anomaly detection
in surveillance videos.
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