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Abstract. High dynamic range (HDR) imaging is widely used in con-
sumer photography, computer game rendering, autonomous driving, and
surveillance systems. Reconstructing ghosting-free HDR images of dy-
namic scenes from a set of multi-exposure images is a challenging task,
especially with large object motion, disparity, and occlusions, leading to
visible artifacts using existing methods. In this paper, we propose a Pyra-
midal Alignment and Masked merging network (PAMnet) that learns to
synthesize HDR images from input low dynamic range (LDR) images in
an end-to-end manner. Instead of aligning under/overexposed images to
the reference view directly in pixel-domain, we apply deformable con-
volutions across multiscale features for pyramidal alignment. Aligned
features offer more flexibility to refine the inevitable misalignment for
subsequent merging network without reconstructing the aligned image
explicitly. To make full use of aligned features, we use dilated dense
residual blocks with squeeze-and-excitation (SE) attention. Such atten-
tion mechanism effectively helps to remove redundant information and
suppress misaligned features. Additional mask-based weighting is further
employed to refine the HDR reconstruction, which offers better image
quality and sharp local details. Experiments demonstrate that PAMnet
can produce ghosting-free HDR results in the presence of large dispar-
ity and motion. We present extensive comparative studies using several
popular datasets to demonstrate superior quality compared to the state-
of-the-art algorithms.

1 Introduction

Human visual system has astounding capabilities to capture natural scenes with
high dynamic range [1]. In recent years, significant efforts have been made to de-
velop specialized high dynamic range (HDR) imaging sensors, such as using beam
splitters [2, 3] or spatially varying exposed pixels [4]. Most common approaches
for HDR imaging still rely on capturing and fusing multi-exposure images with
cost-efficient, low dynamic range (LDR) sensors.

The multi-exposure fusion schemes input a sequence of LDR images captured
at different exposures and apply a variety of computational methods to construct
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ghosting-free HDR images. Images with different exposures can be captured in
two possible options: (1) Using a single camera by adjusting its exposure over
time to capture a set of images. (2) Using a camera array (e.g., in a multi-
camera system) in which each camera is set to a different exposure to capture
a set of images simultaneously. Images captured by the first approach often
contain object motion, while the parallax effects are inevitable for multi-camera,
multi-exposure setup alternatively. Thus, effectively removing artifacts caused
by motion or parallax is the main challenge for high-quality, ghosting-free HDR
imaging.

Over past several years, numerous efforts have been made to reduce the
ghosting artifacts for HDR image generation. For example, the popular expo-
sure bracketing-based weighted fusion is enhanced with motion detection and
displaced pixel rejection [5, 6] to alleviate motion-induced artifacts. Its perfor-
mance, however, heavily depends on the accuracy of motion detection algorithm.
On the other hand, alignment-before-merging schemes have been proposed to
align input LDR images to a reference view, and then merge them altogether for
HDR image reconstruction [7]. Inspired by recent advancements in deep neural
networks, a large amount of learning-based approaches have also been introduced
for HDR imaging. The method in [8] performs optical flow-based image align-
ment followed by a convolutional neural network (CNN)-based merging process.
However, aligning images in pixel domain is often prone to the noisy or saturated
pixels-induced misalignment, which leads to visible artifacts in final synthesized
presentation. End-to-end learning-based approaches such as [9, 10] without im-
plicitly alignment directly feed LDR images into a network to reconstruct HDR
images, failing to deal with scenarios with complex motion or large disparity.

In this work, we present a robust HDR imaging system along the alignment-
before-merging direction, where alignment and merging network models are care-
fully designed to efficiently resolve the ghosting problem that arises due to tem-
poral motion or spatial disparity-induced displacement. In alignment network, we
use feature-domain processing to replace existing pixel-domain solutions, where
a deformable convolution-based network is applied on three input LDR images
to generate multiscale features for subsequent pyramidal alignment. Aligned fea-
tures are then fed into a merging network for synthesizing the final HDR output.
The merging process includes dilated dense blocks with squeeze-and-excitation
(SE) attention modules and adaptive mask-based weighting by which feature
redundancy and misalignment are efficiently removed. This scheme preserves
local details and provides better image quality. Such feature-domain pyramidal
alignment and masked merging networks (PAMnet) are trained in an end-to-end
manner. Our experiments demonstrate that the proposed PAMnet can produce
ghosting-free HDR images using inputs with complex motion and parallax. We
compare our method against popular algorithms in [9, 10, 8, 11, 12], on various
public test datasets, with superior reconstruction quality.

The main contributions are summarized below:

– We propose a deformable convolution-based pyramidal alignment network
that uses multiscale image features for offset generation.
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– We employ an attention optimized dense network to suppress misaligned
features and fully utilize feature information for subsequent effective fusion
using context-adaptive masks in the merging network.

– The pyramidal alignment and masked merging in feature domain can effi-
ciently capture the complex displacements across LDR inputs induced by
either temporal motion or spatial disparity for the HDR output with better
image quality and richer local details. Extensive experiments and compar-
isons to the state-of-the-art algorithms have validated the superior efficiency
of our proposed PAMnet, across a variety of test datasets.

2 Related Work

In this section, we will briefly review the existing approaches for multi-exposure
based HDR reconstruction and deep learning methods for image registration
related to this study.

2.1 Motion Handling Methods in HDR Reconstruction

Early works deal with camera motion and object motion to reconstruct ghosting-
free HDR images. Previous approaches can be categorized into two classes de-
pending on how to deal with object motion. The first class is based on motion
detection. They detect moving pixels in the images which are rejected for final
weighted HDR fusion, assuming that the images have been globally registered.
The key to these methods is accurate motion detection. Yan et al. [5] formulate
the object motion using a sparse representation. Lee et al. [6] propose to detect
motion via rank minimization. However, these algorithms heavily depend on the
effectiveness of motion detection and can not fully exploit the information of
inputs.

The other class relies on the region alignment. Alignment-before-merging
methods first align images of different exposures to the reference image, then
merge them altogether to reconstruct the HDR image. The alignment is achieved
through optical flow or patch match. Bogoni [7] registers local motion through
estimating an optical flow field between each source image and a common ref-
erence image. Hu et al. [13] and Sen et al. [11] use patch-based methods to
jointly optimize the alignment and reconstruction. These patch-based methods
provide high robustness, but are time-consuming and may fail when there are
large motions or large over-exposed regions in the reference image.

Recently, deep CNNs have offered significant performance improvement for
many image reconstruction tasks. Kalantari et al. [8] firstly introduce neural
networks in an alignment-before-merging pipeline to generate HDR images. Wu
et al. [9] and Yan et al. [14] employ deep auto-encoder networks to translate
multiple LDR images into a ghosting-free HDR image. Metzler et al. [15] and Sun
et al. [16] jointly train an optical flow encoder and a CNN decoder to hallucinate
the HDR content from a single LDR image. Choi et al. [17] suggest to reconstruct
HDR videos using interlaced samples with joint sparse coding. Prabhakar et
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al. [18] propose a deep network that can handle arbitrary inputs, where they
first align input images using optical flow and refinement network, then merge
aggregated features. Yan et al. [10] utilize spatial attention mechanism to guide
HDR merging, however, its principle is close to that of the motion detection
based methods. The spatial attention cannot fully exploit the characteristics
of image features. Instead, we propose a network with multiscale feature-based
pyramidal alignment which is more flexible and robust in handling motion and
disparity.

2.2 Multi-camera HDR Reconstruction

Alternatively, multi-camera system can be utilized for HDR imaging, in which
two or more cameras are fixed on a rig with different exposure settings. Park et
al. [19] utilize multi-exposed LDR images from a stereo camera for HDR merging,
where they estimated the depth map with the help of superpixel and hole-filling,
then fused the HDR image using a depth weighting map. Selmanovic et al. [20]
generate stereoscopic HDR video using an HDR and an LDR camera where
HDR content of the LDR view was enhanced with the reference of captured
HDR data. Popovic et al. [21] produce panoramic HDR videos using a circular
multi-camera system. Adjacent cameras share pixels with similar perspective
but different exposures. Most multi-camera HDR solutions employ depth-based
warping for HDR reconstruction and can generate HDR images of multiple views,
while occlusion and overexposure often make accurate depth estimation difficult.

2.3 Deep Registration Networks

Special network structures have been developed to solve the alignment task,
which allow complex inputs and are not limited to traditional alignment pipeline
steps [22]. The spatial transformer network [23] predicts hyper parameters for
global spatial transformations but cannot solve local object motions. Bert et
al. [24] use filters generated dynamically based on the input to learn transfor-
mations such as translation and rotation. However, limited kernel size restricts
the ability of dynamic filters in handling large motions. The deformable convolu-
tion [25] enhances the standard convolution with flexible offsets and enables free
deformable receptive fields. For modeling unknown transformations (e.g., mo-
tion induced occlusion, etc), we employ the deformable convolution for feature
alignment.

3 Proposed Method

This section describes our network architecture in detail. Given a set of LDR
images (L1, L2, ..., Lk) that contain object and camera motion and are captured
with different exposures, our goal is to reconstruct a ghosting-free HDR image
Ĥ at a specific reference view. We choose the middle exposure image as the
reference image, that is, the image with the least number of underexposed or
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Fig. 1. PAMnet. The overall model includes a pyramidal alignment network and
a merging network. Given input images with different exposures Li, the alignment
network first extracts image features at different scales (Fli, Fhi) and aligns them to
the reference view. Hi denotes the gamma corrected Li. Reference image features F2

and the aligned features F̂i are then fed into the merging network to reconstruct HDR
image Ĥ.

overexposed pixels. Using an image group (L1, L2, L3) with three exposures as
input, we set the middle exposure image L2 as the reference image. We first
convert the LDR images to corresponding HDR representations using gamma
correction. Such gamma corrected images are closer to what we have perceived
with our eyes [11]. The mapping operation can be written as

Hi = Lγ
i /ti, for i = 1, 2, 3, (1)

where γ = 2.2 [26], ti is the exposure time of the ith image Li, and Hi denotes
the mapped HDR domain image after gamma correction from the Li.

As suggested in [8], LDR images can be used to detect the noisy or saturated
regions (pixels), while the corresponding gamma corrected samples measure the
content deviations from the reference image. As a result, we feed Li and Hi

together into our network. Note that image pre-alignment is not required in our
approach. Pixel values of Li, Hi and Ĥ are all normalized to [0, 1].

3.1 Approach Overview

Our network employs deformable convolution for image feature alignment, then
merges the aligned features using dilated dense blocks with attention optimiza-
tion. The deformable convolution estimates content-based offsets for adaptive
receptive fields. As shown in Fig. 1, our network is composed of two subnet-
works: feature alignment network and merging network.

The alignment network first extracts image features at different scales in LDR
and HDR domain using convolution layers. Then reference and non-reference im-
age pyramidal feature pairs are fed into separate pyramidal alignment modules.
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The modules take multi-scale image features in the HDR domain for offsets com-
putation. Non-reference LDR and HDR domain image features are then aligned
to the reference image features using corresponding offsets.

The merging network concatenates aligned image features in LDR and HDR
domain as the input, and reconstructs HDR image by exploiting dilated dense
residual blocks with SE connection and masked merging. Dilation rate d is en-
larged in dense blocks to learn nonlocal information followed by the SE atten-
tion [27] to remove redundant information and alleviate misalignment. Finally,
the HDR image is reconstructed through a weighted fusion using adaptive mask.

3.2 Pyramidal Alignment
Given the input (Li, Hi), i = 1, 2, 3 , the alignment network first extracts image
features of different scales in LDR and HDR domain (F s

li, F
s
hi), i = 1, 2, 3, s =

1, 2 , where s denotes the number of scales. Considering the trade-off of network
efficiency and capacity, pyramidal alignment module at 2 scales (max(s)s = 2)
is enough for strong performance, although a pyramidal alignment module with
larger s has a stronger ability in dealing with large motions.

We use the deformable convolution [28] to align image features in a coarse-
to-fine manner. Let wk denotes convolution weight of the k-th location and let
pk ∈ {(−1,−1), (−1, 0), . . . , (0, 1), (1, 1)} denotes pre-specified offset. Set K = 9
for a 3 × 3 kernel convolution layer with dilation rate 1. For pixel x (p0) at
position p0, the pixel value after deformable convolution alignment is:

y(p0) =

K∑

k=1

wk · x (p0 + pk +∆pk) ·∆mk . (2)

where ∆pk and ∆mk are the learnable offset and modulation scalar for the k-th
location. ∆mk and ∆pk are calculated with the same features, the computation
of ∆mk is omitted in the following description for simplicity.

As shown in Fig. 2, we use image features in the HDR domain for offset
computation which reduces the impact of different exposures. Learnable offsets
are predicted from concatenated reference and i-th image features in HDR do-
main, then a deformable convolution layer aligns the source image features to
the reference features:

∆ps = ConvM ([F s
hi, F

s
h2]) . (3)

F̂ s
i = Dconv ([F s

li, F
s
hi], ∆ps) . (4)

where ConvM denotes convolution layers, F̂ s
i is the aligned feature of i-th input

of scale s, [·, ·] is the concatenation operation, and DConv is the deformable
convolution. Let ↑2 denotes the bilinear upsampling of scale factor 2, ∆ps and
∆ps+1 refer to offset of scale s and s+ 1 separately. After obtaining the aligned
feature of i + 1-th scale, we further refine the alignment on a upper scale with
deformable convolution:

∆ps = ConvM
(
F s
hi, F

s
h2, ∆ps+1 ↑2

)
. (5)
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Fig. 2. Pyramidal alignment module architecture. The gray dotted frame on the left
side of the figure shows the input features (yellow boxes indicate source features and
green boxes indicate reference features), and the right side is the detailed alignment
module structure. The alignment network uses HDR domain image features to com-
pute offset, then align multi-scale features with the corresponding offsets. The aligned
features F̂

s

i and the final aligned feature after refinement F̂i are indicated by orange
boxes.

Following the pyramidal feature alignment, an additional deformable convolution
is introduced to improve details in the final aligned image feature F̂i:

∆p = ConvM
(
[F 1

2 , F
1
i , F

2
i ↑2]

)
. (6)

F̂i = Dconv
(
F 1
i , ∆p

)
. (7)

Where ∆p denotes the offset for refinement and F̂i is the final aligned feature.
Previous works have validated the effect of coarse-to-fine spatial pyramidal align-
ment approach [29–31]. Taking advantage of the feature-based offset and pyrami-
dal alignment, our alignment network can successfully handle parallax and com-
plex motions, improving alignment accuracy with sub-pixel refinement. Besides,
features in the HDR domain have higher brightness consistency. Consequently,
we compute offsets with features in the HDR domain for better performance and
less computation.

3.3 Merging Network

Inspired by the success of previous methods [10, 32], we utilize residual dense
blocks with SE connection [27] for feature merging. As shown in Fig. 1, the
merging network takes the concatenated aligned features F = [F̂1, F2, F̂3] as
input. Z0 is obtained after a convolution layer, then feature maps Z1, Z2, Z3 are
generated by feeding Z0 into 3 residual dense blocks. Concatenated feature maps
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misalignment in channels.

produce Z4 after several convolution layers and the sigmoid function. Finally, the
HDR image Ĥ is reconstructed with Z4, H2 and corresponding mask Mmerge:

M = sigmoid(ConvM ([Z4, H2])) , (8)
Mrefine,Mmerge = split(M) , (9)
Ĥ = Mmerge · (Mrefine · Z4) + (1−Mmerge) ·H2 . (10)

The split operation splits the mask M in the shape of (N, 4, H,W ) into a
3-channel mask Mrefine and 1-channel mask Mmerge, of which the shape are
(N, 3, H,W ) and (N, 1, H,W ) respectively.

Since dense connections may cause information redundancy, we apply SE
connections in residual dense blocks which helps to remove redundancy. In ad-
dition, growing dilation rates are set in dense blocks to get larger receptive field
for hallucinating details and misalignment elimination, as shown in Fig. 3.

3.4 Loss Function
Since HDR images are displayed after tone mapping, optimization in the tone
mapped domain produces results with fewer artifacts in the dark regions than
optimization in the HDR domain. We employ the µ-law for tone mapping as
supposed in [8], which is formulated as:

T (H) =
log(1 + µH)

log(1 + µ)
. (11)

where µ is set to 5000. Denoting ground truth HDR image and predicted HDR
image as H and Ĥ, the loss function can be defined as:

L(H, Ĥ) = ∥T (H)−T (Ĥ)∥1 +α∥∇T (H)−∇T (Ĥ)∥2+β∥T (H)−T (Z4)∥1. (12)

where α = 10, β = 0.5 , ∇T (H) denotes the gradient magnitude of image T (H),
∥ · ∥1 and ∥ · ∥2 denote ℓ1 and ℓ2 norm, respectively.
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4 Experiments

4.1 Datasets

Training Dataset. We train on Kalantari’s dataset [8] which contains 74 sam-
ples for training and 15 samples for testing. Each sample includes ground truth
HDR images and three LDR images with exposure biases of {−2, 0,+2} or
{−3, 0,+3}. The dataset has both indoor and outdoor scenes and all images
are resized to 1000× 1500.

Testing Dataset. Testing is performed on Kalantari’s testset [8] which has 15
scenes with ground truth and a dataset without ground truth [11]. To verify the
model’s ability in handling parallax, we also test our model on the Middlebury
dataset [33] which consists of sets of images of different views with three different
exposures. We use scenes from Middlebury 2005 and Middlebury 2006 for testing,
and choose image sets of 3 illuminations and 2 different reference views from each
scene.

4.2 Implementation Details

Given training data, we first crop them into 256 × 256 patches with a stride
of 128 to expand training set size. The crop is conducted on LDR images and
corresponding HDR label. Random flipping, noise, and 90 degrees rotation are
applied on generated patches to avoid over-fitting. We use Adam optimizer [34]
with β1 = 0.9, β2 = 0.999, learning rate = 10−4 and set batch size as 8. We
perform training for 160 epochs. In order to better train the deformable convo-
lution based alignment module, we employ the learning rate warmup trick where
the warmup epoch is set to 10. We implement our model using PyTorch [35] on
NVIDIA GeForce GTX 1080 GPU, and we decrease the learning rate by a factor
of 4 every 70 epochs.

4.3 Analysis of Single-camera Case

We compare the proposed model with existing state-of-the-art methods on two
datasets captured with single camera. We perform quantitative evaluations on

Table 1. Quantitative comparison on Kalantari’s Testset [8]. Red color indicates the
best performance and blue color indicates the second-best result.

Methods PSNR-L PSNR-µ SSIM-L SSIM-µ HDR-VDP-2

AHDR [10] 41.1782 43.7013 0.9857 0.9905 62.0521
Wu [9] 41.6593 41.9977 0.9860 0.9878 61.7981
Kalantari [8] 41.2200 42.7177 0.9829 0.9889 61.3139
Sen [11] 38.3425 40.9689 0.9764 0.9859 60.3463
Ours 41.6452 43.8487 0.9870 0.9906 62.5495
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Fig. 4. Visual comparison using “Parking” from Kalantari’s testset [8]. Left: input
LDR images; Upper Right: HDR image reconstructed using proposed PAMnet;
Lower Right: Zoomed-in patches of LDR images and HDR images. We choose the
medium-exposure image as the reference. We show the results of the state-of-the-art
HDR imaging algorithms, AHDR [10], Wu [9], Kalantari [8], Sen [11], and HDRNet [12].
The proposed PAMnet can produce high-quality HDR images even there are back-
ground saturation and large foreground motions.

Kalantari’s testset [8] and qualitative assessments on dataset without ground
truth [11]. We compare our model with the patch-based method [11], the single
image enhancement method (HDRnet) [12], the flow alignment based method
with a CNN merger [8], the UNet-based method [9] and the attention-guide
method (AHDR) [10]. Note that we use a PyTorch [35] implementation of HDR-
net which is trained on the same dataset as [12]. For other methods, we utilize
the code and trained models provided by the authors for testing comparison.

We use metrics such as PSNR, SSIM, and HDR-VDP-2 for quantitative com-
parison. We compute PSNR and SSIM for images in linear domain (PSNR-L and
SSIM-L) and images after the µ-law tone mapping (PSNR-µ, SSIM-µ). We also
compute HDR-VDP-2 [36] for quantitative comparison. Quantitative evaluation
on Kalantari’s testset [8] can be found in Table 1. All values are averaged on 15
test scenes. The proposed PAMnet has better numerical performance than other
methods. For the sake of fairness, the HDRnet [12] is not included in the quanti-
tative comparison because it produces enhanced LDR images. Fig. 4 and Fig. 5
compare our method with existing state-of-the-art methods. Sample of Fig. 4
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Fig. 5. Visual comparison using ”Santas Little Helper” from Sen’s dataset [11]. Left:
input LDR images; Upper Right: HDR image reconstructed using proposed PAMnet;
Lower Right: Zoomed-in patches of LDR images and HDR images. Our PAMnet
produces HDR images with less noise and artifacts.

contains saturated background and large foreground motion. AHDR [10] and
method of Wu et al. [9] produce ghosting artifacts in occluded region. Method of
Kalantari et al. [8] leaves artifacts caused by optical flow alignment. Patch-based
method (Sen et al. [11]) cannot find the right corresponding patches in the sat-
urated region and generates line dislocation and color blocks. HDRnet [12] can’t
recover details in the saturated region and perturbs the tone of the image. With
task-oriented pyramidal alignment, our network can produce high-quality HDR
images even there is large motion in the inputs. For samples with underexposed
objects in the reference image (as shown in Fig. 5), most methods can’t recon-
struct artifacts-free face and hand. Method of Sen et al. [11] and Kalantari et
al. [8] produce results with local abnormal color and noise. HDRnet [12] enhances
the underexposed region but can’t hallucinate all details in the dark areas. Local
color inconsistency appears around the hat in results generated by AHDR [10]
because the spatial attention mask can only suppress unwanted pixels rather
than find corresponding useful pixels.
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Fig. 6. Visual comparison on the Middlebury dataset [8]. Left: the input LDR images;
Middle: the HDR image; Right: Zoomed-in patches of LDR images and HDR images.
Our PAMnet can handle parallax (see zoomed-in patches) and produce ghosting-free
HDR images.



Robust HDR Imaging with Complex Motion and Parallax 13

Base model Base model w/ 

DCN

Base model w/ 

pyramid DCN

(a)

PAMnet
PAMnet

w/o Mask

PAMnet

w/o SE

(b)

Fig. 7. Visual comparison of network variants via modularized switch.

4.4 Analysis of Multi-camera Case

To validate the model’s ability to handle parallax, we performed evaluation on
Middlebury testset [33]. For each scene, we select a set of 3 images with differ-
ent exposures as inputs. We choose the two models with the best quantitative
performance on Kalantari’s testset [8] to compare with ours on the Middlebury
dataset [33]. Results on three scenes with different environment illumination are
shown in Fig. 6. AHDR [10] suffers ghosting artifacts because the attention-based
network which suppresses unhelpful pixel values before merging is not suitable
for handling large disparity. Method of Wu et al. [9] produces gridding effect in
the fused results, which can be observed more obviously in a zoom-in view of
patches in Fig. 6. Experimental results validate the superiority of our PAMnet
which can handle large parallax and produce ghosting-free HDR images.

5 Ablation Study

This ablation study demonstrates the effectiveness of pyramidal feature align-
ment, masked merging, and usage of SE connection. Quantitative comparisons
of the network variants are shown in Table 2.

Table 2. Quantitative comparison of different models.

Methods PSNR-L PSNR-µ SSIM-L SSIM-µ

Base model 40.1189 41.9602 0.9841 0.9891
Base model w/ DCN 40.8987 42.3182 0.9863 0.9896
Base model w/ pyramidal DCN 41.4254 43.4087 0.9865 0.9900
PAMnet w/o SE 41.5191 43.5479 0.9865 0.9903
PAMnet w/o mask 41.4764 43.6738 0.9866 0.9901
PAMnet 41.6452 43.8487 0.9870 0.9906
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Deformable Convolution-based Pyramidal Alignment The deformable
convolution based feature alignment can better mitigate the ghosting problem
caused by motion and parallax. We remove the pyramidal alignment, SE con-
nection and masked merging from our PAMnet as the base model. As shown in
Fig. 7 (a), model with deformable convolution generates fewer ghosting artifacts
comparing with the base model. The model with pyramidal feature alignment
can generate ghosting-free HDR images, and its ability to handle large motions
is stronger than the model with only single scale feature alignment.

Masked Merging and SE Connection Though model with pyramidal feature
alignment can handle large motions, inaccurate alignment may introduce extra
artifacts to the fused image. To suppress the misaligned features, we employ the
SE attention [27] to the dense blocks of our network. The masked merging also
helps to generate better results. As shown in Fig. 7 (b), the model without SE
connection produces abnormal color in the second row while unnatural shadows
and highlights arise in images generated by the model without masked merging
(rectangle region). The full model with SE connection and masked merging can
discard redundant information and inaccurate alignment, producing results with
richer details and fewer artifacts.

6 Conclusion

In this paper, we propose a learned HDR imaging method that can handle com-
plex object motion and large camera parallax. With pyramidal alignment and
masked merging in feature domain, our method can produce high-quality HDR
images in various scenarios having saturation, parallax, and occlusion in in-
put data. Experiments validate that our model performs well on multi-exposure
frames captured by both single-camera and multi-camera systems. We com-
pare our method with existing state-of-the-art approaches on publicly available
datasets and observe that our method offers significant improvement both ob-
jectively and subjectively. Our current work is exemplified using a fixed number
of LDR images, but it is possibly extended to support an arbitrary number of
images.
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