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Abstract. We present a method for image-based crowd counting, one
that can predict a crowd density map together with the uncertainty
values pertaining to the predicted density map. To obtain prediction
uncertainty, we model the crowd density values using Gaussian distribu-
tions and develop a convolutional neural network architecture to predict
these distributions. A key advantage of our method over existing crowd
counting methods is its ability to quantify the uncertainty of its predic-
tions. We illustrate the benefits of knowing the prediction uncertainty by
developing a method to reduce the human annotation effort needed to
adapt counting networks to a new domain. We present sample selection
strategies which make use of the density and uncertainty of predictions
from the networks trained on one domain to select the informative im-
ages from a target domain of interest to acquire human annotation. We
show that our sample selection strategy drastically reduces the amount of
labeled data from the target domain needed to adapt a counting network
trained on a source domain to the target domain. Empirically, the net-
works trained on the UCF-QNRF dataset can be adapted to surpass the
performance of the previous state-of-the-art results on NWPU dataset
and Shanghaitech dataset using only 17% of the labeled training samples
from the target domain.
Code: https://github.com/cvlab-stonybrook/UncertaintyCrowdCounting

1 Introduction

Crowd counting from unconstrained images is a challenging task due to the large
variation in occlusion, crowd density, and camera perspective. Most recent meth-
ods [26, 31, 32, 34, 39, 40, 43, 50] learn a Convolutional Neural Network (CNN)
to map an input image to the corresponding crowd density map, from which the
total count can be computed by summing all the predicted density values at all
pixels. Although the performance of the crowd counting methods have improved
significantly in the recent years, their performance on the challenging datasets
such as [9, 10, 50] is far below the human-level performance. One factor affecting
the performance of the existing crowd counting systems is the limited amount
of annotated training data. The largest crowd counting dataset [44] consist of
5,109 images. Annotating dense crowd images, which involves placing a dot over
the head of each person in the crowd, is time consuming. This makes it harder
to create large-scale crowd counting datasets.
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Fig. 1: Different sample selection strategies based on uncertainty es-
timation. (a) uncertainty based sample selection: Images with higher average
uncertainty values are selected for annotation. (b) Ensemble disagreement based
sample selection: Given networks A and B trained on a source domain, and
a set of unlabeled images from a target domain, we obtain the crowd density
map and uncertainty values from both networks for all images in the target do-
main. Based on the prediction, we compute the disagreement between the two
networks. Images with large disagreement are picked for human annotation.

In this paper, we present an approach to tackle the prohibitively large costs
involved in annotating crowd images. Our approach draws inspiration from Ac-
tive Learning, which is based on the hypothesis that a learning algorithm can
perform well with less training data if it is allowed to select informative sam-

ples [15, 35]. Given a pool of labeled crowd images from the source domain and
a large pool of unlabeled crowd images, we are interested in identifying a sub-
set of informative samples from the unlabeled pool, and instead of annotating
the whole pool, we obtain the annotation for these selected samples. To find
most informative samples from the unlabeled pool, we train networks on the
labeled pool first. Next, we select those samples from the unlabeled pool for
which the networks are uncertain about their predictions. However, most ex-
isting crowd counting methods do not provide any measure of uncertainty for
their predictions. We develop a fully convolutional network architecture for esti-
mating the crowd density and the corresponding uncertainty of prediction. For
uncertainty estimation, we follow the approach of Nix and Weigand [28] who
used a Multi-Layer Perceptron (MLP) to estimate the uncertainty of prediction.
This approach assumes that observed output values are drawn from a Gaussian
distribution, and the MLP predicts the mean and variance of the Gaussian dis-
tribution. The network is trained by maximizing the log likelihood of the data.
The variance serves as a measure of uncertainty of the prediction.

Inspired by Nix and Weigand [28], we develop a fully convolutional archi-
tecture with a shared trunk for feature extraction and two prediction heads for
predicting the crowd density map and the corresponding variance. This network
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is trained on the source domain by maximizing the log likelihood of the data. We
use the predictions from this network, and present two sampling strategies for
selecting informative samples from the target domain for human annotation. We
present the overview of our sampling strategy in Fig. 1. Our sampling strategy
can be used for selecting images from a large pool of unlabeled images, and it
can also be used to pick informative crops from an image. Depending on the
annotation budget, it might be useful to get partial annotations for an image by
picking informative crops from an image and getting human annotations for the
informative crops rather than annotating the entire image. We present experi-
ments on image level sample selection3 and empirically show that the networks
trained on UCF-QNRF dataset can be adapted to surpass the performance of
the previous state-of-the-art results on NWPU dataset using less than 17% of
the labeled training samples. We also show that the UCF-QNRF pretrained
networks can be adapted to perform well on the Shanghaitech dataset as well,
with only a third of annotated examples from Shanghaitech dataset. Our re-
sults clearly show the usefulness of using our sampling strategy in saving human
annotation cost, and it can help reduce human annotation cost involved with
annotating large scale crowd datasets. Our sampling strategy isn’t specific to
crowd counting, and it can be applied to any other pixel level prediction task
such as optical flow estimation, semantic segmentation as well. We decide to
focus on Crowd Counting in this paper since human annotation is particularly
expensive for Crowd Counting.

The main contributions of our work are: (1) We propose a novel network
architecture for crowd density prediction and corresponding uncertainty estima-
tion that uses both local features and self-attention based non-local features for
prediction. (2) We show that modeling prediction uncertainty leads to a more
robust loss function, which outperforms the commonly used mean squared loss,
obtaining state of the art results on multiple crowd counting datasets. (3) We
present a novel uncertainty guided sample selection strategy that enables us-
ing networks trained on one domain to select informative samples from another
domain for human annotation. To the best of our knowledge, ours is the first
work focusing on using predictive uncertainty for sample selection pertaining to
any pixel level prediction task in Computer Vision. We show empirically that
using the proposed sampling strategy, it is possible to adapt a network trained
on a source domain to perform well on the target domain using significantly less
annotated data from the target domain.

2 Related Work

Crowd counting is an active area of research with two general approaches: de-
tection approach and density estimation approach. Despite lots of related works,
none of them use non-local features to reduce the ambiguity of the estimation,
nor use the uncertainty estimates for sample selection.

3 Experiments on crop sample selection are presented in the supplementary materials.
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Detection and Regression Based Approaches. Crowd counting has been
studied for a long time. Initial crowd counting approaches [16, 19] were based on
detection, which used a classifier such as SVMs trained on top of hand crafted
feature representation. These approaches performed well on simpler crowd count-
ing datasets, but their performance was severely affected by occlusion, which is
quite common in dense crowd datasets. Some of the later approaches [4, 5] tried
to tackle the occlusion problem by avoiding the detection problem, and directly
learning a regression function to predict the count.

Density Estimation Based Approaches. The precursor to the current den-
sity estimation based approaches was the work of Lempitsky and Zisserman [14],
who presented one of the earliest works on density estimation based crowd count-
ing. In the recent deep learning era, density estimation has become the de facto
strategy for most of the recent crowd counting approaches [3, 6, 10, 12, 17, 18,
20–26, 30, 31, 34, 37, 42, 43, 45, 46, 49–51].

Starting with Zhang et al. [50], many approaches [2, 31, 40] used multiple
parallel feature convolutional columns to extract features at different resolution.
Zhang et al. [50] used a multi-column architecture comprising of three columns
to address the large variation in crowd size and density. The different columns
had kernels of varying sizes. The column with larger kernels could extract fea-
tures for less dense crowd, while the column with finer kernels is for denser
crowd. Sam et al. [34] proposed to decouple different columns, and train them
separately. Each column was specialized towards a certain density type. This
made the task of each regressor easier, since it had to handle similar density
images. They also trained a switch classifier which routed an image patch to the
appropriate regressor. However, unlike [50], the training procedure comprised of
multiple stages. Sindagi and Patel [40] presented an approach which utilized lo-
cal and global context information for crowd counting. They trained a classifier
for classifying an image into multiple density categories, and the classifier score
was used to create context feature maps. Ranjan et al. [31] used a two stage
coarse to fine approach to predict crowd density map. In the first stage, a low
resolution density map was predicted, which was later utilized as a feature map
while predicting the final high resolution density map.

Uncertainty Estimation For Computer Vision tasks, we typically consider
two types of uncertainty: aleatoric and epistemic [13]. Aleatoric uncertainty
captures the uncertainty inherent in the data, and can be modeled by predict-
ing the parameters of a Gaussian distribution and maximizing the log likeli-
hood [13, 28] of the observed data. Epsitemic uncertainty, also called model
uncertainty, is related to the uncertainty in the model parameters, and can be
explained away given a large enough dataset. Epistemic uncertainity can be cap-
tured by Bayesian Neural Networks [27]. Although performing inference with
earlier Bayesian Neural Networks was inefficient, recent techniques like Monte
Carlo Dropout [7] can be used to capture epistemic uncertainty even with large
neural networks. Some of the earlier works have focused on uncertainty pre-
diction for tasks such as optical flow estimation [11] and crowd counting [29].
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However, none of these earlier works have focused on using uncertainty estimates
for sample selection.

3 Uncertainty Estimation for Crowd Counting

We take motivation from earlier work Kendall and Gal [13] which shows the
usefulness of both Aleatoric and Epistemic Uncertainty estimates for various
Computer Vision tasks, and present architectures which can be used for obtain-
ing the two types of uncertainties. In Sec. 3.1, we present our proposed network
architecture for estimating the aleatoric uncertainty4, followed by training ob-
jective in Sec. 3.2.

3.1 Crowd Transformer Network

In this section, we describe our Crowd Transformer Network (CTN) architecture,
which predicts the crowd density map along with the corresponding uncertainty
values. CTN models the predictive uncertainty, i.e., the uncertainty inherent in
the input image which might arise from sensor noise, or from the ambiguity in
the image itself.

The block diagram of CTN is presented in Fig. 2. CTN uses both local and
non-local features for estimating the crowd density map. Let X be a crowd image
of size H×W and Y the corresponding ground truth density map of the same
size. We assume that each value in Y is generated by a Gaussian distribution,
and CTN predicts the mean and the variance of the Gaussian distribution. The
proposed CTN takes input X and predicts mean and variance maps as:

X → µ(X, θ), σ2(X, θ) (1)

where µ(X, θ) is the crowd density map and σ2(X, θ) the uncertainty map. We
use uncertainty and variance interchangeably in the rest of the paper. Both
µ(X, θ) and σ2(X, θ) have the same size as the input image X as well as the
crowd density map Y . The key components of CTN architecture are: 1) a local

feature block, 2) a non-local feature block, 3) a density prediction branch, and 4)
a uncertainty prediction branch. These components are described below.

Local Feature Block. Given an input image X of size H×W , we pass it
through a local feature block to obtain the convolutional feature maps. The local
feature block consists of five convolution layers with kernels of size 3×3, and the
number of filters in the convolution layers are 64, 64, 128, 128, and 256. We use
the VGG16 network [38] pretrained on ImageNet to initialize the convolution
layers in the local feature block. The local feature block has two max pooling
layers, after the second and fourth convolution layers. The resulting feature map
is a tensor of size H

4 ×
W
4 ×256. The feature map is passed to the non-local block

as well as the density prediction branch and uncertainty branch.

4 See supplementary materials for the architecture for estimating epistemic uncertainty
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Fig. 2: CTN architecture predicts both crowd density map and corresponding
uncertainty values. It combines local and non-local features. The local features
are computed by the convolution layers in the local feature block. The resulting
feature map is passed to the non-local feature block. Both density prediction
branch and uncertainty prediction branch utilize local and non-local features.

Non-local Feature Block. For computing the non-local features, we use the
Transformer architecture [41] which was proposed as an alternative to recur-
rent neural network [33] for solving various sequence analysis tasks. It uses an
attention mechanism to encode non-local features. The architecture consists of
an encoder and a decoder, where the encoder maps the input sequence into an
intermediate representation, which in turn is mapped by the decoder into the
output sequence. The transformer uses three types of attention layers: encoder
self-attention, encoder-decoder attention, and decoder self-attention. For the pro-
posed crowd counting approach in this paper, only the first one is relevant which
we describe briefly next. Henceforth, we will use self-attention to refer to the self-
attention of the encoder.

Encoder Self-Attention. Given a query sequence along with a key-and-value
sequence, the self-attention layer outputs a sequence where the i-th element in
the output sequence is obtained as a weighted average of the value sequence,
and the weights are decided based on the similarity between the i-th query
element and the key sequence. Let X ∈ Rn×d be a matrix representation for a
sequence consisting of n vectors of d dimensions. The self-attention layer first
transforms X into query XQ, key XK , and value XV matrices by multiplying X

with matrices WQ, WK , and WV , respectively:

XQ = XWQ, XK = XWK , XV = XWV . (2)

The output sequence Z is computed efficiently with matrix multiplications:

Z = softmax(XQX
T
K)XV . (3)

The encoder consists of multiple self-attention layers, arranged in a sequential
order so that the output of one layer is fed as input to the next layer.

Architecture Details. The non-local feature block takes as input the feature
map from the local feature block, and passes it through three convolution layers
of kernel size 3×3 and a max pooling layer, which results in a feature map of size
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H
8 ×

W
8 ×512. We reduce the depth of the feature map by passing it through a 1×1

convolution layer, which yields a feature map of size H
8 ×

W
8 ×240. The resulting

feature map is flattened into a matrix of size M×240, where M = H
8 ×

W
8 . Each

row in this matrix corresponds to some location in the convolution feature map.
The flattened matrix is passed through three self-attention layers. The output
from final transformer layer is reshaped back into a tensor of size H

8 ×
W
8 ×240.

Density Prediction Branch. Both local and non-local features are important
for estimating an accurate crowd density map. Hence, the Density Prediction
Branch uses a skip connection to obtain the convolutional features from the local
feature block, and combines it with the features from the non-local feature block.
The non-local features are upsampled to the same spatial size as local features,
which results in a tensor of size H

4 ×
W
4 ×240. The local and non-local features are

concatenated and passed through four convolution layers (with 196, 128, 48, and
1 filters), where the last layer is a 1×1 convolution layer. We add a ReLU non-
linearity after the 1×1 convolution layer to prevent the network from predicting
negative density values. We use two bilinear interpolation layers, after the second
and third convolution layers in the prediction head. Each interpolation layer
upsamples its input by the factor of two. The input to the final 1×1 convolution
layer is a feature map of size H×W×48, which is transformed into a 2D map by
the last convolution layer.

Predictive Uncertainty Estimation Branch. The Predictive Uncertainty

Estimation Branch outputs the variance map σ2(X, θ). Similar to the density
prediction branch, the uncertainty branch also uses both the local and non-
local features for prediction. The uncertainty prediction branch has the same
architecture as the density prediction branch, with one major difference being
that we use point-wise softplus nonlinearity instead of ReLU nonlinearity af-
ter the last 1×1 convolution layer. Softplus nonlinearity can be expressed as:
softplus(x) = 1

β
log(1 + exp(βx)). For brevity, we will refer to this type of un-

certainty estimation as Predictive Uncertainty.

3.2 Training Objective

The network is trained by minimizing the negative conditional log likelihood of
the observed ground truth density values Y , conditioned on the input image X:

L(Y |X, θ) = −
HW
∑

i=1

log(P(Yi|µi(X, θ), σ2
i (X, θ))), (4)

where P(y|µ, σ2) = 1√
2πσ2

exp(− (y−µ)2

2σ2 ), a univariate Gaussian distribution. The

negative conditional log likelihood is proportional to:

L(Y |X, θ) ∝

HW
∑

i=1

(

log σi(X, θ) +
(Yi − µi(X, θ))2

2σ2
i (X, θ)

)

.
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The above objective can be seen as a weighted sum of the squared differences,
where the weights depend on the estimated uncertainty of the input X. This
objective can be seen as a robust regression objective, where higher importance
is given to pixels with lower ambiguity [28].

4 Uncertainty Guided Sample Selection

Given a labeled dataset {(XA, YA)} from domain A, and an unlabeled dataset
{XB} from domain B, we are interested in finding a small subset of informative
samples from domain B. Each instance XB of domain B can be sent to an oracle
(human) to obtain the label YB . Our motivation behind selecting a small subset
from domain B is to reduce the human annotation cost without sacrificing the
performance on domain B. Next, we propose different strategies for selecting
informative samples. In Sec. 4.1, we propose to use the aleatoric uncertainty
predicted by CTN to select informative samples. In Sec. 4.2, we draw inspira-
tion from Query-by-committee [35] sampling strategies in Active Learning, and
present a sampling strategy that uses the disagreement between the members of
an ensemble of CTN networks for selecting informative samples. We present two
strategies for computing the disagreement, the first one uses both the density
and the uncertainty predictions while the other uses just the density prediction.

4.1 Aleatoric Uncertainty Based Sample Selection

When picking samples from the target domain, we want to select those samples
for which the network makes erroneous prediction. Previous works and our own
experiments show that aleatoric uncertainty is correlated to the prediction error
(see supplementary materials and Fig. 3). Hence, we propose to use the aleatoric
uncertainty for selecting informative samples. We use the CTN network trained
on the source domain to compute the aleatoric uncertainty (averaged across the
image) for all the images in the target domain, and select those samples from
the target domain for labeling that have a high average aleatoric uncertainty.

4.2 Ensemble Disagreement based Sample Selection

Inspired by the Query-By-Committee [36] sampling algorithm in Active Learn-
ing, we present another sampling strategy which uses the predictions from our
CTN network trained on a source domain to select informative samples from a
target domain. The Query-By-Committee algorithm keeps a committee of stu-
dents, and picks the sample with maximal disagreement between the committee
members to acquire annotation. In this work, the committee is a set of two CTN
networks as described in the previous section. These networks are trained on
different subsets of labeled data from domain A, and the disagreement between
the two networks are used as a measure of informativeness. Let the two networks
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be represented by their parameters θ1 and θ2 and the outputs of the networks
are the mean and variance maps:

[

µ(X, θ1), σ
2(X, θ1)

]

and
[

µ(X, θ2), σ
2(X, θ2)

]

. (5)

The values µi(X, θ1) and σ2
i (X, θ1) are the mean and variance of a Gaussian

distribution for the density value at pixel i. Similarly, the values µi(X, θ2) and
σ2
i (X, θ2) correspond to another Gaussian distribution. We use the KL diver-

gence between these two distributions as a measure of disagreement between the
two density estimation networks. We denote the KL divergence at location i of
image X as KL(Xi), which can be computed in close form as:

KL(Xi) =
σ2
i (X, θ1) + (µi(X, θ1)− µi(X, θ2))

2

2σ2
i (X, θ2)

+ log

(

σi(X, θ2)

σi(X, θ1)

)

−
1

2
· (6)

The overall informativeness of an image is obtained by computing the average
KL divergence over all pixels. We sort all the images in domain B according to
their informativeness, and select the most informative samples for annotation.
Note that this approach can be easily extended for more than two networks.

We present another strategy called Density-difference based Ensemble dis-

agreement to compute the disagreement between the members of an ensemble.
This disagreement is computed by averaging the pixel wise squared difference
between the the density maps predicted by the members of the ensemble as

Diff(Xi) = (µi(X, θ1)− µi(X, θ2))
2. (7)

The informativeness score is obtained by averagingDiff(Xi) over the entire pre-
diction map. The score can be generalized to work with an ensemble of multiple
networks.

5 Experiments

We validate the proposed approach by conducting experiments on four pub-
licly available datasets: UCF-QNRF [10], UCF CC [9], Shanghaitech [50] and
NWPU [44]. In Sec. 5.1, we discuss the crowd counting results on all datasets.
Note that we use the entire training set from each dataset for this experiment.
In Sec. 5.2, we show the effectiveness of the proposed sample selection strate-
gies. Following previous works, we report Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) metrics:

MAE =
1

n

n
∑

i=1

|Ci − Ĉi|;RMSE =

√

√

√

√

1

n

n
∑

i=1

(Ci − Ĉi)2,

where Ci is the ground truth count, Ĉi is the predicted count, and the summation
is computed over all test images.
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5.1 Crowd Density Prediction

Experiments on UCF-QNRF dataset. The UCF-QNRF dataset [10] con-
sists of 1201 training and 334 test images of variable sizes, with 1.2 million dot
annotations. For our experiments, we rescale those images for which the larger
side is greater than 2048 pixels to 2048. For training, we take random crops of
size 512×512 from each image. Keeping the variance prediction branch fixed, we
first train the other blocks of the proposed network for 20 epochs using the mean
squared error loss. Next, we train only the uncertainty variance prediction head
by minimizing the negative log likelihood objective for five epochs. Finally, we
train the entire network by minimizing the negative log likelihood for 10 more
epochs, and report the best results. We use a learning rate of 10−4, and a batch
size of three for training.

Comparison with existing approaches. Tab. 1 shows the performance of
various approaches on the UCF-QNRF dataset. Bayesian Loss [26] is a novel
loss function for training crowd counting networks. It outperforms mean squared
error, and it has the current state-of-the-art performance. This loss function
is complimentary to what we propose here, and it can be used together with
CTN. In fact, the method CTN∗ displayed in Tab. 1 is the combination of CTN
and Bayesian Loss. CTN∗ improves the performance of Bayesian Loss [26] and
advances the state-of-the-art result on this dataset.

Ablation Study. The proposed CTN consists of three main components: Local
Feature Block, Non-Local Feature Block, and Predictive Uncertainty Estimation
Branch. To further understand the contribution of each component, we perform
an ablation study, and the results are shown in Tab. 2. As can be seen, all con-
stituent components of CTN are important for maintaining its good performance
on the UCF-QNRF dataset.

Experiments on NWPU-Crowd dataset. NWPU [44] is the largest crowd
counting dataset comprising of 5,109 crowd images taken from the web and
video sequences, and over 2.1 million annotated instances. The ground truth for
test images are not available, here we present the results on the validation set
of NWPU in Tab. 1. For this experiment, we use the pretrained CTN model
from UCF-QNRF dataset and adapt the network on the NWPU dataset. Our
proposed approach outperforms the previous methods.

Experiments on UCF-CC dataset. The UCF-CC dataset [9] consists of 50
images collected form the web, and the count across the dataset varies between
94 and 4545. We use random crops of size H

3 ×
W
3 for training. Following previ-

ous works, we perform 5-fold cross validation and report the average result in
Tab. 3. The proposed CTN with the Predictive Uncertainty (CTN) is compara-
ble to other state-of-the-art approaches in both MAE and RMSE metrics. For all
the approaches, the error on UCF CC dataset is higher compared to the other
datasets since it has a small number of training samples.

Experiments on Shanghaitech dataset. The Shanghaitech dataset [50] con-
sists of two parts. Part A contains 482 images collected from the web, and Part
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UCF-QNRF NWPU

MAE RMSE MAE RMSE

Idrees et al. [9] 315 508 - -
MCNN [50] 277 426 219 701
CMTL [39] 252 514 - -
Switch CNN [2] 228 445 - -
Composition Loss-CNN [10] 132 191 - -
CSR net [17] - - 105 433
CAN [23] 107 183 94 490
SFCN [43] 102 171 - -
ANF [47] 110 174 - -
Bayesian Loss [26] 89 155 93 470
SCAR [8] - - 82 398

CTN∗ (Proposed) 86 146 78 448

Table 1: Performance of various methods on the UCF-QNRF test
dataset and NWPU validation dataset. Bayesian Loss is a recently pro-
posed novel loss function for training a crowd counting network. CTN∗ is the
method that combines CTN and Bayesian Loss, advancing the state-of-the-art
performance in both MAE and RMSE metrics. Following [26], we use the first
four blocks from Vgg-19 as the backbone for local feature extraction.

Components Combinations

Local features X X X

Non-Local features X X X

Predictive Uncertainty X

MAE 93 106 120 123
RMSE 166 185 218 206

Table 2: Ablation study on UCF-QNRF. CTN is the proposed counting
network that consists of: Local Feature Block, Non-local Feature Block, and
Uncertainty Prediction Branch. All three components are important for main-
taining the good performance of CTN on this dataset. Note that ablation study
is done using the Vgg-16 backbone.

B contains 716 images collected on the streets of Shanghai. The average ground
truth crowd counts for Part A and Part B are 501 and 124, respectively. For
training, we use random crops of size H

3 ×
W
3 . Results are shown in Tab. 3. The

proposed approach outperforms all existing approaches in terms of MAE. Part
A is more challenging with denser crowds than Part B. As a result, the av-
erage error of all the approaches on Part A is larger than those on Part B.
Note that the CTN network in Tab. 3 is first trained on UCF-QNRF and later
finetuned on Shanghitech dataset. This may not be a fair comparison for those
approaches in Tab. 3 where the networks are trained from scratch on Shang-
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UCF-CC Shtech Part A Shtech Part B

MAE RMSE MAE RMSE MAE RMSE

Crowd CNN [48] - - 181.8 277.7 32.0 49.8
MCNN [50] 377.6 509.1 110.2 173.2 26.4 41.3
Switching CNN [34] - - 90.4 135.0 21.6 33.4
CP-CNN [40] 295.8 320.9 73.6 106.4 20.1 30.1
IG-CNN [1] 291.4 349.4 72.5 118.2 13.6 21.1
ic-CNN [31] 260.9 365.5 68.5 116.2 10.7 16.0
SANet [3] 258.4 334.9 67.0 104.5 8.4 13.6
CSR Net [17] 266.1 397.5 68.2 115.0 10.6 16.0
PACNN [37] 241.7 320.7 62.4 102.0 7.6 11.8

SFCN [43] 214.2 318.2 64.8 107.5 7.6 13.0
ANF [47] 250.2 340.0 63.9 99.4 8.3 13.2
Bayesian Loss [26] 229.3 308.2 62.8 101.8 7.7 12.7

CTN (proposed) 210.0 305.4 61.5 103.4 7.5 11.9

Table 3: Count errors of different methods on the UCF-CC dataset and
Shanghaitech dataset. This dataset has two parts: Part A was collected from
the web, and Part B was collected from the streets of Shanghai. The average
ground truth crowd count for Part A is larger than that for Part B. We report
both MAE and RMSE metrics.

haitech dataset. Hence, for a more fair comparison, we train the current state of
the art model [26] on UCF-QNRF dataset first, and finetune it on Shanghaitech
Part A dataset. We use the official implementation by the authors and use the
hyper parameters reported by the authors [26]. This results in MAE/RMSE of
63.4/107.9 on the test set of ShanghaiTech Part A. Our CTN outperforms [26]
in this experiment, with MAE/RMSE of 61.5/103.4 reported in Tab. 3. This is
a fair comparison since both methods are pretrained on UCF-QNRF, and later
finetuned on Shanghaitech Part A.

5.2 Uncertainty Guided Image Annotation

In this section, we evaluate the effectiveness of the proposed selective annotation
strategy. We train the network on the UCF-QNRF dataset and use it to select the
informative samples from the Shanghaitech Part A dataset and NWPU dataset
for acquiring annotation (results on Shanghaitech Part B are presented in the
Supplementary). We use the labels of the selected samples, keep the variance
prediction branch frozen, and finetune CTN using the selected subset. We com-
pare our sampling approach with two baseline sampling approaches: 1) random
sampling approach: images are randomly sampled from the unlabeled pool in
the target domain, and 2) Count based sampling : we select those samples from
the target domain for which the pretrained network predicts a high count. We
report the results in Tab. 4. Note that the entire training sets of Shanghaitech
Part A and NWPU have 300 and 3109 images respectively. Our sampling ap-
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Shtech Part A NWPU

Selection approach #Train MAE RMSE #Train MAE RMSE

None (Pretrained) NA 69.2 113.5 NA 118.4 632.3

Random 50 68.7 117.1 100 117.4 640.7
Count 50 67.3 107.4 100 107.9 458.8
Aleatoric Uncertainty 50 62.9 108.1 100 104.9 522.1
Density based Ensemble Disagr. 50 61.4 105.5 100 112.8 526.8
KL-Ensemble Disagreement 50 65.5 118.4 100 105.8 481.9

Random 100 65.5 125.5 500 96.7 539.4
Count 100 63.3 109.8 500 95.9 442.5
Aleatoric Uncertainty 100 64.7 107.8 500 81.5 313.7

Density based Ensemble Disagreement 100 62.2 109.6 500 90.0 438.6
KL-Ensemble Disagreement 100 62.1 103.3 500 95.6 511.3

Full dataset (previous best methods) 300 62.8 99.4 3109 82 398
Full dataset (CTN) 300 61.5 103.4 3109 78.1 448.2

Table 4: Comparing different strategies for selecting images for anno-
tation. We train the network on the UCF-QNRF dataset, and use it to select
images from the NWPU and Shanghaitech train data for acquiring annotation.
We compare the random selection baseline with the proposed uncertainty-guided
selection strategy. For NWPU dataset, using just 500 training samples selected
using our sampling strategy, we achieve state-of-the-art results compared to the
previous state-of-art [8] trained on entire training set in terms of MSE. For
Shanghaitech Part A, using just 50 labeled training samples, selected using our
density based ensemble disagreement sampling strategy, we perform comparably
to the state-of-the-art networks trained on the entire training set.

proaches outperform the random baseline by a large margin. We also outperform
the Count based sampling baseline. For NWPU dataset, using just 500 training
samples, we achieve state-of-the-art results compared to the previous state-of-
art [8] trained on the entire training set in terms of MSE. For Shanghaitech
Part A, using just 50 labeled training samples, selected using our density based
ensemble disagreement sampling strategy, we perform comparably to the state-
of-the-art networks trained on the entire training set. Our results clearly show the
usefulness of our informative sample selection strategy for transferring counting
networks from one domain to another.

5.3 Qualitative Results

Fig. 3 displays some qualitative585 results from UCF-QNRF dataset. Error is
correlated with the variance which suggests the appropriateness of using the
variance maps for estimating the uncertainty of the density prediction.
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Image Ground truth Mean Variance Error

382 380 0.61 2

346 329 0.4 17

282 404 1.01 122

Fig. 3: Qualitative Results. This figure shows Image, Ground truth, Predicted
Mean, Predicted Variance, and Error map. We specify the sum of the map below
the corresponding map. The first two examples are success cases for density
estimation, while the last is a failure cases. The variance maps correlate with
the error maps.

6 Conclusions

To tackle large human annotation costs involved with annotating large scale
crowd datasets, we have presented uncertainty based and ensemble disagreement
based sampling strategies. These strategies were shown to be useful for the task
of transferring a crowd network trained on one domain to a different target
domain. Using just 17% of the training samples obtained using our sampling
strategy, we obtained state-of-the-art results on two challenging crowd counting
datasets. We also showed that our proposed architecture, when trained on the
full dataset, achieved state-of-the-art results on all the datasets in terms of mean
absolute error.
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