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Abstract. Sign languages are the main mechanism of communication
and interaction in the Deaf community. These languages are highly vari-
able in communication with divergences between gloss representation,
sign configuration, and multiple variants, among others, due to cultural
and regional aspects. Current methods for automatic and continuous
sign translation include robust and deep-learning models that encode
the visual signs representation. Despite the significant progress, the con-
vergence of such models requires huge amounts of data to exploit sign
representation, resulting in very complex models. This fact is associated
to the highest variability but also to the shortage exploration of many
language components that support communication. For instance, gesture
motion and grammatical structure are fundamental components in com-
munication, which can deal with visual and geometrical sign misinter-
pretations during video analysis. This work introduces a new Colombian
sign language translation dataset (CoL-SLTD), that focuses on motion
and structural information, and could be a significant resource to de-
termine the contribution of several language components. Additionally,
an encoder-decoder deep strategy is herein introduced to support auto-
matic translation, including attention modules that capture short, long,
and structural kinematic dependencies and their respective relationships
with sign recognition. The evaluation in CoL-SLTD proves the relevance
of the motion representation, allowing compact deep architectures to
represent the translation. Also, the proposed strategy shows promising
results in translation, achieving Bleu-4 scores of 35.81 and 4.65 in signer
independent and unseen sentences tasks.

1 Introduction

Over 5% of the world’s population (~ 466 million people) have some form of dis-
abling hearing loss. From this group, today, only the 17% use some hearing aid
to facilitate communication [1]. Thus, Sign language (SL), a spatial, temporal,
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and motion structured set of gestures, constitutes the main channel for interac-
tion and communication of the Deaf community. Like any language, SL around
the world reports many variants due to cultural and regional changes, with more
than 300 official languages [2]. Even considering methods that focus on a specific
regional SL, like any natural language, the problem remains quite challenging
due to marked variability of gestures, the richness of glosses, and the multiple
modifications that could have any expression during the communication. This
fact introduces a huge challenge to the development of assistive devices that
allows automatic translation among sign languages and w.r.t spoken languages.

Regarding the automatic SL recognition (SLR), recent advances in computer
vision using deep learning strategies have allowed moving from a naive classi-
fication of isolated gestures (ISLR) [3,4] to robust frameworks that allow the
continuous recognition (CSLR) and translation of sign languages (SLT) [5,6].
However, the effectiveness of these strategies depends strongly on large labelled
datasets and very complex deep models that must deal with sign variations.
Moreover, such approaches only exploit, at least at the first levels, the geometric
and spatial relationships with glosses captured from appearance information of
video sequences. This would make the models, faced with real scenarios, more
complex in order to obtain an adequate sign representation. Therefore, it is nec-
essary to review the main components of SL and try to understand how the
interaction of signs is produced and focus on modelling the main components of
language. For instance, motion is a fundamental primitive in the development
of SL gestures that define much of the relationship among glosses and may even
redefine the meaning of many communication segments. In terms of automatic
processing, this motion SL component could be the key to deal with variance
in gestures, reducing complexity in representation models. However, this motion
component is still under-explored in the SL domain, and its use is only implicitly
included in semantic and relational processing.

In the literature, both new deep models for SLR and datasets that support
these tasks have been proposed, which together have allowed a progression in
modelling such challenging tasks. Regarding the SL representation models, nowa-
days, 2D and 3D convolutional networks are used to extract sign descriptors in
images and videos, being the main tool in ISLR [3,4]. On the other hand, for
CSLR and SLT it is common to find, additionally, recurrent neural networks
for temporal modeling of signs. Especially for SLT, the sequence to sequence
approach with temporal attention models is used to translate the sign sequence
into text [6, 7]. Furthermore, some approaches have recently included two-stream
approaches to focus on other SL components. For instance, in [8], RGB sequences
were modelled together with skeletons to achieve a better representation of the
sign communication. In terms of available datasets, there exist different open
dataset proposals that record signs from non-intrusive RGB cameras, captur-
ing a significant amount of signs in natural SL communications. These datasets
support ISLR [4,9,10], CSLR [5,11] and SLT [12] tasks. Particularly, there are
few SLT datasets and those available have long sentences, huge variability of
sentences, and words which limit the analysis of additional components of lan-
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guage. Hence, proposing new datasets that allow the analysis of others compo-
nents, such as movement or structure, could be fundamental to understanding
how approaches perform sign translation to improve current performance.

This work presents a new structured SLT dataset dedicated to exploring the
complementary SL components such as motion and structure and their roles in
communication. Despite the importance of pose and geometry in signs, they are
visually affected by multiple variations in automatic video analysis. For example,
the capture of such language components based on appearance can dramatically
affect the representation of signs. As an additional contribution, this paper in-
troduces a novel encoder-decoder SLT strategy that pays attention to temporal
structure and motion to demonstrate the ability of these components to support
translation. Three main contributions of this work are:

— A new Colombian SLT dataset dedicated to exploring temporal structure
and motion information. The set of phrases and glosses were selected to
analyze the structure and motion dependencies in the sentences, therefore,
signers naturally describe the motion using different articulators during com-
munication. The dataset is open to the scientific community.

— A structured encoder-decoder deep strategy that fully exploits motion in-
formation and structural relations in sentences. For doing so, two kinematic
attention models are herein introduced to recover short and long kinematic
sign correspondences.

— A full validation with a state-of-the-art strategy, based on the deep encoder-
decoder architecture. The evaluation is entirely dedicated to exploring the
advantages and limitations of motion analysis. Also, how this SL component
can reduce complexity in the translation process.

The paper is organized as follows: Section 2 describes the available datasets and
the main related approaches focused on SLT, Section 3 introduces the proposed
SLT dataset, Section 4, presents the baseline strategy and the proposed method
and Section 5 presents a quantitative motion evaluation and the results of our
proposed approach.

2 Related Work

Currently, SLT has advanced dramatically due to new gestural representations,
translation architectures, and the availability of some datasets that allow more
complex and realistic scenarios to be explored. These efforts have allowed the
introduction of more difficult problems that require new perspectives and in-
clude the analysis of additional linguistic components. The following subsections
summarize the state-of-the-art strategies and datasets used today to address
SLT.

2.1 SLT Approaches

SLT has been addressed from different approaches, based on strategies that com-
bined convolutional and recurrent networks to try to match an SL with direct
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Table 1. Summary of sign language translation datasets.

Dataset Videos Sentences Signers Lexicon
BOSTON-104 201 113 3 104
RVL-SLLL 140 10 14 104
SIGNUM 780 780 25 450
RWTH-PHOENIX-T 8257 - 9 1066
USTC-ConSents 25000 100 50 178
CoL-SLTD (ours) 1020 39 13 ~ 90

correspondence to written languages [6,7]. These architectures were generally
integrated into an encoder-decoder framework forming the approach known as
sequence to sequence (seq2seq [13]). These models also include attention modules
that perform a weak alignment between the grammatical structures of both lan-
guages. In [14, 15] hierarchical attention components were proposed, to encode
SL units in video clips. However, clip-level processing limits complex sign recog-
nition and verbal agreements related to the sentence structure, which depends on
the entire context. To cover such limitations, in [16] dense temporal convolutions
were used to extract short-term relationships and long-term dependencies. Also,
in [17] local and global dependencies were learned from a Bidirectional LSTM
and temporal correlation modules. These methods, nevertheless, fail in structural
modelling due to the use of the CTC (Connectionist Temporal Classification)
loss function, typically used for aligned and independent word sequences. A more
detailed sign grammatical structure was explored from a multi-classification task
that recognizes isolated words in sentences, while a n-gram module classifies sub-
sentences [18]. This approach mitigates the error sentence propagation but the
architecture remains limited by the vocabulary size. In a more recent approach,
Guo et al. [8] proposed a hierarchical scheme of two streams to describe signs,
capture directional and positional verbs, and capture the relationship of mo-
tion to the spatial position of articulators in sentences. This approach proves
the importance of incorporating a complementary source of sign information by
adding skeletons in the decoder module. This hierarchical model merges appear-
ance and positional information reports deficiencies due to misalignment of both
information.

2.2 Continuous Sign Language Datasets

Regarding the complexity and diversity of sign languages, there are few datasets
that allow exploring SLT tasks. Among these, RVL-SLLL [19] is an American
Sign Language (ASL) dataset that allows modelling recognition of connected
linguistic contexts on short discourses (10 long sentences), performed under a
lexical vocabulary of 104 signs. This dataset has some limitations mainly related
to the small number of sentences that difficult the analysis of diverse language
components, such as motion information. Similarly, the RWTH-BOSTON-104
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Fig. 1. Proposed Col-SLTD: Video sequences were recorded under controlled lighting
conditions, on a green background, different clothes and signers with a wide age range.
The first two signers (top left) are CODAs (children of deaf adults) and interpreters,
the rest of the signers are deaf.

Database [20] has 201 sentences with a vocabulary of 104 signs. Despite the
wide range of sentences and structures, this dataset reports a reduced number
of videos and signers, which could bias the analysis. In a more linguistically con-
trolled environment, Von et al. [11] proposed a private SIGNUM dataset with 780
pre-defined sentences from German Sign Language, under a lexical vocabulary
of 450 signs. The RWTH-PHOENIX-Weather 2014 dataset translation version
[6] represents a first large public dataset for SLT with approximately 8000 videos
and a vocabulary of 1066 signs and 2887 words. This dataset was built in an
uncontrolled scenario but its complexity prevents a detailed linguistic analysis
and the language components during communication. Recently, USTC-ConSents
is a Chinese language dataset with 5000 videos (wit repetition has 25000 sam-
ples) of 100 pre-defined sentences and a lexicon of 178 signs [14]. These datasets
represent a huge effort to model sign language but many components of lan-
guages remain unexplored because this data limit their analysis. For instance,
the analysis and evaluation of kinematic patterns could be associated with verbal
agreement and directional and motion verbs. Consequently, capturing data that
carefully pays attention in this component could lead to the use of kinematic
primitives to help in continuous translation tasks. Table: 1 presents a summary
of the above-mentioned datasets.

3 Proposed CoL-SLT Dataset

Sign language, in general, preserves the structural communication Subject-Verb-
Object, expressed as a visual combination of hand shapes, articulator locations
and movements [21]. The motion shape information is considered the core of the
SL, allowing, among others, to differentiate signs related to the pose and also
to define the verbal agreement in the sentences [22]. For instance, in American
SL, the expression of "I give You” has a similar geometrical description as ” You
give her”, the biggest difference is given by motion direction. Also, while the
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Fig. 2. Top: Col-SLTD sign example sequence. Bottom: The corresponding optical flow
representation. This optical flow allows the accurate tracking and large movements
codification, typical of sign language.

hand shapes represent noun classes, the combination with motion patterns could
represent associated verbs and complete utterances [23].

This work presents a SLT dataset that focuses efforts on capturing well-
formed utterances with structural kinematic dependencies, allowing further anal-
ysis of this fundamental linguistic component. To the best of our knowledge,
this is the first dataset dedicated to quantify and exploit motion patterns to an-
alyze their correspondence with the sentence structures. The proposed dataset
incorporates interrogative, affirmative and negative sentences from Colombian
Sign Language. Furthermore, this dataset includes different sentence complexi-
ties such as verbal and time signs that define subject and object relationships,
such as the phrase: ”Mary tells John that she will buy a house in the future”.
In this dataset, the videos were pre-processed and interpreted first into written
Spanish, as the regional equivalence and then also translated to English equiv-
alence. This dataset also includes signers of different ages to avoid bias in the
analysis and to capture a large variability of the same language. This dataset
has been approved by an ethics committee of the educational institution. This
approval includes informed consent and participant authorization to use this
information for the research community.

The proposed SLT dataset, named CoL-SLTD (Colombian Sign Language
Translation Dataset), obtains sign expressions using a conventional RGB camera,
which facilitates the naturalness of each sign. Each video sequence was recorded
under controlled studio conditions using a green chroma key background with
lighting conditions, the position of the participants in front of the camera, and
the use of clothing of a different color than the background. In CoL-SLTD, there
are 39 sentences, divided into 24 affirmative, 4 negative, and 11 interrogative
sentences. Each of the sentences has 3 different repetitions, for a total of 1020
sentences, which allows capturing sign motion variability related to specific ex-
pressions. Also, the phrases were performed by 13 participants (between 21 to
80 years old), with sentence length between two to nine signs. Figure 1 illus-
trates the signers of the proposed dataset. All recorded videos were resized to
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Fig. 3. Motion analysis from optical flow magnitude at frame level: The top left chart
compares the quantity of movement present in each frame for the different sentence
categories. The remaining three figures analyze the amount of movement performed by
signers grouped by age in each sentence type.

spatial resolution of 448x448 with temporal resolutions of 30 and 60 FPS. Also,
the whole set was centered on the signer removing a lot of background. Videos
have an average length of 3.8 + 1.5 seconds and an average number of frames of
233 £ 90.

To support the analysis of the motion component, a kinematic vector field
descriptor was calculated for each video sign. For this purpose, an optical flow
approach with the capability to recover large displacements and relative sharp
motions was selected to capture motion signs descriptions at low or high tem-
poral resolutions [24]. Such cases are almost present in any sign, which reports
different velocity and acceleration profiles but are especially observed in the ex-
clamation marks. The resultant velocity field uy, := (ug,,us,)?, for a particular
frame t is obtained from a variational Euler-Lagrange minimization, that in-
cludes local and non-local restrictions between two consecutive frames: I(x);,
I(x)¢4+1. To capture large displacements, a non-local assumption is introduced
by matching key-points with similar velocity field patterns. This final assump-
tion could be formalized as: E,(u) = |gi11(x + u(z)) — g¢(x)|* where p is the
descriptor vector and (g(¢), g(++1)) are the computed velocity patterns in matched
non-local regions. The captured flow field volume result is highly described, keep-
ing spatial coherence and aggregating motion information patterns as a low-level
representation. In figure 2 an optical flow sequence computed on the RGB images
is illustrated. Also, it is interesting to note in Figure 3 how important sentence
patterns are discovered from the optical flow quantification (motion vector norm
in each pixel). For example, two big kinematic moments allow identification of
affirmative sentences (bottom right). While in interrogative sentences (top right)
the movement peaks are not so marked and conversely, they tend to be constant
which means that there is more expressiveness.
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Table 2. Statistics of each split proposed for evaluation

SPLIT 1 SPLIT 2
Train Test Train  Test
Number of videos 807 213 922 98
Number of signers 10 3 13 13
Number of sentences 24/10/5 24/10/5 22/9/4 2/1/1
Number of signs ~ 90 ~ 90 ~ 90 ~ 90
Number of words 110 110 110 16

3.1 Evaluation Scheme on CoL-SLTD

Two different evaluations are proposed over Col-SLTD. In a first evaluation, a
signer independence split aims to evaluate the capability to translate sequences
of signers not seen during training. In this split, a total of 10 signers were selected
for training and 3 signers with different ages for testing. In a second evaluation,
the task should report the capability to generate sentences not seen during train-
ing. In this task, a total of 35 sentences were selected in training and 4 sentences
in testing. The words in test sentences have the highest occurrence in training
and the sentences involve affirmations, negations, and interrogations. Table 2
summarizes the statistics per split.

A total of three metrics are suggested to evaluate model performance, namely:
BLEU score [25], ROUGE-L score (Fl-score value) [26] and WER error. The
BLEU score measures precision to recover a set of consecutive n-grams. The last
two calculate sentence level score and error. The ROUGE-L takes into account
similarity regarding sentence structure and identifies longest co-occurrence in
compared n-grams sequences and WER error provides complementary informa-
tion to the scoring metrics.

4 Seq2seq Architecture for SLT

Today, most of the common translation approaches use encoder-decoder archi-
tectures, transforming one sequence into another (seq2seq), to translate sign
language into a particular written or spoken language. These strategies have
shown promising results and therefore these networks are used as a baseline to
validate and analyze CoL-SLTD. This section introduces the general principles
that follow seq2seq architectures, and how the encoder-decoder model allows for
sign translation. Additionally, as a second contribution, a new encoder-decoder
scheme is presented here to deal with and address the sign structure and motion
component.

4.1 Encoder - Decoder Model

In translation, commonly, the encoder-decoder is composed of two synchronized
recurrent neural networks that estimate the conditional probability p(y;1:m}|T11:4}),
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where (21, ...,x¢) is the sequence of ¢t frames and (y1,. .., ym) is the correspond-
ing target sequence of m words [13]. On one hand, the encoder codes the inputs
in a latent feature space to obtain the state vector h; at time ¢t. On the other
hand, the decoder receives as input the vector h; to decode and relate with target
sequence. The decoder decomposes the conditional probability p(y{1:m}|T11:})
into ordered conditional probabilities:

M
p(y{l:m}|x(1:t)) = H p(§m|§{m—1:1}, ht), (1)

m=1

where p(Ym|§{m—1:1}, ht) is the predicted distribution over all m words in the
vocabulary. From recurrent methodology, the decoder learns to predict the next
most likely word ¢,,, conditioned by sign language encoder representation in
hy and previous predicted words gy, _1.1}. These conditional probabilities are
solved from stacked RNN (LSTM and GRU) modules that compute the hidden
states through the sequence [6,7,15]. The error in such models is calculated
using word-level cross entropy, described as:

M D
c=1- 11 Do) (2)

m=1d=1

where p(y<,) represents the ground truth probability of word y¢ at decoding step
m and D is the target language vocabulary size.

Baseline Architecture: Herein the NSLT approach was selected to analyze
translation on CoL-SLTD [6]. This model uses a pretrained AlexNet 2D-CNN
to capture spatial features in each frame z;. The encoder and the decoder are
composed of 4 recurrent layers with GRU units and 1000 neurons in each layer,
respectively. This model includes a temporal attention module that provides
additional information to the decoding phase by reinforcing the long-term de-
pendencies. Furthermore, this module avoids the vanishing gradients, during the
training, as well as the bottleneck caused by the fixed representation of the
whole video (very large information) in a fixed embedding vector. The attention
module computes a context vector at each decoding step m, as:

T
Cm = Z ’Ylnht ; (3)
t=1

where ~/* represents the relevance weight of an encoder input x; to generate the
word y,,. These weights are calculated by comparing the decoder hidden state
h at step m, with all encoder hidden states h;, through a scoring function, as:

i~ emp(hLWht)
bl eap(BLWhy)

(4)
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Fig. 4. Proposed structured SLT architecture: Optical flow video is the input to the
network. The encoder extracts, at low level, structured kinematic descriptors. Then,
at a higher level, the Encoder sequentially processes the descriptors. Finally, they are
passed to the Decoder to generate the translation.

where W is a learned parameter. In such sense, the equation 4.1 can be rewritten
as follows:

M
P(y{lzm}|$(1:f,)) = H P(Qm\@{m—l:l}ﬂmq,ht% (5)

m=1

4.2 Focus on SL Structure

We introduce a new encoder-decoder architecture to robustly include motion
modeling and structure in SLT to obtain a very compact representation of the
language. At a low level, we use a 3D-CNN network that recovers multiple
spatio-temporal features volumes, with relevant short-term kinematic informa-
tion. Hence, long-term dependencies are captured from an attention module that
includes structural and temporal relationships. Also, in the encoder, kinematic
descriptors are processed from a stack of bi-directional LSTM modules. These
hidden states are refined with a self-attention layer that complements the struc-
tural information [27]. Figure 4 illustrates the proposed architecture.

Structured SL Features Volumes Extractor (SFV): Short-term modeling
is achieved here by processing optical flow sequences with successive 3D convolu-
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tions. This hierarchical scheme obtains multiple non-linear kinematic responses,
which describe the motion information, at low levels. Long-term dependencies
are modelled on each kinematic response that fully captures the context of the
sign. Hence, we apply self-attention [27], along the time axis ¢’ for the complete
feature volume V, € Nt Xh'xw'xf" for each f' filter responses, in an independent
and parallel way. As result, we obtain the square matrix M. ]’ € N %t which codes
the correlation among frames in the same feature filter f;. The self-attention
computes the weights matrix through the independent projections K (keys) and
@ (queries) of the volume Vr in a latent space of dimension p as follows:

QWK\IT)
VP

The scaling factor % = 8 for p = 64 avoids small gradients in softmax [27] and

the projections are parameter matrices W®vr and WHv» ¢ Nhwxp,

!
M; = softmax(

(6)

To include this structural information we apply the frame feature context,
defined for each step t; of the filter f} as:

t/
fj/'tg = Z f]/'t;Mg,‘li (7)
=1

This frame feature context weights each slice fJ’»t,‘ € NV*" to include its struc-
tural relationship with other slices in the filter. Figure 5 shows the module in
detail with some common normalisation, reduction and fully connected layers.

Recurrent Structured SL Features Vectors (RSFV): High-level sequen-
tial dependencies are captured here by using a stack of recurrent bi-directional
LSTM layers that receive as a input the computed kinematic volume transformed
into a matrix Z with n motion descriptors through the last dense layer. Thus, the
final hidden state for each Zj descriptor, where ﬂ :i: n, is the concatenation
of each hidden state from both directions: hy = [ hk; h g]. To update the hidden
states hi, we propose to include a self-attention layer to refine the relationships
between these resulting recurrent vectors. Therefore, the new hidden states are
calculated by the following matrix way operation:

QnkK,
Pk

where the dimension of the latent space py is the same as the hidden vectors
hi € R°? and the projections are parameter matrices W, Wxr and WVr ¢
NPexPr_ For this self-attention the V}, (values) matrix is the result of a third
projection of the hidden vectors.

Wi s (8)

hi.n = softmax(
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Fig. 5. Structured SL Features Volumes extractor: This proposed module extracts low-
level spatio-temporal features volumes through successive 3D-CNN. The SFV attention
module takes each resulting convolution and applies self-attention on the whole volume
by calculating an attention matrix for each filter in an independent and parallel way.
Each feature frame is then related in different proportions to the other frames according
to the temporal relationship between them.

5 Experimental Results

The evaluation was designed to determine sign kinematic relevance in CoL.-SLTD
sentences. Firstly, we analyzed performance with NSLT, trained with 20 epochs,
in both RGB and optical flow sequences. This architecture has around 65 Million
training parameters (without the AlexNet backbone parameters). Table 3 shows
the results obtained for both defined tasks in CoL-SLTD. For Signer Indepen-
dence evaluation (split 1), the translations generated using the optical flow report
around 43% less word error than sentences from the RGB model. The Bleu-4,
obtained from flow sequences, also highlights the consistency of the translation
with a 46% margin over RGB. These results prove the relevance of the motion
in sign recognition and translation.

Regarding the second CoL-SLTD task, to generate unseen sentences (split
2), the table 3 summarizes the obtained results by using the NSLT approach.
This task is much more challenging, which could be associated with a poor local
representation of the gesture and a language model bias. Nevertheless, even in
this case, the motion shape information shows remarkable results w.r.t RGB
sequences.

Taking advantage of the resulting motion representation made it possible to
address the problem of the complexity. In this sense, a second experiment was
designed to compact the network complexity by reducing the recurrent layers
and units. In a first experiment, the NSLT was reduced to approximately 25%
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Table 3. Translation results for RGB and Flow images in both splits. Top of table:
results for split 1, Bottom: split 2. The experiments were performed with the complete
base architecture and then reduced in different proportions.

SPLIT 1 Data WER Rouge-l Bleu-1 Bleu-2 Bleu-3 Bleu-4

Baseline RGB 7741 31.83 30.56 19.78 16.24 14.50
Flow 34.94 69.91 68.53 63.73 61.42 60.24

Reduction to 75% Flow 30.87 72.95 71.58 67.27 65.23 64.23
Reduction to 50% Flow 44.00 62.82 57.09 50.34 47.45 46.07
Reduction to 25% Flow 62.67 43.92 37.89 26.21 19.67 15.56

SPLIT 2 Data WER Rouge-l1 Bleu-1 Bleu-2 Bleu-3 Bleu-4

Baseline RGB 77.55 23.43 21.68 7.01 2.91 1.74
Flow 78.33 36.96 39.67 18.94 12.17 8.69

Reduction to 75% Flow 78.96 36.17 38.28 15.94 9.28 6.34
Reduction to 50% Flow 77.08 33.73 32.91 11.41 7.18 5.17
Reduction to 25% Flow 80.06 24.90 26.61 8.05 0.0 0.0

(around 50M parameters less), using only one recurrent layer with 250 neurons.
Surprisingly, this compact network achieves even better results than the original
RGB representation. Secondly, the best results obtained were when the archi-
tecture was reduced to 75%, using 3 layers of 750 neurons (approximately 25M
parameters less), demonstrating again the potential use of motion components
of language to support sign representation.

From CoL-SLTD, the motion component takes on a relevant role in trans-
lation, which could be further utilized in specialized architectures that focus
on the attention and model kinematic patterns for a better structural language
understanding. In this work, a new seq2seq network was also introduced that
exploits mainly motion patterns, the main advantage being the robustness on
sign representation (around 10 M parameters). This architecture is composed
by the feature extractor module (see figure 5) and a RNN stack with a total of
256 LSTM units in the first layer and 512 in the second layer for encoder and
decoder modules®. Table 4 summarizes the achieved result in both CoL-SLTD
tasks. In the first task, split 1, the architecture with the RSFV self-service mod-
ule achieves the best results due to the effectiveness to complement the temporal
structure initially learned by the LSTM. Interestingly enough, the combination
of RSFV y SFV modules improves the Bleu-1 and rouge-l scores, incorporating
relevant short-term dependencies captured in SFV. Similarly, for the second task
(using split 2), the proposed network achieves similar performance highlighting
the relevance of coding, short and structural motion dependencies and their

3 For training, Adam optimizer was selected with a learning rate of 0.0001 and decay
of 0.1 every 10 epochs. Also, batches of 1 sample and a dropout of 0.2 in dense and
recurrent layers were herein configured. The convolutional weight decay was set to
0.0005 and gradient clipping with a threshold of 5 was also used.
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Table 4. Obtained results using the proposed modules in both splits.

SPLIT 1 WER Rouge-1 Bleu-1 Bleu-2 Bleu-3 Bleu-4
Vanilla approach 64.12  44.39 42.16 33.43 29.91 27.96
SFV module 63.88  45.01 45.90 36.65 32.85 31.02
RSFV module 58.33 48.39 47.80 40.44 37.39 35.81
SFV+RSFV modules 59.33 49.45 48.98 39.98 35.88 33.81
SPLIT 2 WER Rouge-l1 Bleu-1 Bleu-2 Bleu-3 Bleu-4
Vanilla approach 90.42  25.59 26.12 10.89 5.21 2.77
SFV module 88.85 30.59 30.05 12.86 7.09 4.65
RSFV module 89.95 24.63 26.08 9.15 4.07 2.41

SFV+RSFV modules 88.85 26.56 27.45 8.94 3.20 1.70

relationships with sign recognition. These relevant kinematic and structural re-
lationships are principal attributed to SVF (short-term dependencies) allowing
the achievement of the best performance over the vanilla approach in this task.

6 Conclusions

This work introduced a new sign language translation dataset (CoL-SLTD) that
allows the exploration and analysis of motion shape, being one of the fundamen-
tal components of language. Through taking advantage of such information, a
very compact seq2seq approach was also proposed here to address structure in
sign language translation tasks, with remarkable results. The results obtained on
the CoL-SLTD prove the relevance of kinematic information to complement sign
structure and representation, allowing the design of more compact architectures
that could be efficient in real-life conditions. Future works include the continu-
ous growth of this motion dedicated dataset and structural approach, bringing
to the scientific community an invaluable source of information to explore new
components of sign language.
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