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Abstract. Statistical and adversarial adaptation are currently two ex-
tensive categories of neural network architectures in unsupervised deep
domain adaptation. The latter has become the new standard due to its
good theoretical foundation and empirical performance. However, there
are two shortcomings. First, recent studies show that these approaches
focus too much on easily transferable features and thus neglect important
discriminative information. Second, adversarial networks are challenging
to train. We addressed the first issue by the alignment of transferable
spectral properties within an adversarial model to balance the focus be-
tween the easily transferable features and the necessary discriminatory
features, while at the same time limiting the learning of domain-specific
semantics by relevance considerations. Second, we stabilized the discrim-
inator networks training procedure by Spectral Normalization employing
the Lipschitz continuous gradients. We provide a theoretical and empir-
ical evaluation of our improved approach and show its effectiveness in
a performance study on standard benchmark data sets against various
other state of the art methods.

1 Introduction

The ability to learn sophisticated functions and non-trivial data distributions
are some of the main advantages of deep learning networks. In recent years, this
capability has led to a drastic increase in classification accuracy in computer
vision [1] and natural language processing [2], making them state of the art
models in these fields. These flexible network architectures tend to overfit on the
given training distribution while showing poor generalization on related distri-
butions. Especially in real application scenarios, the training and test domains
are different, and the networks cannot generalize well to the test distribution [3].

Unsupervised deep domain adaptation is a commonly utilized technique where
fine-tuning of networks [4] is insufficient, due to missing test labels or significant
differences between related domains [5]. During the training process, the net-
works learn discriminative features for the classification task and simultaneously
learn an invariant representation by minimizing a statistical discrepancy between
two or more domains [5, 3, 6]. Statistical adaptation [7] is usually integrated as
a regularization term into the network. To some extent, these methods can be
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interpreted as minimizing the discrepancy between one or more (higher) central
moments of the domains [6]. The obtained representation should neglect source-
specific domain characteristics such as light and camera settings in an image
classification task.

However, statistical adaptation networks are naturally restricted in creat-
ing invariant features concerning the chosen discrepancy measure. In contrast,
domain adversarial neural networks (DANN) [8] consist of a classifier network
and a domain classifier on top of the feature extractor (bottleneck output). The
learning process is a min-max game related to GANs [9]. The network feature
extractor tries to fool the domain classifier (discriminator) by learning an adver-
sarial representation expected to be invariant to the source and target domain.
Supported by the domain adaptation theory [10], minimizing the domain classi-
fier loss and reverse propagating the resulting gradient to the feature extractor
facilitates learning a transferable representation.

Recent work [7] revealed that DANN type networks focus too much on easily
transferable features associated with large singular values, neglecting discrimi-
native features assigned to mid-size singular values. We derive the spectral align-
ment of both domains during learning, reducing the influence of large singular
values while balancing the relevance of source and target domain. Therefore, we
consider transferable and discriminative features of the source and target domain
as sufficiently similar after learning. Hence, it is not necessary to reduce the in-
fluence of high singular values. Additionally, when striving for domain invariant
representations, a minimization of domain-specific influences [11] of the primary
learning domain, i. e., small source singular values, should take place.

To bridge the gap between statistical adaptation and adversarial enhance-
ment in a single loss function, we propose the Relevance Spectral Loss (RSL)
within our Adversarial Spectral Adaptation Network (ASAN). It aligns the spec-
trum of the source and target domain in the learning and adaptation process and
simultaneously minimizes the influence of domain-specific features relative to the
overall spectrum. The proposed RSL is related to moment-matching networks
[3, 6, 5], due to the relationship of (squared) singular values to the variance and
the second central momentum. Hence, minimizing RSL aligns not only discrep-
ancies between spectral properties [7], i. e., transferability and discriminability,
of the adversarial features, but also the statistical properties, i. e., second-order
momentum. To obtain better control of the gradients from the domain classifier
and to lower training difficulties of adversarial networks, we utilize the process
by Spectral Normalization [12] of the discriminator weights. The ASAN model
shows superior classification performance compared to state of the art methods.

The contributions of this paper are summarized in the following:

– Proposing the Relevance Spectral Loss (RSL), underlying reasoning of RSL
and integration of Spectral Normalization [12] into our ASAN (Sec. 3 - 3.4).

– Theoretical evaluation of the gradient and the learning properties of the
proposed Adversarial Spectral Adaptation Network (Sec. 3.5 - 3.6).

– Empirical evaluation on benchmark datasets against competitive networks
and an analysis of its properties showing the efficiency of ASAN (Sec. 4).
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2 Background and Related Work

In unsupervised deep domain adaptation [6, 8, 13, 3], we consider a labeled source

dataset Ds = {Xs, Ys} = {xi, yi}
n
i=1

i.i.d.
∼ p(S) in the source domain S and an

unlabeled target dataset Dt = {Xt} = {xj}
m
j=1

i.i.d.
∼ p(T ) in the target domain

T with same label space ∀i, j : yi, yj ∈ Y but different distributions p(S) 6= p(T ).
The overall goal is (still) to learn a classifier model, but additionally, it should
generalize to a related target domain. The input feature space X is the initial
representation of the source and target, i. e., Xs,Xt ∈ X .

Initially, we consider a neural network g : X → Y with the parameters θ
and given Ds, minimizing a classification loss - most often the cross-entropy
L(g(x; θ), y) = −

∑

i∈Y
yilog(g(xs; θ)i). The expected loss or risk of the network

is R[L(g(x; θ), y)] and during learning the empirical risk approximates the risk
by

min
θ

E[L(g(Xs; θ), Ys)]. (1)

The network architecture is composed of multiple hidden layers followed by an
output or classification layer. Consider g(Xs; θ)l = a(f(Xs; θ)l)l as the layer l
with an activation function a(·)l and parameter layer f(·)l for the given source
data and g(Xt; θ)l for the target data analogously. Recent network architectures
roughly distinguish between the categories of statistical adaptation [13, 3, 6, 5]
and adversarial adaptation [7, 14–17].

In statistical adaptation, approaches use one or more higher layers, i. e., the
fully connected layers of the network, to adapt the output distributions of the
(hidden) layers g(Xs; θ)l and g(Xt; θ)l[6]. This leads to very individualized ap-
proaches. To measure the difference between the output distributions of the
network, a divergence measure dist : g(Xs; θ)l × g(Xt; θ)l → R

+
0 is employed

and added to the objective function:

min
θ

E[L(g(Xs; θ), Ys)] + η · dist(g(Xs; θ)l, g(Xt; θ)l). (2)

The dissimilarity measure is used as a regularization. The parameter η ∈ [0,∞)
controls the trade-off between aligning the statistical divergence and minimiz-
ing the classification objective. A commonly used dissimilarity measure is the
Maximum Mean Discrepancy (MMD) [18], which is the difference in mean of
the domain data matrices in a reproducing kernel Hilbert space (RKHS). The
minimization of MMD in the proposed networks can be seen as an alignment
of statistical moments given a particular kernel, e. g., RBF-Kernel, of the two
domains [19].

The authors of [6] proposed the Central Moment Discrepancy for domain
adaptation, which explicitly minimizes higher central moments. The CORAL
loss [3], minimizing the difference of the full covariance matrices between two
domains. Our proposal is a particular case of CORAL. By aligning only the
singular spectra of the domains, we align the covariances as a side effect. How-
ever, our ASAN minimizes a diagonal matrix, which is easier to learn, making it
favorable over CORAL. An interpretation of our loss is the minimization of the
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second central moment between domains. Further, we do not rely on a particular
kernel matrix nor kernel function, but any positive semi-definite (psd) kernel can
be used. Due to this flexibility, it is also relatively easy to extend, e. g., relevance
weighting as proposed in Sec. 3.3.

Since our ASAN combines statistical and adversarial adaptation, we now
introduce adversarial learning: let the bth layer of the network be the bottleneck
layer and consider the network from the first to the bth layer as the feature ex-
tractor f : X → F with parameters θf . From the b + 1th layer to the output,
let g : F → Y be the classifier network with parameters θg, where F is a latent
feature space and Y is the label space. Usually b ≤ l for the domain regular-
ization layer. Additionally, let d : F → C = {−1, 1} be a domain classifier with
parameters θd, predicting the domain of samples. Adversarial domain adapta-
tion yields to minimize the loss of d(·), by propagating the reversed gradients
from d(·) to f(·) and trying to confuse d(·) [8]. The Gradient-Reversal-Layer is
defined as R(x) = x and ∂R

∂x
= −λI, where I is the identity matrix. The invariant

representation is achieved at the saddle point of

min
θf ,θg,θd

E[L(g(f(Xs; θf ); θg), Ys))] + λE[Ld(d(R[f(X; θf )]; θd), Yd)] (3)

where Yd = [1n,−1m] are the domain labels of source size n and target size m
and X = [Xs,Xt]. The vanilla DANN [8] implements the cross-entropy for Ld.
Other authors [15] used the Wasserstein distance in Ld because of the intuitive
expression of distribution differences [20]. DANN-type networks have also been
extended to normalized Wasserstein distances [21].

The Conditional Domain Adaptation Network (CDAN) [16] enriches bottle-
neck features with class conditional confidences via multi-linear mapping T :
F × Y → Fc, which is fed into the discriminator, i. e., d(T (·)). CDAN is the
baseline in related networks and is extended in this work due to its good perfor-
mance. The SDAN [22] integrates the Spectral Normalization (SN) [12] to obtain
1-Lipschitz continuous gradients. SN is also a building block in our network, but
SDAN does no statistical alignment during learning.

None of the adversarial networks above explicitly define dist(·) in Eq. (3) in
the same way as statistical deep learning does in Eq. (2). In this sense, the Batch-
Spectral-Penalization (BSP) network is related to us in terms of shrinking the
first k singular values, given features from f(·), to lower the influence of easily
transferable features. However, our ASAN network explicitly defines dist(·) to
align the spectra, which is crucial to be less dependent on the source feature
spectrum. In [23], an element-wise comparison of distributions in the label space
is implemented and [14] where l < b, aligning distributions in low-level filters.
Our proposed loss directly modifies adversarial and statistical characteristics in
one loss, making it superior to discussed approaches.

3 Model

This section presents the main contribution: The reasoning behind the Relevance
Spectral Loss (RSL) in Sec. 3.1 and 3.2. Afterward, the loss itself in Sec. 3.3 and
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the combination with SN in Sec. 3.4. Further, we analyze the learning and the-
oretical properties in Sec. 3.5 and 3.6, respectively. We present the architecture
of the network in Fig. 1.

Target
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Fig. 1: Architectural overview of our proposed ASAN model, extending the
CDAN [16] network by our LRS and Spectral Normalization [12] (SN). GRL
is the Gradient-Reversal-Layer [8].

3.1 Statistical Properties of Singular Values

Given the background in Sec 2, let Xl
s and Xl

t be the output of the source
and target from layer b or more precise the output of f(·) called bottleneck
features. The Singular Value Decomposition (SVD) of these outputs is given
with Xl

s = UΣVT and Xl
t = LTRT . Here R,V ∈ R

d×d, U ∈ R
n×n and

L ∈ R
m×m are matrices. Further, U,L,V and R are column-orthogonal. Σ is a

n×d matrix wherein all entries σij = 0 iff i 6= j and T is a m×d matrix wherein
all entries tij = 0 iff i 6= j. Furthermore, by σk we denote the singular value in
the k-th column of Σ. For a linear covariance function, we can decompose the
respective kernel with the eigenvalue decomposition and the SVD into

K = CDC−1 = XTX = (VΣUT )(UΣVT ) = CΣ
2C−1, (4)

where C are the eigenvectors (right singular vectors of X) and D are the eigen-
values of K. The singular values Σ of X are the square root eigenvalues of
K. Accordingly, the entries of the diagonal of D,Σ2 give the variance of the
columns of K. Assuming that the expected values Es(X

l
s) = 0,Et(X

l
t) = 0,

we got tr(Σ2) = tr(XtX). Hence, minimizing the difference between Σ and
T is the same as minimizing covariance matrices differences on the diagonal.
Subsequently, we assume the same batch sizes for both domains during training.
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3.2 Relationship of Feature Characteristics and Singular Values

Given Σ and T produced by a DANN [8] network, each spectrum associated
with their features is separable into three areas. Large singular values repre-
sent features with high transferability due to high principal angels between their
associated subspaces. Features with mid-size singular values contain class dis-
criminative information for learning classification tasks [7]. Small singular values
interfere with the generalization ability of a network because of domain-specific
features, based on the observation of shrinking small source singular values in
the fine-tuning process of neural networks and low principal angels between the
corresponding source and target singular vectors [11].

Combining [7, 11] from above and the statistical perspective (Sec. 3.1), singu-
lar values express the variance of the feature covariance matrix and are associated
with the variance of filter outputs. Therefore, large singular values correspond
to high variance, resulting in transferability due to uniform filter activations
in both domains. Mid-size singular values are associated with filters producing
class-discriminative information with more class-specific activations. Small sin-
gular values express domain-specific features due to the low expressiveness of
filters over domain borders. By aligning the spectra, overly emphasized features,
given large singular values, are neglected due to the similarity of the singular
values, while the discriminative features are aligned. Aligning the statistics (Sec.
3.1) and shrink domain-specific signals [11] enables rich adaptation without the
need for devastating transferable features [7], which is counter-intuitive in adap-
tation tasks.

3.3 Relevance Spectral Alignment

The approach [7] of shrinking the k highest or smallest k singular values from
both domains for domain adaptation comes with the drawback that they are still
related to the source spectrum. In some sense, it is counter-intuitive to shrink
the influence of highly transferable features in the adaptation task. However, by
aligning the most significant singular values, the network does not rely on one
spectrum. The expressed variances of the features are the result of two domains.
Following the same reasoning, the classification task is enhanced by not relying
on the description of one but the alignment of two spectra. Only the domain-
specific contents should be shrunk due to low expressiveness over domain borders
[11], which we consider as relevance weighing of domain-specific features. Finally,
we define our proposed Relevance Spectral loss as

LRS = ||(Σn −Tn) + (Σ2
k −Tk)||

2
F (5)

where Σn and Tn are the largest n− k singular values and Σk and Tk are the
smallest k singular values respectively. Further, || · ||2F is the squared Frobenius
norm. We follow the fine-tuning perspective of [11] and actively shrink only
the k smallest source singular values. However, we show in Sec. 3.5 that the
respective target singular values are also minimized during learning. The loss
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can be integrated into any layer as a regularization term or simultaneously used
in multiple layers, as suggested by [13]. Here we use our proposed approach in
the bottleneck layer.

LRS has three main benefits. The network aligns the source and target spec-
trum during learning and depends not only on the source spectrum in F . As-
suming the properties as in Sec. 3.1, the network minimizes the difference of
the diagonal entries of covariance matrices, making it related to [3, 6], which
adapts the second central moment. Domain-specific information [11] in the last
k source singular values is minimized during the adversarial adaptation process.
Simultaneously, discriminative and transferable features [7] in the largest n− k
are encouraged to be large and similar over domain borders. Summarizing, LRS

bridges statistical and enhances adversarial adaptation formulated in one loss,
making ASAN favorable in simplicity and theoretical understanding.

3.4 Stabilize Discriminator Gradients

The domain classifier d(·) is related to the discriminator in GANs [22]. The GAN
discriminator suffers from unstable gradients and saturation of training due to
perfect predictions [24]. The occurrence of these problems is also possible in
training the domain classifier. We integrate Spectral Normalization [12] in the
domain classifier network to tackle this problem by regularizing the gradients to
be 1-Lipschitz [12] and avoid the situation where the gradients coming from d(·)
are devastating gradients from LRS . Let W be parameters in an arbitrary layer
of d(·), then SN [12] has the form

Wsn =
W

σ(W)
, (6)

where σ(W) is the largest singular value of the parametersW and ||Wsn||lip ≤ 1.
We implement SN [12] into every layer of the domain classifier, and SN takes
place after the forward pass and before gradient propagation. In the following,
we call the combination of LRS , SN and CDAN-baseline the Adversarial Spectral
Adaptation Network. See Fig. 1 for an architectural overview.

3.5 Learning Procedure

From the perspective of statistical adaptation, data-driven gradients are common
[3, 13, 6]. Therefore, we follow the suggestions and learn the RSL given the source
∂LRS

∂xs
and target data ∂LRS

∂xt
. Given the definition of the covariance-matrix in Eq.

(4) and following [25, 26], the derivative of a singular value σ and a squared
singular value σ2 w.r.t a sample point is

∂σe

∂xij

= uievje,
∂σ2

e

∂xij

= vievje. (7)

where uie and vje are the components of the left and right singular vectors of
X. The derivative of the eth singular value is given by the jth feature of the ith
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data-sample and is defined for any σi 6= σj . For a detailed description of the
derivative of singular and eigen-values, see [25, 26].

Looking once more at Eq. (5), the loss needs a derivative for each domain.
The source-based derivative of LRS is given by the derivative of σk w.r.t. the
source data xs

ij , therefore

∂LRSL

∂xs
ij

=
∂σe

∂xs
ij

√

Σn−k
e=1 (σe − te)2 +Σn

i=k+1(σ
2
e − te)2

2

(8)

= 2Σn−k
e=1 (σe − te)

∂σe

∂xs
ij

+ 2Σn
e=k+1(σ

2
e − te)

∂σe

∂xs
ij

(9)

= 2
(

Σn−k
e=1 (σe − te) · |uievje|+Σn

e=k+1(σ
2
e − te) · |vievje|

)

. (10)

Let lie and rje be the singular vector components of the target data. The target-
based derivative of LRS is analogously given by tk w.r.t target data xt

ij as

∂LRSL

∂xt
ij

= −2
(

Σn−k
e=1 (σe − te) · |lierje|+Σn

e=k+1(σ
2
e − te) · |lierje|

)

. (11)

The derivatives give some interesting insights to discuss. The absolute value
of the singular-vector components is not a derivative product but was added
afterward to avoid sign flipping of singular-vectors [27]. Sign flipping leads to
wrongly directed gradients. Both derivations point in opposite directions leading
to equilibrium at LRS = 0 because every iteration makes a step towards the
respective other domain.

The difference between the n− k largest singular values from the source and
target is regularized by the component-wise correlation of the row and column
spaces given a source or target data point. This prevents a too drastic focus
on one of the spaces. The smallest k source singular values are regularized by
the component-wise correlation of right singular vectors given feature xij . Con-
sequently, the smallest k target singular values are mitigated while the target
spectrum adapts to the source spectrum.

3.6 Theoretical Properties

The analysis of ASAN relies on the work of Zhao et al. [28], which extends the
domain adaptation theory of Ben-David et al. [10]. To improve the readability, we
adapt the former notation as follows: let ε(s) and ε(t) be the risk of classifier g(·)
on the source and target domain. ε(d) is the risk of the trained domain classifier
d(·). Further, let min{Ep(S)[|fs−ft|],Ep(T )[|fs−ft|]} be the expected divergence
between the optimal labeling function of source fs and target ft w.r.t the source
and target marginal distributions. Define d

H̃
(p(S), p(T )) = suph̃∈H̃

|Prp(S)(h̃ =

1)−Prp(T )(h̃ = 1)| as the disagreement of hypothesis h̃ on the source and target

distribution given H̃ = {sgn(|h(x) − h′(x)| − z) | h, h′ ∈ H, 0 ≤ z ≤ 1}, where
H is a hypothesis class with finite VC dimension. Conveniently, this is referred
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to as the difference in marginal distribution [28]. The domain adaptation theory
by [28] states that

ε(t) ≤ ε(s) + d
H̃
(p(S), p(T )) +min{Ep(S)[|fs − ft|],Ep(T )[|fs − ft|]}. (12)

Assuming a fixed representation obtained from f(·), it is shown for CDAN that
learning d(·) yields an upper bound, i. e., d

H̃
(p(S), p(T )) ≤ sup |ε(d)| where

z = 0 [16]. This is done under the assumption that the hypothesis class Hd

of d(·) is rich enough to contain d
H̃
, i. e., d

H̃
⊂ Hd for z = 0. This is not an

unrealistic scenario, since we are able to choose d(·) as a multi-layer perceptron
approximating any function [16, 8]. Following this reasoning, we assume that Hd

is also rich enough that d
H̃

⊂ Hd for 0 ≤ z ≤ 1 and bound Eq. (12) by

ε(t) ≤ ε(s) + sup |ε(d)|+min{Ep(S)[|fs − ft|],Ep(T )[|fs − ft|]}. (13)

See [16, 8, 28] for technical details about the proof. Hence, minimizing sup |ε(d)|
by learning d(·; θd), influenced by learning LRS , yields an upper bound for the
risk of g(·) on the target domain, i. e., f(·) learns an invariant representation. In
particular, the last term of Eq. 13, i. e., min{·}, is the limitation of ASAN, since
it does not approximate the labeling functions. Therefore, the performance of
DANN-type networks is limited to differences in ground truth labeling of source
and target, see Fig. 1 in [28].
Time Complexity. The SVD required for LRS is O(min(p, df )

2) where p is the
batch size and df is the dimension of the bottleneck space F . The input space
is usually high dimensional due to RGB image data, e. g., dx = 3× 224× 224 =
150.528 in Resnet50 [1]. Given the computational complexity of convolution
[29] and df = 256 ≪ dx in ASAN, the computation of SVD at the bottleneck
layer does not increase the complexity class of the network. Further, SN uses a
modified power iteration converging in one iteration [12]. In practice, the time
requirements of our extensions are neglectable in comparison to the Resnet50
training time.

4 Experiments

We provide the experimental validation of the ASAN architecture against state-
of-the-art domain adaptation networks on standard benchmark datasets. The
PyTorch code is published at https://github.com/ChristophRaab/ASAN.

4.1 Datasets

Office-31 [30] is an image data set with 4652 photographs, each assigned to
one of the 31 classes. The dataset is divided into the three domains Amazon
(A), Digital Single-Lens Reflex camera (D) and Webcam (W). The domain
adaptation task is to learn on one domain and test on another. The shift between
the domains results from differences in surroundings and camera characteristics.
The tasks are A→W, D→W, W→D, A→D, D→A and W→A.
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Image-Clef is another image dataset and was released in 2014 as part of
the ImageClef domain adaptation challenge. It contains 12 common classes from
domains Caltech-256 (C), ImageNet ILSVRC2012 (I), and PAS-CALVOC2012
(P) with an total of 1.800 photos. The test setting, again similar to Office-31, is
I→P, P→I, I→C, C→I, C→P and P→C.

Office-Home [31] is more comprehensive and more difficult than Office-31
with 65 classes and 15.500 images in total. The dataset domains are Art (A),
containing painting and sketches, Clipart (C), Product (P), containing product
images without background, and real-world (R), containing objects from regular
cameras. The test setting for domain adaptation is A→C, A→P, A→R, C→A,
C→P, C→R, P→A, P→C, P→R, R→A, R→C and R→P.

4.2 Implementation Details

Architecture. Following the architectural style of CDAN+E (+E : Entropy
reweighting)[16], the Resnet50 bottleneck network [1] pre-trained on Imagnet
represents the feature extractor f(·). The classifier g(·) on top of f(·) is a fully
connected network matching F to the task depended label space Y, e. g., with 31
dimensions for Office-31. The classifier loss is cross-entropy. The domain classifier
d(·) has three fully connected layers, while the first two have RELU activations
and dropout, and the last has sigmoid activation. The input of the discriminator
d(·) is the result of the multi-linear map T (f, g) = f(X)⊗ g(X) [16]. The loss of
d(·) is binary-cross-entropy. In the adaptation process, the whole network is fine-
tuned on the domain adaptation task. Beyond that, we extend the following: all
discriminator layers are regularized with SN [12]. The proposed RSL is computed
from the source and target bottleneck features and propagated to the feature
extractor.

Competitive Methods. We compare our network against the following re-
cent adversarial networks: Domain Adversarial Neural Network (DANN) [8],
Conditional Domain Adversarial Network (CDAN) [16], Batch Spectral Penal-
ization (BSP) [7], Spectral Normalized CDAN (SDAN) [22], Joint Adaptation
Network (JAN) [13], Stepwise Adaptive Feature Norm (SAFN) [32] and En-
hanced Transport Distance (ETN) [33]. Note that the authors of ETN have not
provided the standard deviation in their results. But we still want to show the
performance against very recent works.

Experimental Setup. We follow the standard study protocol [13] for un-
supervised deep domain adaptation and use all available labeled source and
unlabeled target data. The results are the mean and standard deviation given
three random runs using the best-reported target accuracy per training process.
All approaches use the same feature extractor. Reported results of former work
are directly copied in the result tables 1, 2, and 3 if the experimental designs
are the same. The classifier and discriminator are trained from scratch with a
learning rate ten times the feature extractors learning rate.

Parameters. The ASAN hyper-parameters are optimized as in [34] on the
Office-31 dataset and set to k = 11 and η = 10e−3 for all datasets. The sup-
plementary gives more details about the tuning and behavior of k. All pa-
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rameters are trained via mini-batch SGD with a momentum of 0.9. The ini-
tial learning rate ζ0 = 0.001 is modified by a progress based adjustment of
ζp = ζ0(1 + α · p)−β , where α = 10, β = 0.75, and 0 ≤ p ≤ 1 depending on
the training process as suggested by [8]. The λ parameter for the discriminator
contribution to the overall loss is progressively increased from 0 to 1 based on
(1 − exp(−δ · x))/(1 + exp(−δ · x)), with δ = 10 as suggested for adversarial
architectures [16].

4.3 Performance Results

We report the experiments for Office-31 in Tab. 1, for Image-Clef in Tab. 2, and
Office-Home in Tab. 3 as accuracy (0-100%). Overall, the ASAN architecture

outperforms the compared algorithms in two out of three datasets, while having
the overall best mean performance. The results are obtained by optimiz-
ing the parameters only on the Office-31 dataset. This shows the robustness of
the performance of our ASAN in terms of parameter sensitivity across changing
tasks, making it a stable approach and easily applicable to related real-world
scenarios. At Office-31, ASAN reports the best performance at four out of six
comparisons, while showing the best mean performance. The second-best per-
forming algorithm is SDAN, which also relies on CDAN and SN. However, due to
no additional alignment, our ASAN is superior to SDAN by learning a bottleneck
space, aligning both domain spectra. Further, the BSP approach seems to not
create an invariant representation by shrinking the first k singular values com-
petitive with ASANs spectral alignment (RSL). At Image-Clef, ASAN is only
second-best in performance. However, better than related CDAN and SDAN.
This suggests that learning our proposed RSL within ASAN improves CDAN,
leading to better performance than related methods. At Office-Home, ASAN
demonstrates outstanding performance by outperforming in ten out of twelve
tasks. The results are comparable with the results of Office-31. The ASAN is
best, ETN is second, and SDAN is third in mean performance. Again, RSL,
combined with SN, is superior to related approaches such as BSP, SDAN, or
CDAN and, further, outperforms very recent benchmark performances of ETN.

Table 1: Mean prediction accuracy with standard deviation on the Office-31

dataset over three random runs.
Dataset A→W D→W W→D A→D D→A W→A Avg.

Resnet [1] 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1
DANN (2015) [8] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
JAN (2017) [13] 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
CDAN (2018) [16] 93.1±0.2 98.2±0.2 100±0 89.8±0.3 70.1±0.4 68.0±0.4 86.6
BSP (2019) [7] 93.3±0.2 98.2±0.2 100±0 93.0±0.2 73.6±0.3 72.6±0.3 88.5

SDAN (2020) [22] 95.3±0.2 98.9±0.1 100±0 94.7±0.3 72.6±0.2 71.7±0.2 88.9
ETN (2020) [33] 92.1 100.0 100.0 88.0 71.0 67.8 86.2
ASAN (ours) 95.6±0.4 98.8±0.2 100±0 94.4±0.9 74.7±0.3 74.0±0.9 90.0
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Table 2: Mean prediction accuracy with standard deviation on the Image-clef

dataset over three random runs.
Dataset I→P P→I I→C C→I C→P P→C Avg.

Resnet [1] 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7
DANN (2015) [8] 75.0±0.6 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0
JAN (2017) [13] 76.8±0.4 88.0±0.2 94.7±0.2 89.5±0.3 74.2±0.3 91.7±0.3 85.8
CDAN (2018) [16] 77.7±0.3 90.7±0.2 97.7±0.3 91.3±0.3 74.2±0.2 94.3±0.3 87.7
SAFN (2019) [32] 78.0±0.4 91.7±0.4 96.2±0.1 91.1±0.6 77.0±0.2 94.7±0.1 88.1
SDAN (2020) [22] 78.1±0.2 91.5±0.2 97.5±0.2 92.1±0.3 76.6±0.3 95.0±0.1 88.4
ETN (2020) [33] 81.0 91.7 97.9 93.3 79.5 95.0 89.7

ASAN (ours) 78.9±0.4 92.3±0.5 97.4±0.5 92.1±0.3 76.4±0.7 94.4±0.2 88.6

Table 3: Mean prediction accuracy on the Office-Home dataset over three
random runs.
Dataset A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

Resnet [1] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [8] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [13] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN [16] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
BSP [7] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3

SDAN [22] 52.0 72.0 76.3 59.4 71.7 72.6 58.6 52.0 79.2 71.6 58.1 82.8 67.1
ETN [33] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
ASAN 53.6 73.0 77.0 62.1 73.9 72.6 61.6 52.8 79.8 73.3 60.2 83.6 68.6

Office-31 and Office-Home experiments demonstrate the ASANs parameter ro-
bustness: the parameters optimized on Office-31 are used in different but related
tasks and show robust generalization capacities. Robust parametrization and
excellent performance make our ASAN favorable.

4.4 Convergence and Spectral Analysis

We report the convergence behavior of our RSL within the ASAN architecture
compared to related networks in Fig. 2. The data is obtained by training on
A→W from Office-31 dataset. The A-Distance [35] is defined as A = 2(2− 1ε),
where ε is the error of the trained domain classifier. The A-Distance is related to
the d

H̃
(S, T ) in Sec. 3.6 and measures the domain classifiers inability to distin-

guish the source and target domain. In contrast, a low A-Distance is an indicator
for an invariant representation [35]. The proposed RSL and the A-Distance of
our ASAN and BSP are shown in 2a, which we compare due to the commonality
of manipulating the feature spectra. The interpolated lines (red, purple, brown)
show the overall learning trend while the colored areas (blue, orange, green) show
the fluctuation during learning. We observe that our network learns a better in-
variant representation via an almost all-time lower A-Distance by not relying
on only one spectrum. The plot shows that spectral differences represented by
RSL are effectively reduced. Interestingly, the trend curves of the A-Distance of
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Fig. 2: Learning process of ASAN compared to related networks over time given
A→W images from Office-31 dataset. Best viewed on computer display.

ASAN and the RSL are similar in shape, allowing the presumption that learn-
ing RSL is related to learning an invariant representation, i. e., minimizing the
A-Distance. Figure 2b represents the target accuracy during learning. It is ob-
servable that the ASAN network converges very fast in a higher target accuracy
than related approaches. Further, the saturation is very stable and practically
does not change once reached. This behavior of ASAN is related to the Spectral
Normalization by giving well-defined gradients back to the feature extractor.
This assumption is verified in Fig. 2c, where the learning and evaluation process
of ASAN itself and ASAN without Spectral Normalization (ASAN w/o SN) is
plotted. The target accuracy of ASAN (red) remains stable while the accuracy
of ASAN w/o SN (green), after reaching the best performance similar to ASAN,
has a decline in target accuracy. In contrast, ASAN remains stable at high accu-
racy. The trends of train loss (brown for ASAN and purple for ASAN w/o SN)
show an almost all-time lower learning loss of ASAN. The fluctuation of the train
losses shows that ASAN (blue) is more stable than ASAN w/o SN (orange) and,
most of the time, lower in value. Additional results on hyperparameter behavior
and an ablation study are presented in the supplementary.

4.5 Feature Analysis

We evaluate the empirical feature representation of the bottleneck features given
A→W images from the Office-31 dataset. The result is reported in Fig. 3 based
on T-SNE [36]. The plot is split into two parts: the top row (Fig. 3a - 3c) is a
scatter plot of the bottleneck features of trained DANN, CDAN, and ASAN col-
ored with ground truth domain labels. Blue shows the source, and red shows the
target domain. ASAN shows the superiority of creating a domain invariant repre-
sentation by almost perfectly assigning all red points to a blue cluster compared
to CDAN and DANN. The bottom row (Fig. 3d - 3f) shows the same repre-
sentation but with classification labels. The class-label plots show that ASAN
representations are easily classifiable by a neural network. However, some points
are still located in the wrong cluster, representing the limitation of ASAN de-
scribed in Sec. 3.6. The ASAN, DANN, and CDAN do not approximate the
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Fig. 3: T-SNE [36] of bottleneck features of selected networks given A→W im-
ages from Office-31 dataset. <Name>d and <Name>c show the outputs with
ground truth domain and classification labels respectively. For the first row, blue
shows the source, and red shows the target domain Best viewed in color.

label distribution of target during learning. Therefore, the target accuracy of
ASAN is bounded by the distribution differences of label distributions [28]. As a
result, the label distribution difference is directly related to the remaining miss-
classified samples. However, as shown in the performance evaluation (Sec. 4.3),
ASAN performs considerably better than remaining networks and is, therefore,
the preferable choice. Additional results to feature, convergence, and spectral
analysis are offered in the supplementary material of the contribution.

5 Conclusion

We proposed the ASAN architecture, integrating Relevance Spectral Alignment
and Spectral Normalization into the existing CDAN method. ASAN learns a bot-
tleneck space, aligning both domain spectra while minimizing domain-specific
information. The theoretical inspection of the gradients of RSL suggests that
ASAN learns an invariant representation, empirically confirmed on three stan-
dard domain adaptation datasets. Further, ASAN has robust parametrization,
making it easy to apply to other tasks. Compared to related approaches, ASAN
is more stable and converges faster to a better solution. Prior theoretical eval-
uations of CDAN show that the performance of the domain classifier bounds
the label-classifier of ASAN. Future research should target class conditional or
cluster-based spectral alignment.
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