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Abstract. Previous work on novel object detection considers zero or
few-shot settings where none or few examples of each category are avail-
able for training. In real world scenarios, it is less practical to expect
that ‘all ’ the novel classes are either unseen or have few-examples. Here,
we propose a more realistic setting termed ‘Any-shot detection’, where
totally unseen and few-shot categories can simultaneously co-occur dur-
ing inference. Any-shot detection offers unique challenges compared to
conventional novel object detection such as, a high imbalance between
unseen, few-shot and seen object classes, susceptibility to forget base-
training while learning novel classes and distinguishing novel classes
from the background. To address these challenges, we propose a unified
any-shot detection model, that can concurrently learn to detect both
zero-shot and few-shot object classes. Our core idea is to use class se-
mantics as prototypes for object detection, a formulation that naturally
minimizes knowledge forgetting and mitigates the class-imbalance in the
label space. Besides, we propose a rebalanced loss function that empha-
sizes difficult few-shot cases but avoids overfitting on the novel classes
to allow detection of totally unseen classes. Without bells and whistles,
our framework can also be used solely for Zero-shot object detection
and Few-shot object detection tasks. We report extensive experiments
on Pascal VOC and MS-COCO datasets where our approach is shown
to provide significant improvements.

1 Introduction

Traditional object detectors are designed to detect the categories on which they
were originally trained. In several applications, such as self-driving cars, it is
important to extend the base object detector with novel categories that were
never seen before. The current ‘novel’ object detection models proposed in the
literature target either of the two distinct settings, Zero-shot detection (ZSD)
and Few-shot detection (FSD). In the former setting, it is assumed that totally
unseen objects appear during inference and a model must learn to adapt for novel
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Fig. 1. (a) A traditional object detection method only detects seen objects. In the same
vein, zero and few-shot object detection methods can detect (b) unseen or (c) few-shot
objects. (d) Our proposed Any-shot detection method can simultaneously detect seen,
unseen and few-shot objects.

categories using only their class description (semantics). In the latter setting, a
small and fixed-number of novel class samples are available for model adaptation.
However, in a practical scenario, restricting the novel classes to be always unseen
(with zero visual examples) or always with few-shot examples can limit the
generality of the model.

In a real-world scenario, both unseen and few-shot classes can be simultane-
ously of interest. Moreover, we may encounter a few examples of a novel class that
was previously supposed to be unseen. In such a case, an adaptive model must
leverage from new information to improve its performance in an online fashion.
To address these requirements, we introduce a new ‘Any-shot Detection’ (ASD)
protocol where a novel class can have zero or a few training examples. Since, the
existing object detection models can either work for zero-shot or few-shot set-
tings, we develop a unified framework to address the ASD problem (see Fig. 1).
Remarkably, since the ASD task sits at the continuum between ZSD and FSD,
our model can be directly applied to both these problems as well.

The ASD task poses new challenges for novel object detection. First, a high
data imbalance between unseen, few-shot and seen classes can lead to a biased de-
tection model. Additionally, the fine-tuning performed on few-shot examples can
lead to forgetting previously acquired knowledge, thereby deteriorating model
performance on seen and unseen classes. To overcome these challenges, we pro-
pose to learn a mapping from the visual space to the semantic space where class
descriptors serve as fixed prototypes. The semantic prototypes in our approach
encode inherent class relationships (thus enabling knowledge transfer from the
seen to the unseen), helps us disentangle totally unseen concepts from the back-
ground and can be automatically updated to align well with the visual informa-
tion. Besides, we introduce a novel rebalancing loss function for the fine-tuning
stage that functions on few-shot examples. This loss serves two objectives, i.e.,
to focus on the errors made for few-shot classes and at the same time avoid
overfitting them so that it remains generalizable to totally unseen categories.

Our main contributions are:
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– A unified framework that can accommodate ZSD, FSD, ASD and their gen-
eralized settings.

– Learning with semantic class-prototypes that are well aligned with visual
information and help minimize forgetting old concepts.

– An end-to-end solution with a novel loss function that rebalances errors to
penalize difficult cases yet remains generalizable to unseen objects.

– Extensive experiments with new ASD setup, as well as comparisons with tra-
ditional FSD and ZSD frameworks demonstrating significant improvements.

2 Related Work

N-shot recognition: There exist three types of methods for n-shot recognition.
The first body of work targets only zero-shot recognition (ZSR) [1–3]. They
perform training with seen data and test on unseen (or unseen+seen) data. To
relate seen and unseen classes, they use semantic embeddings e.g., attributes [4]
or word vectors [5, 6]. The ZSR task has been investigated under popular themes
such as transduction [7, 8], domain adaptation [9, 8], adversarial learning [10] and
class-attribute association [11, 12]. The second body of work targets only few-
shot recognition (FSR) task [13]. This task leverages few labeled examples to
classify novel classes. Most popular methods to solve FSR are based on meta-
learning where approaches perform metric learning to measure the similarity
between input and novel classes [14–16], adapt the meta-learner by calculating
gradient updates for novel classes [16] or predict the classifier weights for novel
classes [17]. The third body of work addresses both zero and few-shot learning
together [18–21]. These approaches are the extended version of ZSR or FSR
methods that consider word vectors to accommodate both problems within a
single framework. Our current work belongs to the third category, but instead of
a recognition task, we focus on the detection problem, that is more challenging.
Zero-shot detection: Different from traditional object detection (where only
seen objects are detected), ZSD aims to detect both seen and/or unseen objects.
Pioneering works on ZSD attempt to extend established object detection meth-
ods to enable ZSD. For example, [22], [23, 24] and [25, 26] employ pre-computed
object proposals [27], YOLOv2 [28] and Faster-RCNN [29] based methods for
ZSD, respectively. Recent methods for ZSD employ specialized polarity loss [30],
explore transductive settings [31] and use raw textual description instead of only
class-names [32]. All the above methods focus on only ZSD and Generalized ZSD
tasks but cannot accommodate FSD scenario when new instances of unseen im-
ages become available. In this paper, we propose a method that can perform
ZSD, FSD, and ASD tasks seamlessly, including their generalized cases.
Few-shot detection: FSD methods attempt to detect novel classes for which
only a few instances (1-10) are available during the inference stage [33, 34].
Among the early attempts of FSD, [35] proposed a regularizer that works on
standard object detection models to detect novel classes. Later, [36] proposed
a distant metric learning-based approach that learned representative vectors to
facilitate FSD. The drawback of the above FSD methods is that they cannot
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Fig. 2. The any-shot object detection (ASD) problem has not been addressed in the
literature before. Importantly, an ASD system can automatically perform both ZSD
and FSD, which no prior approach can simultaneously offer.

handle seen/base classes during test time. Recently, [37] proposed to train a
base network with seen data and then fine-tune it by meta-network learning
that predicts scores for both seen and novel classes by re-weighing the base
network features. This approach can perform generalized FSD but cannot ac-
commodate ZSD or ASD scenario. In this paper, we address the mentioned gap
in the literature (see Fig. 2).

3 Novel Object Detection

Novel object detection refers to enhancing the ability of a traditional object de-
tector model to detect a new set of classes that were not present during training.
We propose a unified Any-shot Detection (ASD) setting5 where novel classes
include both few-shot and unseen (zero-shot) classes. This is in contrast to the
existing works on novel object detection that treat zero and few-shot detection in
an isolated manner. In the absence of the unseen class and few-shot classes, our
problem becomes identical to a conventional FSD and ZSD task, respectively. In
this way, our proposed ASD settings unifies ZSD and FSD in a single framework.

3.1 Problem Formulation

Assume a total of C object classes are present in a given test set that need to be
detected. Out of these, S(> 0) seen classes have many, Q(≥ 0) few-shot classes
have few and U(≥ 0) unseen classes has no examples available in the training
dataset and C = S+Q+U . Here, T = Q+U represents the total number of
novel classes that become available during the inference stage. For each class,
a semantic description is available as a d-dimensional embedding vector. The
semantic embeddings of all classes are denoted by W = [Ws,Wf ,Wu] ∈ R

d×C ,
where Ws ∈ R

d×S , Wf ∈ R
d×Q and Wu ∈ R

d×U are semantic vectors for seen,
few-shot and unseen classes, respectively.

5 Our any-shot detection setting is different from [19], which considers zero and few-
shot problems separately for a simpler classification task.
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Fig. 3. An overview of Any-shot Detection setting.

The base training set (Dtr) contains Ntr images with instances from S seen
classes. Each training image I is provided with a set of bounding boxes, where
each box btr is provided with a seen label ytr ∈ {0, 1}S . Similarly, when Q>0,
we have a fine-tuning dataset (Dft) with Nft images containing instances from
both seen and few-shot classes for which bounding box bft and class label yft ∈

{0, 1}C annotations are present. During inference, we have a testing dataset Dts

with Nts images where each image can contain any number of seen and novel
class objects (see Fig. 3).

Our task is to perform any-shot detection, defined as:

Definition 1. Any-shot detection: When Q>0 and U>0, predict object labels
and associated bounding boxes for T novel classes, that include both zero and
few-shot classes.

In comparison, the traditional zero and few-shot problems can be defined
as: (a) Few-shot detection: When Q>0 but U=0, predict object labels and
associated bounding boxes for all Q classes. (b) Zero-shot detection: When
Q=0 but U>0, predict object labels and associated boxes for all U classes. Note,
if Q=U=0 then the problem becomes equivalent to a traditional detection task.

We also study the generalized ASD problem defines as:

Definition 2. Generalized any-shot detection: When {S,Q,U}⊂Z
+, predict ob-

ject labels and box locations for all C classes, that include seen, zero and few-shot
classes.

In the same vein, generalized zero and few-shot detection problems aim to
detect seen classes in addition to novel ones. Next, we describe our approach for
ASD and GASD.

3.2 Method

Our goal is to design a model that can simultaneously perform zero, few, and
many-shot detection. This model is trained with seen classes, and is quickly
adapted during inference for zero-shot and few-shot classes. This problem set-up
has the following major challenges: (a) Adaptability: A trained model must be
flexible enough to incorporate new classes (with no or few examples) on the go,
(b) Learning without Forgetting: While the model is adapted for new classes, it
must not forget the previous knowledge acquired on seen classes, and (c) Class
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Fig. 4. (a) Network architecture. The visual-semantic alignment is performed using (b)
seen semantics during base training and with (c) seen and novel semantics during fine-
tuning. The visual features from the classification and regression units are separately
used for visual-semantic alignment and subsequent loss calculation.

Imbalance: The classes representations are highly imbalanced: some with many
instances, some with none and others with only a few. Therefore, the learning
regime must be robust against the inherent imbalance in the ASD setting.

At a high-level, our proposed approach has two main components that ad-
dress the above mentioned problems. First, we consider the semantic class proto-
types to serve as anchors in the prediction space, thereby providing the flexibility
to extend to any number of novel classes without the need to retrain network pa-
rameters. We show that such a representation also helps in avoiding catastrophic
forgetting that is likely to occur otherwise. Furthermore, we propose a new loss
formulation to address the class imbalance problem, that specifically focuses on
difficult cases and minimizes model’s bias against rare classes. We elaborate the
novel aspects of our approach below.

Learning without Forgetting. Traditional object detection models are static
approaches that cannot dynamically adapt to novel classes. The flexibility to
introduce novel object classes, after the base model training, requires special
consideration, e.g., by posing it as an incremental learning problem [38–40]. In
such cases, since classifier weights for novel categories are learned from scratch,
the knowledge distillation concept [41] is applied to avoid forgetting the old
learning. Such a strategy is not useful in our case because unlike previous ap-
proaches, we do not have access to many examples of the new task and a subset
of novel classes has no training examples available.

To allow adding novel classes without forgetting old concepts, our approach
seeks to disentangle the feature learning and classification stages. Precisely, we
develop a training mechanism in which adding new classes does not require
re-training base-network’s parameters. This is achieved by defining the output
decision space in the form of semantic class prototypes. These semantic class
representatives are obtained in an unsupervised manner using a large text corpus,
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Fig. 5. Loss visualization. The colored dotted lines represent β-controlled penalty func-
tion, h(.) and the solid lines represent loss functions. (a) The red line represents cross
entropy (CE) which is compared to our loss with β = 1, 2 and 5 shown as black, green
and blue lines, respectively. (b) Our loss (green line) with fixed p∗=0.5. Here, our
loss can be less than CE (red line) for the expected case. (c) Our loss curve (green
line) with dynamic p∗. Here, our loss calculates the same value as CE (red line) for
the expected case. The red shaded region represents extreme case since p<p∗ and blue
shaded region represents expected or moderate case p≥p∗. (d) Derivatives of CE and
our loss for different β. See the supplementary material for the gradient analysis.

such as the Wikipedia, and encode class-specific attributes as well as the inter-
class relationships [5, 6].

During base-model training, the model learns to map visual features to se-
mantic space. At the same time, the semantic space is well-aligned with the
visual concepts using a learnable projection. Note that only seen class seman-
tics are used during the training stage. Once the base-model is trained, novel
classes (both zero and few-shot) can be accommodated at inference time taking
advantage of the semantic class descriptions of the new classes. For novel classes
whose new few-examples are available during inference, we fine-tune the model
to adapt semantic space, but keeping the base-model’s architecture unchanged.
Essentially, this means that adding new classes does not demand any changes
to the architecture of the base-network. Still, the model is capable of generating
predictions for novel classes since it has learned to relate visual information with
semantic space during training (see Fig. 4).

Formally, a training image X is fed to a deep network f(·), that produces
a visual feature vector f(X) ∈ R

n corresponding to a particular box location.
In a parallel stream, seen word vectors Ws, are passed through a light-weight
subnet denoted by g(·), producing the transformed word vectors g(Ws). Then,
we connect the visual and semantic streams via a trainable layer, U ∈ R

n×d.
Finally, a set of seen scores ps is obtained by applying a sigmoid activation
function (σ). The overall computation is given by,

ps = σ
(

f(X)TUg(Ws)
)

. (1)

The mapping layer U can be understood as the bridge between semantic and
visual domains. Given the visual and semantic mappings, f(X) and g(Ws) re-
spectively, U seeks to maximize the alignment between the visual feature and
its corresponding semantic class such that the prediction ps is maximized. In a
way, ps is the alignment compatibility scores where a higher score means more
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compatibility between feature and semantics. The function f(·) can be imple-
mented with a convolutional network backbone (e.g. ResNet [42]) and g(·) can
be implemented as a fixed or trainable layer. In the fixed case, fixed word vec-
tors can be directly used for alignment i.e., g(Ws) = Ws. In the trainable case,
Ws can be updated using a trainable metric M ∈ R

d×v and a word vocabulary
D ∈ R

v×d, resulting in g(Ws) = δ(WsMD) where, v is the size of the word
vocabulary and δ is a tanh activation. In our experiments, we find a trainable
g(Ws) achieves better performance.

We propose a two step training procedure. The first step involves training
the base model, where Eq. 1 is trained with only images and semantics of seen
classes. In the second step of fine-tuning, when novel class information becomes
available, we replace Ws by W and train it with few-shot examples. Eq. 1 then
becomes p = σ

(

f(X)TUg(W )
)

, where, p contains scores of both seen and novel
classes. In this manner, model is quickly adapted for novel classes.

Notably, although our network can predict scores for all classes, no new
tunable weights are added. In both steps, our network tries to align the feature
with its corresponding semantics. From the network’s perspective it does not
matter how many classes are present. It only cares how compatible a feature is
with the corresponding class semantics. This is why our network does not forget
the seen classes as these semantic prototypes serve as an anchor to retain previous
knowledge. Adding new classes is therefore not a new task for the network.
During fine-tuning, the model still performs the same old task of aligning feature
and semantics.

Learning with Imbalance Data. After base training on seen classes, novel
classes become available during inference stage i.e., few-shot images and the word
vectors of both zero and few-shot classes. Here, the few-shot image may contain
seen instances as well. In this way, the fine-tuning stage contains an imbalanced
data distribution and the model must minimize bias towards the already seen
classes. To this end, we propose a rebalancing loss for the fine-tuning stage.

Suppose, p ∈ p is the alignment score for a visual feature and the corre-
sponding class semantics. As the fine-tuning is done on rare data, we need to
penalize the cross-entropy (CE) loss based on the quality of alignment. If the
network makes a mistake, we increase the penalty and if the network is already
performing well, we employ a low or negative penalty. Suppose, the penalty h(·)
is a function of p and p∗ where p∗ determines the penalization level, then,

L(p) = − log p+ β h(p, p∗), (2)

where, β is a hyper-parameter. Here, h(p, p∗) is given by,

h(p, p∗) = log(1 + p∗ − p), (3)

where (p∗−p) represents the violation of the expected alignment that controls
the margin of the penalty function. We explore two alternatives for selecting
p∗, a fixed value in range 0<p∗≤1 and a dynamically adjusted value based on
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p∗ = maxi∈C pi. We can get the following scenarios based on the choice of p∗
and positive alignment quality p:

– Expected case, p>p∗: Negative penalty to calculate lower loss compared to
CE (lower bounded by 0).

– Moderate case, p=p∗: Zero penalty and the calculated loss is equal to regular
CE.

– Extreme case, p<p∗: High penalty in comparison to regular CE loss.

Plugging the penalty definition from Eq. 3 to Eq. 2 and enforcing positive loss
values L(p) ∈ R

+, we obtain,

L(p) = max

[

0,− log
p

(1 + p∗ − p)β

]

. (4)

After adding an α-balanced modulating factor from focal loss [43], we have,

L(p) = max
[

0,−αt(1− pt)
γ log pt

]

,where, pt =

{

p
(1+p∗−p)β

, if y = 1

1− p, otherwise.

Here, β is a parameter that focuses on hard cases and y is the corresponding
value from the one-hot encoded ground-truth vector. With β=0, Eq. 5 becomes
equivalent to focal loss and with β=0, γ=0, α=1, Eq. 5 becomes CE loss.

Since several objects can co-occur in the same scene, the fine-tuning data
can have seen instances. To emphasise rare classes more than the seen ones, we
apply our rebalancing loss only on the novel class examples. For a seen anchor,
only the focal loss is calculated. Thus, the final loss is,

L = λL(s) + (1− λ)L(n). (5)

For the case of L(s) and L(n), β=0 and β>0 respectively. L(s) and L(n) rep-
resent the compatibility scores of seen and novel (few-shot and unseen) classes
i.e., s ∈ {1, 2, .., S} and n ∈ {1, 2, .., T}.

During inference when a test image is presented, a simple forward pass pro-
vides compatibility scores of seen, few-shot and unseen classes for each bounding
box. If the score is higher than a threshold, we consider it a correct detection.

Analysis: Based on the quality of alignment, our proposed loss penalizes
positive anchors. This scenario helps in the class imbalance problem. Especially,
in the extreme case, when the network fails to detect a positive few-shot anchor,
we highly penalize our network predictions. It gives extra supervision to the
network that it must not make errors on the few-shot classes. In contrast, for
the expected and moderate cases, we reduce the loss which avoids the network
becoming too confident on few-shot examples. Since, unseen objects are more
related to the seen objects as compared to background, a low penalty on confident
cases implicitly promotes discovering unseen classes. In effect, this leads to low
overfitting on the few-shot classes that helps in achieving good performance on
totally unseen classes.
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Table 1. ASD results on MSCOCO.

#-
Method

ASD GASD
Shot unseen FS HM seen unseen FS HM

1
Baseline-I 3.74 1.60 2.25 54.11 2.04 0.73 1.60
Baseline-II 8.57 21.39 12.23 51.89 3.79 9.62 7.74

Ours 16.57 23.50 19.44 51.70 10.75 11.83 15.23

5
Baseline-I 4.16 2.69 3.27 54.15 2.35 1.20 2.35
Baseline-II 8.69 26.19 13.05 51.67 4.85 18.20 10.70

Ours 18.22 26.31 21.53 51.18 12.70 18.34 19.63

10
Baseline-I 3.45 2.95 3.18 54.25 1.89 1.56 2.53
Baseline-II 7.26 31.14 11.78 51.00 4.12 25.00 9.91

Ours 13.21 33.52 18.95 51.18 9.71 26.96 18.79

Table 2. Ablation study with 5-shot case.

Method
ASD GASD

unseen FS HM seen unseen FS HM

Baseline-I 4.16 2.69 3.27 54.15 2.35 1.20 2.35
Baseline-II 8.69 26.19 13.05 51.67 4.85 18.20 10.70

Ours with FL 13.69 23.81 16.61 51.20 9.21 16.34 15.85
Ours with AL 7.03 24.17 10.89 50.74 5.94 17.46 12.23

Ours (p∗ = 0.3) 17.20 26.85 20.97 51.48 11.84 19.21 19.24
Ours (p∗ = 0.5) 15.24 24.02 18.65 50.65 10.38 17.06 17.17
Ours (p∗ = 1.0) 16.17 27.17 20.27 50.58 11.29 19.83 18.90

Ours* 16.60 24.05 19.64 51.32 11.09 16.71 17.70
Ours 18.22 26.31 21.53 51.18 12.70 18.34 19.63

Loss shape analysis: In Fig. 5, we visualize the loss. Fig. 5 (a) shows how
the shape of binary cross entropy (CE) changes with different values of β. β
controls the penalty h(.) which modifies CE loss. For a fixed p∗=1, increasing β

calculates a higher penalty for a wrong prediction. For a fixed margin penalty
p∗=0.5 in Fig. 5 (b), a network can predict a lower, equal and higher score than
p∗. Correspondingly, it enables the network to calculate a less, equal and higher
penalty for expected, moderate and extreme cases, respectively. In contrast, for
the dynamic margin penalty case Fig. 5 (c), the predicted score can be at best
p∗ = maxi∈C pi. Therefore, the extreme case works similarly to the fixed p∗
scenario but for the other cases, the network calculates a loss equal to CE/Focal
loss. The dynamic p∗ estimates the quality of predicted scores based on the
current anchor specific situation. E.g., for a given anchor, a small predicted
score (e.g., 0.1) for the ground-truth class can be considered as good prediction
if all other predictions are < 0.1. It helps to make a good balance between seen,
few-shot and unseen predictions because the loss does not unnecessarily tries to
maximize the ground-truth class score and thus avoids over-fitting.

3.3 Implementation Details

We implement our framework with a modified version of the RetinaNet archi-
tecture proposed in [30] (see Fig. 4(a)). It incorporates the word vectors at the
penultimate layers of classification and regression subnets. While performing the
base training with focal loss at the first step, we follow the recommended process
in [30], where only seen word vectors are used in word processing network, g(.)
(see Fig. 4(b)). During the fine-tuning step, we update the base model with newly
available data and our proposed loss function. As shown in Fig. 4(c), fine-tuning
uses both seen and novel word vectors inside g(.). Note that, in addition to novel
class data, the small dataset used for fine-tuning includes some seen instances
as well. We train our model for 10 epochs during the fine-tuning stage. After
the fine-tuning is finished, our framework can detect seen, few-shot, and unseen
classes simultaneously. We use the Adam optimizer for each training stage.

4 Experiments

Datasets: We evaluate our work on the MSCOCO-2014 [44] and PASCAL
VOC 2007/12 datasets. For the MSCOCO experiment, we adopt the 65/15



Any-Shot Object Detection 11

(a) FSD

1 5 10

shot

0

10

20

30

40

m
A

P

(b) Seen

1 5 10

shot

40

45

50

55

m
A

P

(c) Novel

1 5 10

shot

0

10

20

30

40

m
A

P

(d) HM

1 5 10

shot

0

10

20

30

40

m
A

P

Baseline

Baselin-II

Ours

(e) COCO to PASCAL

20 40

mAP

LSTD

YOLO

[6]

YOLO-full

[14]

Ours

Fig. 6. FSD performance. (a) 1-, 5- and 10-shot detection mAP, (b), (c) and (d) seen,
unseen and harmonic mean (HM) of GFSD. (e) 10-shot detection mAP for MSCOCO
to PASCAL experiment.

seen/unseen split setting used in [30, 31]. In both ZSD and FSD experiments,
we consider unseen classes as the novel ones. However, in ASD experiments, we
further split 15 novel classes into 8 few-shot and 7 unseen classes. We use the
same 62,300 images during training where no single instance of novel classes is
present. For testing ASD, we use 10,098 images where each image contains at
least one novel object. However for GASD testing, we use the entire validation
set of 40,504 images. We randomly choose additional images with a few (1/5/10)
annotated bounding boxes for each novel category while performing FSD/ASD
on MSCOCO. These images may contain some seen objects as well. For the PAS-
CAL VOC 2007/12 experiment, we adopt three 15/5 seen/novel split settings
from [37]. As recommended, we use train+val sets from PASCAL VOC 2007 and
2012 as training data and test-set from PASCAL VOC 2007 for evaluation. For
fine-tuning, we use the images provided by Kang et al. [37] as few-shot data.
For both MSCOCO and PASCAL VOC classes and vocabulary texts, we use
300-dimensional and ℓ2 normalized word2vec vectors [5]. We have used same set
of 4717 vocabulary atoms as used in [30] which are originally taken from [45].

Evaluation criteria: For FSD and ASD, we evaluate our method with mean
average precision (mAP). To report GFSD and GASD, we calculate the harmonic
mean of the individual seen and novel class mAP. For ZSD, we report also
recall@100 (RE) results as recommended in [22].

Validation experiment: α, β, γ and λ are the hyper-parameter of our
model. Among them, α and γ are specific to focal loss. Thus, we fix the rec-
ommend value α = 0.25 and γ = 2 following [43]. We validate β and λ by
creating a validation dataset based on splitting 65 seen classes into 55 seen and
10 novel classes. From the validation experiment, we select β = 5 and λ = 0.1.
Detailed validation results are presented in the supplementary material.

Baseline methods: Here, we introduce our baseline methods.
• Baseline-I: A RetinaNet architecture where fixed semantics are used in seman-
tic processing pipeline i.e. g(Ws) = Ws and the training is done with the basic
focal loss. The fine-tuning step uses all seen and novel class data together.
• Baseline-II: The second baseline approach is identical to Baseline-I, except
that the fine-tuning step uses novel class data and a few examples of seen.
Finally, Ours denote the complete approach where the RetinaNet architecture
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Table 3. Base class (of Novel set 1) mAP on Pascal VOC 2007 test set.

Method a
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LSTD [46] 74.8 68.7 57.1 44.1 78.0 83.4 46.9 64.0 78.7 79.1 70.1 39.2 58.1 79.8 71.9 66.3
Kang et al.[37] 73.6 73.1 56.7 41.6 76.1 78.7 42.6 66.8 72.0 77.7 68.5 42.0 57.1 74.7 70.7 64.8

Ours 80.4 52.8 50.2 55.9 76.9 85.1 49.8 54.0 76.8 72.7 81.1 44.8 61.7 79.0 76.8 66.5

is trained with adaptive prototypes in the semantic processing pipeline i.e.
g(Ws) = δ(WsMD) and the training is done with our proposed loss.

4.1 ASD Performance

Here, we discuss the ASD and GASD performance with the 65/8/7 split of
MSCOCO. For ASD, we show the performance of novel classes (i.e. unseen and
few-shot classes) and the harmonic mean of individual performances. For GASD,
we report separate seen, few-shot, unseen mAP and their harmonic mean mAP
to show the overall performance.

Main results: In Table 1, we report the our main results and comparisons
with the baselines. Our observations are as follows: (1) Using more few-shot
examples generally helps. However the effect of higher shots on the unseen per-
formance is not always positive since more instances of few-shot classes can bias
the model towards them. (2) Except Baseline-1, few-shot mAP is always better
than unseen mAP because few-shot examples with our proposed loss improve
the alignment with respective class semantics. In the Baseline-I case, as all seen
and few-shot data is used together, the network overfits to seen classes. (3)
Our seen class performance in GASD remains good across different shots. This
denotes that the network does not forget seen classes when trained on novel
ones. Seen classes get the maximum performance for the Baseline-I due to over-
fitting, thereby giving poor performance on novel classes. (4) Across different
shots, Baseline-II beats the Baseline-I method as it is less prone to overfitting.
With the proposed adaptive semantic prototypes and our loss function, we beat
Baseline-II. (5) The improvement for unseen mAP is greater than few-shot or
seen mAP irrespective of the number of shots, ASD, or GASD tasks. It tells
us that our loss formulation not only tackles the class imbalance of few-shot
classes but also promotes detection of unseen classes. In Fig. 7 and Fig. 1 of the
supplementary material, we show qualitative results for GASD.

Ablation studies: In Table 2, we report ablation experiments on MSCOCO
dataset with with alternate versions of our approach. Baseline-I and Baseline-
II operate with fixed semantics. For the rest of the cases, we use our adaptive
semantic-prototype approach (Sec. 3.2) to update the word vectors. Here, we first
use a basic focal loss [43] (FL) to train the network. This approach outperforms
both baselines because of the adaptable semantic prototypes. Then, we try two
variants of FL: Anchor Loss [47] (AL) and a modified anchor loss with our loss
penalty definition for few-shot classes. We notice that these variations do not
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Table 4. FSD mAP of novel classes on Pascal VOC 2007 test set.

Novel Set 1
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LSTD [46] 23.1 22.6 15.9 0.4 0.0 12.4
Kang et al.[37] 26.1 19.1 40.7 20.4 27.1 26.7

Ours 37.4 23.0 23.7 37.0 25.0 29.2

Novel Set 2
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n

12.6 0.7 11.3 0.4 0.0 5.0
29.4 4.6 34.9 6.8 37.9 22.7
32.0 1.1 39.2 55.5 25.1 30.6

Novel Set 3
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so
fa

m
ea
n

0.0 36.6 21.4 16.9 0.0 15.0
11.7 48.2 17.4 34.7 30.1 28.4
4.4 66.9 43.7 49.0 25.5 37.9

work well in both ASD and GASD cases because AL penalizes negative anchors
that network confuses with positive ones. This idea is beneficial for traditional
recognition cases, but unsuitable for ZSD/FSD/ASD scenarios. This is because
a negative anchor may contain an unseen object which is closely related to seen
or few-shot semantics, and we do not want to suppress the anchor even though it
predicts similar scores as the positive ones. Next, we apply our loss by fixing p∗
to a constant value e.g., 0.3, 0.5, and 1. These trials outperform both baselines
and FL based methods since the network emphasizes few-shot examples based
on the quality of the visual-semantic alignment. Finally, alongside the adaptive
semantics, we apply our final loss formulation which dynamically selects p∗. Our
loss beats all previously described settings because it brings better emphasis
on novel classes. Notably, we also experiment with the Our* case that applies
our loss to all predictions (instead of just the novel scores) i.e., β > 0 for all
classes. However, it does not perform as well as Ours potentially because the
representations suitable for seen classes are already learnt well.

4.2 FSD Performance

If U=0, our ASD framework becomes a few-shot detection problem. In this
paper, we experiment on FSD with the following three different dataset setups.

MSCOCO: Here we consider all 15 novel classes of the MSCOCO split
[30] as few-shot classes. We report mAP results of 1, 5 and 10-shot detection
tasks of Baseline-I, Baseline-II, and Ours model in Fig. 6 (a-d). Besides, we
report generalized FSD results. Overall, FSD performance improves with more
examples. When trained with the adaptive semantic prototypes and rebalancing
loss, our model successfully outperforms both baselines.

MSCOCO to PASCAL: It is a cross-dataset experiment. Following [37],
we use 20 PASCAL VOC classes (overlapped with MSCOCO) as the few-shot
classes and the remaining 60 MSCOCO classes as seen. This setting performs
base training on MSCOCO seen classes and fine-tunes the base model using the
10-shot examples of the PASCAL VOC dataset. Finally, the PASCAL VOC 2007
test set is used to evaluate FSD. In Fig. 6(e), our method outperforms others
including a recent approach [37].

PASCAL VOC 2007/12: Using three 15/5 novel-splits proposed in [37],
we compare FSD performance of our work with Kang et al. [37] and LSTD [46]
in Tables 3 and 4. We achieve better performance than them in both novel and
base class detection with 3-shot detection settings.
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Fig. 7. Qualitative comparison with [30] and Our method. Object bounding boxes:
Yellow (seen), blue (few-shot) and pink (unseen). (best viewed with zoom)

Table 5. ZSD results on
MS-COCO dataset. Our re-
balancing loss used in the
fine-tuning stage (applied on
seen data ) leads to improved
results.

Method GZSD
ZSD Seen Unseen HM

Split in [22] (↓) (mAP/RE) (mAP/RE) (mAP/RE) (mAP/RE)
SB [22] 0.70/24.39 - - -

DSES [22] 0.54/27.19 -/15.02 -/15.32 -/15.17
Baseline 5.91/18.67 36.57/42.21 2.64/17.60 4.93/24.84
Ours 7.78/32.83 34.50/41.66 3.06/27.34 5.63/33.01

4.3 ZSD Performance

For ZSD case, after the base training, we do not have any more data to fine-tune.
Thus, we perform the second step of fine-tuning with the same data used in the
first step but apply our loss instead of the focal loss. As Q=0, we consider each
seen class as a few-shot class during the second step. It emphasizes all seen classes
in the same way. But, based on the dynamic choice of p∗, the network penalizes a
bad prediction by calculating high loss and compensates a good prediction with
no penalty. We notice that it helps to improve ZSD performance. We apply this
process with the 48/17 split setting of [22] on MSCOCO. We report the mAP
and Recall (RE) scores of this experiment in Table 5. With the recommended
setting of [22], our work outperforms other methods in both ZSD and GZSD.

5 Conclusion

In this paper, we propose a unified any-shot detection approach where novel
classes include both unseen and few-shot objects. Traditional approaches con-
sider solving zero and few-shot tasks separately, whereas our approach encap-
sulates both tasks into a common framework. This approach does not forget
the base training while learning novel classes, which helps to perform general-
ized ASD. Moreover, we propose a new loss function to learn new tasks. This
loss penalizes the wrong prediction of a novel class more than the seen classes.
We evaluate the proposed ASD tasks on the challenging MSCOCO and PAS-
CAL VOC datasets. Besides, we compare ZSD and FSD performance of our
approach with established state-of-the-art methods. Our first ASD framework
delivers strong performance on ZSD, FSD, and ASD tasks.
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