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Abstract. Accurate segmentation of the optic disc from a retinal im-
age is vital to extracting retinal features that may be highly correlated
with retinal conditions such as glaucoma. In this paper, we propose a
deep-learning based approach capable of segmenting the optic disc given
a high-precision retinal fundus image. Our approach utilizes a UNET-
based model with a VGG16 encoder trained on the ImageNet dataset.
This study can be distinguished from other studies in the customization
made for the VGG16 model, the diversity of the datasets adopted, the
duration of disc segmentation, the loss function utilized, and the num-
ber of parameters required to train our model. Our approach was tested
on seven publicly available datasets augmented by a dataset from a pri-
vate clinic that was annotated by two Doctors of Optometry through a
web portal built for this purpose. We achieved an accuracy of 99.78%
and a Dice coefficient of 94.73% for a disc segmentation from a retinal
image in 0.03 seconds. The results obtained from comprehensive experi-
ments demonstrate the robustness of our approach to disc segmentation
of retinal images obtained from different sources.

1 Introduction

Sight is one of the most important senses for humans, allowing us to visualize and
explore our surroundings. Over the years, several degenerative ocular conditions
affecting sight have been identified such as glaucoma and diabetic retinopathy.
These conditions can threaten our precious sense of sight by causing irreversible
visual-field loss [1]. Glaucoma is the world’s second most prominent cause of
irreversible vision loss after cataracts, accounting for 12% of annual cases of
blindness worldwide [2]. According to one estimate, around 80 million people
are currently affected by glaucoma, and around 112 million will be affected by
2024. Approximately 80% of patients do not know they have glaucoma until
advanced vision loss occurs [1, 3].
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The optic disc is one of the main anatomical structures in the eye which
must be monitored and evaluated for progression when glaucoma is suspected [1].
Changes within the optic disc, such as the displacement of vessels or enlargement
of the optic cup to optic disc ratio can be used to help determine if glaucoma
is present and if there is progression of the disease [4]. These changes occur
because of an irreversible decrease in the number of nerve fibres, glial cells and
blood vessels.

Several methods have been proposed for disc segmentation. These can be
categorized as follows: morphological approaches [5], template based match-
ing approaches [4, 6], adaptive-thresholding based approaches [7], and pixel-
classification based approaches [8]. Approaches related to the first three cate-
gories mainly fail in the presence of bright objects similar to the ones shown
in Fig. 1 [9]. The red arrows in Fig. 1 indicate some bright regions that can be
encountered in retinal images that may affect disc segmentation.

Fig. 1. Images showing various bright regions that can be observed in retinal images.
The green box shows the location of the disc and the red arrows indicate other bright
regions that may mislead some approaches when segmenting the disc.

With the rise of deep learning comes the potential for achieving high per-
formance when segmenting a retinal image. Researchers have been working to
develop models that place each pixel of a retinal image into a specific class
during semantic segmentation. However, the performances of these approaches
tend to decrease when new datasets emerge with different disc appearances or
images with different resolutions. For instance, the deep-learning model M-Net,
proposed by [10] performs well on the ORIGA dataset [11], but not on other
datasets (e.g. the DRISHTI-GS dataset) [12] as reported by [13]. One cause
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might be related to improper handling of the variance between classes when
training. This is because the optic disc class may comprise between 2%-10% of
an image depending on the angle and resolution of the captured image, whilst
the background class would take up the rest of the image. This causes some
models to converge toward the background and miss key details related to the
disc.

In this paper, we propose a deep-learning approach to disc segmentation from
retinal images using the UNET architecture to build the model and the VGG16
convolutional model as our encoder. Given the challenges related to having in-
sufficient annotated disc datasets for deep learning, we adopted the idea of using
transfer learning (TL) and image augmentation (IA). Instead of using random
weights to initialize our model, we use weights trained on millions of images
for semantic segmentation from the Imagenet dataset, which we then fine-tune
to match the object we wanted to segment. To handle the issue of imbalanced
classes, we use a customized loss function that allows the loss function to pe-
nalize more when the wrong classification is made for a pixel related to a disc
than that of background. To prove the robustness of our proposed approach in
segmenting the disc with various sizes, angles, and orientations, we tested the
approach on seven publicly available datasets and one private dataset that we
formed.

Our contributions can be listed as follows:

1. We proposed a UNET based deep learning model for disc segmentation that
uses VGG16 as the encoder.

2. We demonstrated the effectiveness of using TL and IA for limited data.
3. We handled the issue of imbalanced image classes which may lead to inac-

curate results by adopting a weighted loss function.
4. We contributed a new retinal image dataset for disc segmentation (ORDS).
5. We developed an online portal that can be used for annotating disc by mul-

tiple contributors.

2 Related Work

Two types of approaches have been developed for disc segmentation: those that
locate the optic-disc center but do not segment the disc and those that both
locate the disc region and then segment the disc. In this section, we cover ap-
proaches that aim to segment the disc rather than just locating it.

Earlier work entails the development of hand-crafted features that rely mainly
on the shape of the disc and the intensity of pixels [4, 6, 14]. However, the per-
formance of these hand-crafted approaches is easily affected by the presence of
pathological regions and images with different resolutions (Fig. 1). Recently, ad-
vancements made in the field of deep learning have opened the door to using deep
learning based models in the field of medical-image analysis. Such approaches
exhibit superior performance over the hand-crafted ones [1, 15].

Several approaches have been developed for segmenting the optic disc with
deep learning: e.g., using an edge-attention guidance network to perform proper



4 A. Sarhan et al.

edge detection when segmenting the disc [16], using disc-region localization and
then disc segmentation via a pyramidal multi-label network [17], using entropy-
driven adversarial-learning models [18], using residual UNet based models [19],
and using generative adversarial networks combined with VGG16 and transfer
learning [20].

In [8], researchers used an ensemble-learning based convolutional neural-
network model to segment the optic disc by first localizing the disc region.
Entropy was used to select informative points; then the graph-cut algorithm
was used to obtain the final segmentation of the disc. The researchers tested
their approach only on the Drishti-GS [12], and RimOnev3[21], datasets. How-
ever, they used only 50 images from the Drishti-GS dataset with 40 for training
and 10 for testing, even though the Drishti-GS dataset contains 101 images with
50 for training and 51 for testing.

The use of transfer learning when working with deep learning to analyze
medical images has been adopted by various studies [22–24]. In the study per-
formed by [20] researchers adopted transfer learning to train their encoder for
segmenting the disc when given the whole image without the need for cropping.
They used the PASC AL VOC 2012 pretrained weights [25]. They used only
the Drishti-GS dataset in both training and testing their model. Moreover, the
number of training parameters used by their model, 30.85 ∗ 106, is double that
of our approach. In [13] transfer learning for disc segmentation was also used.
They started by cropping the disc region using the UNET model developed in
[26] initializing their encoder using the weights of the MobileNetV2 [27] trained
on the ImageNet dataset [28].

The majority of the developed approaches tend to first locate the disc region
and then feed this region into their model to avoid bright regions like the one
shown in Fig. 1. For proper segmentation, such approaches are highly dependent
on successful localization of this disc region. Moreover, these approaches tend
to handle the issue of imbalanced classes, which makes their approach perform
differently when new images with different resolutions emerge. In this paper,
we show a model with an encoder that uses transfer learning, proper data aug-
mentation, and a customized loss function can segment the optic disc with high
precision, giving results comparable to the above-mentioned approaches. In this
study, we do not localize the disc prior to performing the segmentation and in-
stead feed the whole image to our model, rather than a specific region of the
image.

3 Proposed Method

Our goal is to segment the optic disc given a retinal image. To achieve this, we
propose a deep learning model with the same architecture as the UNET model
[26]. A pixel matrix I is associated with each retinal image indicating the pixels
either belong to the disc and the background. If Ixy represents a pixel at location
(x, y) in the retinal image, this pixel will have a value of 1 if it belongs to the
disc and 0 if it is a background pixel. The model will use these labeled images
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and the actual retinal image to produce a new image with the same dimensions,
where each pixel has a probability between 0 and 1 inclusive, thus indicating
whether this pixel belongs to the disc or not. The closer the value is to 1, the
higher the model’s confidence is that it belongs to a disc. In this section, we
describe the model adopted in this study 6.

3.1 Network Architecture

Instead of creating a new architecture, we adopted the U-Net architecture which
consists of an encoder and a decoder. The encoder is responsible for down-
sampling the image, and the decoder is responsible for up-sampling the image
to provide the final output. In our case, we used the VGG16[29] model as the
encoder and built the decoder by using a series of skip connections, convolutional,
up-sampling, and activation layers, as shown in Fig. 2.

The original VGG16 model with a down-sampling factor of 32 is customized
so that it could be used for semantic segmentation. It contains five down-
sampling layers followed by two densely connected layers and a softmax layer for
prediction. We removed the two densely connected layers at the end of the origi-
nal model and replaced them with a single convolutional layer found in the center
of our model, as shown in Fig. 2. Doing so reduced the number of parameters
used to train the model from 134,327,060 to 16,882,452. Fixing this bottleneck
significantly cut down the time and computational power required to train the
model without causing any observable changes to the model’s predictions.

We also removed the softmax layer and added all of the upsampling and
convolutional layers seen on the right half of the model as is needed in image
segmentation to regenerate the original image shape, finally our last layer is a
sigmoid activation layer which predicts on the feature matrix. The 5 upsampling
layers achieve an upsampling factor of 32, allowing the output images to have
the same shape as input images, counteracting the data reshaping effects caused
by down-sampling layers. The feature map for each convolutional layer is the
ReLU [30] activation method, which applies Eq. 1 to each parameter coming out
of the layer, thereby removing all negative pixel values.

f(x) = max(0, x) (1)

Throughout the architecture, there are several instances where we use skip con-
nections. In Fig. 2, the first and second maxpooling layers utilize a skip connec-
tion to convolutional layers further down in the pipeline of the model. Whilst
the third and fourth maxpooling layers are connected directly to a convolutional
layer which attaches either directly or indirectly to the later layers. This was
used to shorten the distance between the earlier and later layers. Short connec-
tions from early to later layers are useful in preserving high-level information
about the positioning of the disc. This is opposed to the low-level pixel-based
information which is transferred across the long pipeline of the architecture in

6 source code: https://github.com/AbdullahSarhan/ACCVDiscSegmentation
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Fig. 2. Architecture of the Customized VGG-16 model Adopted in this Study.

a combination of convolutional and maxpooling/upsampling layers. High-level
information tends to be lost as the image gets down-sampled and the shape and
structure of the image is changed. Therefore, we maintain this information by
using connections to earlier layers in the model. Better results were observed
when using instead of not using these connections.

3.2 Transfer Learning

To handle the challenge faced in the field of medical imaging of not having
enough datasets to train a deep-learning model, we used an approach referred to
as transfer learning. As discussed in Section 2, such approaches can alleviate the
issues caused by insufficient training data by using weights generated by training
on millions of images [23]. In our study, we adopted the weights generated when
training the VGG16 model on the ImageNet dataset [28] which contains around
14 million labeled images. We thus provided a diverse set of images that the
model had been exposed to.

By using transfer learning, we could reduce the problem of over-fitting caused
when training on limited images and improve the overall performance of the
model. Using the ImageNet weights, we initialized the weights of the encoder
network component, and other layers were randomly initialized using a Gaussian
distribution. We then trained our model using a mini-batch gradient to tune the
weights of the whole network. When training, we realized when using transfer
learning that the model converged faster than without transfer learning.

In addition to transfer learning, we applied random augmentation to each
image by randomly applying any of the following: horizontal shifting, vertical
shifting, rotation within a range of 360 degrees, horizontal flipping, vertical flip-
ping, or any combination of the above. We tested the evaluation effectiveness of
data augmentation with and without transfer learning.

3.3 Loss Function

During the training of the network, we decided whether a model had improved
on the value returned from the loss function by running it on validation data.
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Initially, we adopted the binary cross-entropy function (BCE), as shown in Eq. 2
where N is the number of all pixels, yi is the label of that pixel (0 for background
and 1 for the disc), p(yi) is the predicted probability that the pixel belongs to
the disc and p(yi) is the predicted probability of being a background pixel. Note
that the BCE can penalize both false positives and false negatives when working
with foreground and background classification.

BCE = −
1

N

N
∑

i=1

yi. log(p(yi)) + (1− yi). log(1− (p(yi))) (2)

For any given retinal image, the disc will be only occupy a small region of the
image (usually 2-10%), with the large majority of the image being background,
i.e. 90% or more. Using this loss function alone would therefore not be sufficient
for a precise disc segmentation output. This is because the BCE will be biased
toward the background and hence, the disc will not be properly segmented. Thus,
it may give an accuracy of 90%, which may be misleading. To bypass this issue,
we decided also to use the Jaccard distance. The Jaccard distance measures how
dissimilar two sets of data are. The Jaccard loss function is defined as:

Lj = 1−
|Yd ∩ Ŷd|

|Yd ∪ Ŷd|
= 1−

∑

d∈Yd
(1 ∧ ŷd)

|Yd|+
∑

b∈Yb
(0 ∨ ŷb)

(3)

where Yd and Yb represent the ground truth of the disc and background respec-
tively. Ŷd and Ŷb represent the predicted disc and background pixels. |Yd| |Ŷb|
represents the cardinality of the disc Yd and background Ŷb respectively with
ŷd ∈ Ŷd and ŷb ∈ Ŷb. Since Ŷd and Ŷb are both probabilities, and their value will
always be between 0 and 1, we can approximate this loss function as shown in
Eq. 4 and the model will then be updated by Eq. 5 where j represents the the
jth pixel of the input image and ŷj represents the predicted value for that pixel.

L̃j = 1−

∑

d∈Yd
min(1, ŷd)

|Yd|+
∑

b∈Yb
max(0, ŷb)

= 1−

∑

d∈Yd
ŷd

|Yd|+
∑

b∈Yb
ŷb

(4)

Ljyi















− 1
|Yd|+

∑
b∈Yb

ŷb

for i ∈ Yd

−
∑

d∈Yd
ŷd

|Yd|+
∑

b∈Yb
ŷb

for i ∈ Yb

(5)

Given the Jaccard loss function, we are able to balance the emphasis the model
gives to each of the classes: namely, the disc class and background class. In
this, we combine BCE with Jaccard to optimize the results. We realize that,
when both are combined, the model can converge faster than it can when using
only the Jaccard while still achieving better results than BCE or Jaccard alone.
Hence, our final loss function is:

Loss = BCE + Lj (6)
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3.4 Implementation Details

To implement this model we used a windows machine with a NVIDIA GeForce
2060 RTX with 6 GB dedicated GDDR6 memory and 8GB of shared random
access memory which the GPU is free to use as necessary. We used the Python
language to implement the proposed approach using Keras with TensorFlow
back-end.

Training was performed using the NAdam optimizer [31] function with learn-
ing rate set to 0.0001, β1 = 0.9, β2 = 0.999, ǫ = 10−8, and batch size of 4 images.
During training, three callbacks were used. First, the model checkpoints would
save the model whenever a smaller value was returned on validation data from
the custom loss function when comparing to the value at the last checkpoint.
Secondly, the learning rate was reduced by a factor of 0.5 whenever 25 epochs
passed without any improvement in the validation loss values. Finally, the train-
ing was stopped if 100 epochs passed without any improvement.

4 ORDS Dataset

Datasets obtained from different resources had to be used in order to evaluate
the reliability and applicability of the proposed method. One of the issues faced
when working with disc segmentation is the lack of diverse datasets. To augment
the available data sets we decided to contribute a new dataset obtained from a
private clinic, annotated by two experts in this field. In this section, we discuss
the new data collected.

The ORDS dataset, our new dataset 7, was obtained from a private clinic in
Calgary, and the disc was annotated by two Doctors of Optometry. We built a
customized web portal to help optometrists trace the disc8. Each optometrist was
assigned a username and password to log into the portal and view the assigned
images. Upon successful login, a user can navigate to the tracing page and start
tracing, as shown in Fig.3. Both optometrists traced the same set of images;
and hence each image received two annotations for the disc. In total, 135 images
were annotated. On the tracing page, a list of images is presented; the user can
click on any image, and a pop-up dialogue will appear. Once the pop-up model
appears, the user can start tracing; an erase option is presented should the user
wish to erase any of the tracing. Once the tracing is done, the user can click
on the submit button, which will allow the storage of tracing information on a
dedicated server. Users have the option either to trace the whole disc at once
or in steps. Upon successful submission of the tracing, the traced image will be
eliminated from the list of images on the tracing page.

5 Experimental Results

We evaluated our methods on eight different datasets which allows us to evaluate
our approach when discs with different sizes, orientations, and resolutions are

7 https://github.com/AbdullahSarhan/ACCVDiscSegmentation
8 Link and login credentials can be provided upon request
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Fig. 3. Web portal showing images assigned to the Optometrists along with the tracing
form utilized for disc tracing.

fed to our model. In this section, we discuss the datasets adopted, experiments
conducted, and compare the performance of our model with other approaches.

5.1 Datasets

To verify the robustness of our method, we tested our approach on seven pub-
licly available datasets and our dataset. Table 1 provides an overview of these
datasets along with the machines used to capture these images, including our
new dataset. These datasets contain information regarding multiple retinal con-
ditions: namely, glaucoma and diabetic retinopathy. Moreover, retinal images
that belong to these datasets were acquired at different angles and resolutions,
as can be seen in Fig. 4. For datasets that contained multiple annotations, in-
cluding our new dataset which had two expert tracings, we used the average of
the tracings when training and evaluating our model, which is the common tech-
nique used in such scenarios [21, 12]. In total 1,442 images were used for training
and 705 were used for testing. To test our model, we had to have the data split
into training and testing portions. The model could only see the training images,
and we checked the performance by evaluating the model’s predictions on the
test images and comparing it to labels. Doing so makes it fair to compare our
model with other approaches, as they would test their approach on the same test
images we are using. However, not all datasets are split in this manner. For some
datasets, we had to do the splitting with 75% of the dataset used for training
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Table 1. Dataset properties and machines used to capture their images.

Dataset Images Dimensions Machine
Train Test

Drishti-GS [12] 50 51 2049*1757 -

Refuge [32] 400 400 2124*2056 Zeiss Visucam 500

IDRID [33] 54 27 4288*2848 Kowa VX-10 alpha

Rim r3 [21] 128 31 1072*712 Nidek AFC-210

BinRushed [34] 147 35 2376*1584 Canon CR2 non-mydriatic

Magrebia [34] 52 11 2743*1936 Topcon TRC 50DX mydriatic

Messidor [34] 365 92 2240*1488 Topcon TRC NW6 non-mydriatic

ORDS 110 25 1444*1444 Zeiss, Visucam 200

and 25% for testing, selection done randomly. We did this split for the Messidor,
ORDS, BinRushed, Magrebia, and RimOneV3 datasets. Note that the annota-
tion used for Messidor is different from that used by other approaches,(e.g. [35])
as the annotation used by such studies is not available anymore. We used the
one provided by [34]. The testing images for all datasets are provided with our
code so that other researchers can make fair comparisons to ours, and thereby
standardize the images these comparisons are made on. Fig. 4 shows the per-
formance of our model on a test image from each dataset, each dataset being
different in terms of angle and resolution.

Doing this allows other researchers to compare their approaches by standard-
izing the set of test images without using the leave-one-out strategy ,[36], which
would be time-consuming due to the number of training experiments that must
be conducted for each dataset. For instance, if we have a dataset with 200 images
then we need to train our model 200 times each time using 199 images and test
on the excluded image; we would have to train 200 models and average the test
results of them. Images found across different datasets and even within a single

Fig. 4. A sample image from each dataset used in our study. The first row shows the
actual retinal image while the second and third shows the related ground truth and
prediction made by our model respectively. The name of the dataset to which each
image belongs is written at the top of its column.



Disc Segmentation 11

dataset can be extremely inconsistent in shape, size of optic disc region, and
pixel values. Therefore, a general rule is applied to preprocess all images before
they are passed to the model. They are first resized to 224*224 pixels, normalized
so that all pixel values are within the range (0,1), and finally, undergo binary
thresholding for disc ground-truth images.

5.2 Evaluation Methods

We used four evaluation methods to evaluate and compare our approach: namely,

accuracy (Acc): TP+TN
TP+FP+TN+FN

, dice coefficient (DC):2∗ Area(A∩B)
Area(A)+Area(B) , sensi-

tivity (Sen): TP
TP+FN

, and intersection over union (IoU): Area(A∩B)
Area(A)∪Area(B) . More-

over, we also show the time required by our approach to segment the disc and
compare it with information obtained by other approaches (when applicable).

5.3 Effectiveness of TL and IA

To test the impact of using transfer learning (TL) and image augmentation (IA)
when training our model we conducted a series of experiments and then evaluated
the model obtained using the test images for all datasets. In this section we show
the overall performance without showing performance on each dataset. Note that
in all these experiments we used the loss function defined in Eq. 6.

We first checked the performance of the model without transfer learning
by randomly initializing weights using Gaussian distribution, which needed 128
epochs to finish training. Then we did an experiment using data augmentation
also without transfer learning and this needed 141 epochs. The third and fourth
experiment using TL but with and without IA and they needed 184 and 207
epochs to finish training respectively. The evaluation results for each of these
experiments are shown in Table 2. The results obtained show that using TL and
IA together achieve the best results especially for DC and IoU values, which
really reflect how precisely the disc is segmented along with it being slightly
faster than the other models.

Table 2. Performance comparison of proposed method with and without using transfer
learning (TL) and/or image augmentation (IA).

Experiment Acc DC Sen IoU Time(s)

No TL and No IA 99.68 92.41 97.01 86.41 0.0317

IA with no TL 99.74 93.80 96.18 88.59 0.0366

TL with No IA 99.72 93.41 97.13 87.94 0.0308

TL with IA 99.78 94.73 96.26 90.13 0.0306
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5.4 Effectiveness of Loss Functions

A well known loss function for binary classification is the binary cross entropy
loss function. This loss function works great when the classes in the image are
balanced. However in our case, the object we are trying to segment represents
10% or less of the total image area of the image. Hence, we decided to use the
Jaccard distance approach as noted earlier.

We conducted three experiments to test which configuration would achieve
the best results. First, we trained our model using the BCE loss function alone,
which is a built-in loss function in the keras library, second, we trained using only
the Jaccard loss function and finally, we trained using a combination of both loss
functions. The results obtained are shown in Table 3. We realized there is slight
improvement in performance when we combine both loss functions compared to
using either one of them alone. We also realized that using Jaccard alone achieved
better results than BCE but it took 516 epochs to finish training compared to
210 epochs when using BCE alone and 374 epochs when combining both. Note
that in all these experiments we used TL and IA.

Table 3. Performance of the model across different loss functions.

Loss Function Acc DC Sen IoU Time(s)

BCE 99.75 94.01 94.89 88.82 0.0358

Jaccard Distance 99.76 94.03 95.72 88.85 0.0329

Jaccard Distance+BCE 99.78 94.73 96.26 90.13 0.0306

5.5 Comparing with Other Approaches

To evaluate our proposed method we compared with approaches which were
tested on some of the same datasets we used, as shown in Table 4. Unfortunately,
these approaches did not evaluate using all available datasets and hence when
comparing we split our results per dataset to be able to do a fair comparison.
We achieved an overall average accuracy of 99.78%, DC of 94.73%, Sensitivity of
96.26% and IoU of 90.13%. Our approach outperformed other approaches tested
on some of the online publicly available datasets as shown in Table 4 except two
approaches for some of the dataset they used. Further, we achieved a prediction
time that is the best among the current state of the art approaches with average
segmentation time is 0.03s.

For the Refuge dataset we achieved better results than the ones reported
by [17] and [16] yet we achieved slightly lower than the values reported by [13]
whom reported achieving 96% where we achieved 94.09%. However, we achieved
better than them in the RimOneV3 dataset and Drishti-GS. Note that they first
localize a region of interest and then segment the disc whereas in our case we
directly segment the disc from the whole retinal image without first localizing
the region the disc is located in.
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Table 4. Performance comparison of proposed method on optic disc segmentation.

Method Dataset performance metrics Time(s)
Acc DC Sen IoU

2*Wang et al. [18] RimOnev3 - 89.80 - - -
Drishti-GS - 96.40 - - -

PM-Net [17] Refuge 97.90 - - - -

2*ET-Net [16] Refuge - 92.29 - 86.70 -
Drishti-GS - 93.14 - 87.90 -

2*Thakur et al. [35] RimOneV3 94.84 93.00 - - 38.66
Drishti-GS 93.23 92.00 - - -

GAN-VGG16 [20] Drishti-GS - 97.10 - - 1

ResUNet [19] IDRID - 86.50 - - -

pOSAL [13] Refuge - 96.00 - - -
Drishti-GS - 96.50 - - -
RimOneV3 - 86.50 - - -

9*Proposed Approach Drishti-GS 99.79 96.50 97.54 93.18 0.03
IDRID 99.80 95.39 96.94 91.30 0.12
RimOneV3 99.50 94.91 96.11 90.44 0.03
Refuge 99.80 94.09 95.77 89.00 0.02
BinRushed 99.82 95.57 96.97 91.53 0.03
Magrebia 99.80 96.18 95.58 92.68 0.04
Messidor 99.83 96.16 97.18 92.62 0.03
ORDS 99.50 93.58 96.83 88.25 0.03

For the Drishti-GS dataset our model performed better than [18, 16, 35], the
same as [13], and slightly lower than [20]. However, in [20] they only trained and
tested their approach one the Refuge dataset, which is not enough to show how
well their system work on images from multiple sources. Moreover, their model
requires 30.85 ∗ 106 parameters which is almost double what our model requires.

Our model achieved better results than the approaches mentioned above for
the IDRID and RimOneV3 datasets. For the dataset provided by [34] they are
still a new dataset and up to our knowledge there is no study with published
testing images that we can use to compare the performance of our model with.
To ensure continuity of this research and allow researchers to be able to perform
fair comparison we will publish all test images used to evaluate our model in
our supporting material. We also publish both the training history log and our
model which was tested on in Table 4. In general our model demonstrated high
performance segmenting the disc for images obtained from different resources
with different angles of the disc and resolutions, including challenging ones as
shown in Fig. 1 (check supplementary material for more images).

5.6 Leave One Out Experiment

Clinics may capture images with different resolutions and angles. To verify the
robustness of our model on images that it was not trained on, that may have
different characteristics than what it was trained on, we conducted 8 experiments
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where a model was trained on all datasets except for one which was used for
evaluation. The results obtained for each dataset are showing in Table 5. This
table shows that for instance, when the model is trained on all datasets except
for Refuge, it will achieve a DC value of 92.51% which is slightly less than when
using the cross training which is 94.09%. The results seem consistent in that our
model can effectively segment the disc, except for the RimOneV3 dataset. This
is likely because this dataset only provides the images of the area surrounding
the disc.

Table 5. Performance of the model when being trained on all datasets except for the
one being evaluated on.

Dataset Acc DC Sen IoU Time(s)

Drishti-GS 99.76 95.94 96.82 92.25 0.07

IDRID 99.66 92.47 97.83 86.11 0.03

RimOneV3 98.23 80.00 89.49 70.00 0.03

Refuge 99.75 92.51 96.34 86.42 0.02

BinRushed 99.74 95.01 92.67 90.54 0.03

Magrebia 99.76 95.68 93.77 91.74 0.04

Messidor 99.66 94.11 97.83 90.00 0.03

ORDS 99.29 89.29 86.00 81.51 0.03

6 Conclusion and Future Work

In this paper, we proposed a deep learning based approach for disc segmenta-
tion where we proved the effectiveness of transfer learning, image augmentation,
and a customized loss function. Our approach achieved state of the art perfor-
mance on disc segmentation when compared to other modern approaches. We
also contribute a new dataset the can be used by researchers for improving disc
segmentation. This will help researchers testing their approaches on images ob-
tained from various sources with diverse data. Our new dataset was annotated
by two doctors of optometry using an online portal we built for the annotation
task.

As for future work, we would like to expand our approach to include glaucoma
detection by analyzing the disc region. Using the cup/disc alone is not always an
indicator for glaucoma and hence we need to analyze the disc region and make
an assessment. Moreover, we would like also to expand our portal to be used
for educational and research purposes where people can share and annotate the
datasets. Further, we would like to improve our dataset to include annotation
for other anatomical objects in the retina such as peripapillary atrophy and
exudates.
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