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Abstract. In this work, we propose a novel approach that allows for
the end-to-end learning of multi-instance point detection with inherent
sub-pixel precision capabilities. To infer unambiguous localization esti-
mates, our model relies on three components: the continuous prediction
capabilities of offset-regression-based models, the finer-grained spatial
learning ability of a novel continuous heatmap matching loss function in-
troduced to that effect, and the prediction sparsity ability of count-based
regularization. We demonstrate strong sub-pixel localization accuracy on
single molecule localization microscopy and checkerboard corner detection,
and improved sub-frame event detection performance in sport videos.

1 Introduction

Sub-pixel point localization (i.e., estimating the coordinates of point objects with
a precision beyond pixel accuracy) is a challenging task that is characterized by
the discrepancy between the precision required of the point predictions and the
granularity of the input image. In this context, the standard paradigm [1–5] of
operating directly on the discrete space defined by pixel locations (e.g., discrete
heatmap matching), and thus coupling the precision of the detections to the input
resolution, is clearly not sufficient. Several methods have thus emerged to extend
the classical discrete setup to allow for sub-pixel capabilities [6–14]. The majority
of these approaches however work on the assumption that there is exactly one
instance per object class. By restricting the setup to single instance localization,
the point location can be inferred, for instance, through continuous spatial density
estimation [7], weighted integration [8, 9, 12], or displacement field estimation [6].
These approaches find direct application in human pose estimation [1–4] and
facial landmark detection [5, 15], where the single instance assumption is fulfilled
through image cropping and assigning each landmark to a different prediction
class. However, the uniqueness assumption they rely on is often too constraining
in other scenarios, especially in multi-instance sub-pixel localization.

In practice, multi-instance sub-pixel point localization is relevant to various
fields. For instance, in single molecule localization microscopy [16, 17], a precise
and useful account of molecule locations requires sub-pixel localization capabilities,
as the resolution of the input image is limited by inherent sensor properties
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Prediction

Fig. 1: Model overview. A) The model infers numerous point predictions through
dense offset regression. B) The point estimates are compared to the label locations
through continuous heatmap-matching. C) The predicted count is compared
against the number of labelled objects (count-regularization). As the heatmaps are
never explicitly determined, the loss is computed with infinite spatial resolution.

(e.g., diffraction-limited images). Additionally, as hundreds of molecules can emit
light at the same time, successful models have to be able to detect multiple
instances in dense settings (i.e., potentially more than one instance per pixel). In
camera calibration, an accurate estimation of the camera parameters requires an
extremely precise detection of the multiple checkerboard corners [18, 19]. Thus,
the ability to infer multi-instance sub-pixel corner locations is especially relevant
to the effective calibration of low-resolution cameras. In these two examples, the
instance uniqueness assumption does not hold, and thus calls for the development
of models that are able to detect and disentangle with precision the location of
multiple objects (of a same class), which might even lie within a same pixel.

In this work, we introduce a novel model that learns—in an end-to-end fashion—
to directly output one single clear-cut and spatially precise point estimate in R

2

per point label. More precisely, the model infers point localizations through dense
offset regression (comparable to [7, 6]) and is trained using a novel loss function
based on a continuous generalization of heatmap matching, which allows to bypass
any issue induced by space discretization (see Section 3.2). We further ensure that
the model learns to output a unique high probability point estimate per point
label through sparsity regularization (see Section 3.3). (See Fig. 1 for an overview
of the model.) Overall, by obviating the need for post-processing operations such
as non-maximum suppression (NMS) [6] or maxima refinement [11] which are set
to deteriorate the accuracy of the predictions (see Section 3.3) and by inferring
spatially unambiguous point predictions, the approach offers an effective solution
to the challenging problem of multi-instance sub-pixel localization.
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Table 1: Related Work. No prior work allows for an end-to-end learning of point
localization in dense multi-instance settings without the use of spatial upsampling.

Sub-pixel
Multi-

Instance
Dense

Settings
No post-

processing
No Explicit
Upsampling

Discrete Heatmap Matching ✓ ✓

+ Refinement [11, 14, 15, 20] ✓ ✓ (✓) ✓

ChArUcoNet [19] ✓ ✓ ✓

Deep-Storm [17] ✓ ✓ (✓) ✓

Tiny People Pose [7] ✓ ✓ ✓

Fractional Heatmap Reg. [13] ✓ ✓ ✓

Global Regression [21, 22] ✓ (✓) ✓ ✓

Offset Regression [10, 23] ✓ ✓ (✓) ✓

G-RMI [6] ✓ ✓ ✓

Integral Pose Reg. [8, 9, 12] ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓

Contributions This work: a) proposes a novel loss function for the end-to-end
learning of multi-instance sub-pixel point localization, b) shows the effectiveness
of instance counting as an additional means of supervision to achieve prediction
sparsity, c) evaluates the model on single molecule localization microscopy and
checkerboard corner detection against standard benchmarks, and d) demonstrates
the versatility of the approach on temporal sub-frame event detection in videos.

2 Related Work

Methods for sub-pixel point detection can be classified into three categories:
upsampling-based, refinement-based, and regression-based approaches.

Upsampling The standard paradigm of first transforming the point detection
problem into a heatmap prediction problem (e.g., [1, 5]), before estimating point
locations from the maxima of the discrete prediction heatmap [24, 25], is not well-
suited for sub-pixel applications. Indeed, the precision of these models is inherently
limited to pixel accuracy. Several works achieve sub-pixel accuracy in this setting
by simply inferring finer-grained discrete heatmaps through explicit upsampling.
This artificial increase in resolution can be implemented in several ways ranging
from a naïve upsampling of the input image [17] to a sophisticated upsampling
of the prediction map itself with a trained refinement network [19]. While this
process enables sub-pixel predictions with respect to the original image resolution,
it suffers from two drawbacks: first, the estimates are still constrained to pixel
locations in the upsampled space, and thus the precision of the predictions is
directly bounded by the amount of upsampling performed; secondly, the explicit
upsampling of the visual representations significantly increases the memory
requirement. In addition, as these approaches lack the ability to precisely detect
multiple instances per pixel, they need to resort to large upsampling factors
to deal with dense multi-instance applications such as molecule localization
microscope—exacerbating the issue of computational complexity.
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Refinement-based Instead of resorting to upsampling to obtain finer-grained
discrete grids, other works propose first inferring heatmaps on coarser resolu-
tions, before refining the estimates of the maxima locations to obtain predictions
in R

2 [11, 14, 15, 20]. For instance, Graving et al. [11] use Fourier-based convolu-
tions to align a 2D continuous Gaussian filter with the discrete predicted heatmap,
while Zhang et al. [14] estimate the maxima (in R

2) through log-likelihood op-
timization. However, while they can be deployed on top of any state-of-the-art
discrete models, refinement-based methods introduce a clear disparity between
the optimization objective (heatmap estimation) and the overall goal of the
pipeline (sub-pixel localization). Consequently, as the refinement operation is
not part of the optimization loop, the learning of sub-pixel localization is not
achieved in an end-to-end fashion which leads to suboptimal results.

Regression-based In contrast to heatmap matching, regression models can infer
continuous locations without resorting to intermediate discretized representations.
The most trivial approach consists in directly regressing the coordinates of
the points of interest [21, 22]. However, this simple method suffers from several
drawbacks (e.g., no translational invariance to the detriment of generalization
capabilities and the number of points to detect has to be rigidly set in the model
architecture). In contrast, offset regression models [26, 27] first subdivide the
input space into a grid of smaller sub-regions, before inferring relative object
coordinates and class probabilities within each region via regression. While
originally proposed for object detection, this approach has also seen applications
in point detection [10, 23, 28], with the specificity that classification probabilities
are commonly assigned through heatmap matching. However, despite their ability
to infer predictions in the continuous space and to leverage local features more
efficiently than their global counterparts, these models often rely on loss functions
that are highly discontinuous at the edges of the grid cells ([28] is a noticeable
exception). Thus, in order to alleviate the discontinuity issues, large grid cells
often have to be considered which is reminiscent of global coordinates regression
models and their inherent drawbacks. More importantly, these methods often
have to rely heavily on NMS to obtain sparse predictions, thus breaking the
end-to-end learning of point localization. Both of these features are detrimental
to the overall precision of the point estimates, and by extension, to the sub-pixel
localization capabilities of these models, especially in multi-instance settings.

In this work, we leverage both the continuous prediction ability of offset regression
and the finer-grained spatial learning capabilities of heatmap matching-based
learning to achieve precise multi-instance sub-pixel point localization.

3 Model

We propose to tackle multi-instance sub-resolution point localization through
dense offset prediction, continuous heatmap matching-based learning and instance
counting regularization. An overview of the model is given in Fig. 1.
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3.1 Dense offset prediction

As in standard offset regression [26, 27], we propose to train a model to infer,
for each pixel of the final representation, n tuples (∆̂x, ∆̂y, p̂) with coordinate
offsets ∆̂x, ∆̂y∈ [− 1

2 ,
1
2 ] and class probabilities p ∈ [0, 1]d, where d is the number of

classes. In contrast to standard approaches, the loss introduced in this work (see
Eq. 3) does not present any discontinuity at the sub-regions borders and, thus,
does not explicitly require the resolution of the input image to be downsampled. As
a result, a one-to-one correspondence between the pixels in the final representation
and the pixels in the input image can be exploited, which makes it possible to infer
a set of n point tuples (∆̂x, ∆̂y, p̂) for each pixel in the input image—even smaller
granularity can be considered. More specifically, the model f̂θ maps any given
input image X of size (w×h) to a dense ensemble of N :=n·w ·h points (x̂, ŷ, p̂),
where the point coordinates x̂ and ŷ are equal to the sum of the continuous offsets
predictions ∆̂x, ∆̂y and the respective pixel center locations (x̄, ȳ), namely

f̂θ(X)=
{

(x̂, ŷ, p̂)(i) | i≤N
}

=
{(

x̄(j,k)+∆̂
x
(j,k,l), ȳ(j,k)+∆̂

y

(j,k,l), p̂(j,k,l)

)

|j≤w, k≤h, l≤n
}

=: Pθ.
(1)

Overall, this mapping offers a full and fine-grained coverage of the original image
space and, thus, makes the precise prediction of multiple point locations in R

2

possible, thereby unlocking multi-instance sub-pixel capabilities. Indeed, the
object locations (x̂, ŷ) can lie anywhere in R

2, in contrast to standard point
detection models [1, 2, 15, 29, 30] where point locations are limited to the discrete
grid defined by the input pixels. Similarly, the true point labels are not discretized,
i.e., L := {(x, y)j ∈R

2 | j≤M}, with M the number of labels in an image. Since
such dense oversampling of point predictions is not suitable for classical offset
regression loss functions [31], a novel flexible loss function has to be introduced.

Remark The points (x̂, ŷ, p̂)∈Pθ outputted by the model correspond to the final
point localization estimates (see Section 3.3 for details on how the model converges
almost all instance probabilities to zero, thus turning the dense set of predictions
into a sparse one) and not to intermediate representations that span a density—or
a heatmap— [1, 7, 15, 29, 30] or that require extensive post-processing [6].

3.2 Continuous heatmap matching

In order to estimate the model parameters θ through backpropagation, the
model predictions Pθ and the ground-truth labels L have to be compared using a
sensible and differentiable measure. To that end, we propose a novel continuous
generalization of the standard discrete heatmap matching paradigm [1, 15, 29]
that effectively solves the problems inherent to classical offset regression loss
functions while retaining their continuous localization learning ability. First, the
point predictions Pθ and point labels L are mapped to continuous heatmaps using
a Gaussian kernel K with smoothing parameter λ (similar to Gaussian mixture).
Thus, the value of the continuous prediction heatmap (induced by Pθ) at any
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given point (x0, y0)∈R
2 is equal—up to a normalization factor—to: (to simplify

notation, we consider a single class, i.e. d=1; generalization for d>1 is trivial)

Ĥ(x0, y0 |Pθ) =

N
∑

i

p̂iK(x̂i, ŷi, xo, yo) =
∑

i

p̂i exp

(

−
(x̂i−x0)

2

λ2
−
(ŷi−y0)

2

λ2

)

. (2)

Classical models explicitly compute and compare (e.g., through an L2-loss) the
discrete label heatmap obtained through the smoothing of the point labels and
the discrete prediction heatmap inferred by the model. As a result, the heatmap
comparison becomes gradually more approximate as lower-resolution inputs are
considered, which inevitably has a detrimental effect on the sub-pixel learning
capability. In contrast, we propose to directly compute analytically the difference
between the continuous label and prediction heatmaps induced by the point labels
and predictions. More precisely, we propose the integrated local squared distance
between the two planes as loss function for the learning of point localization:

LHM(Pθ,L) =

∫∫

R2

[

H(x0, y0 |L)− Ĥ(x0, y0 |Pθ)
]2
dx0dy0

=

∫∫

R2

[

∑

j

exp

(

−
(xj − x0)

2

λ2
−

(yj − y0)
2

λ2

)

−
∑

i

p̂i exp

(

−
(x̂i − x0)

2

λ2
−

(ŷi − y0)
2

λ2

)]2

dx0dy0.

(3)

Performing integration over the entire R
2 space, rather than over the image

domain only, helps to avoid special treatment of points at image boundaries.
Overall, since the heatmaps are never explicitly computed, their comparison is

performed with infinite spatial resolution thus alleviating the issues arising from
space discretization. Moreover, as the computation of the heatmap comparison is
exact regardless of the resolution of the input image, the smoothing bandwidth
λ can be selected as tight as needed without any loss of information. This allows
among others for a more precise learning of localization and, thus, increased
sub-pixel detection capabilities.

Closed-form loss computation A closed-form solution of the loss function
(Eq. 3) can be derived (see Appendix A) by successively using the distributivity
property, Fubini’s theorem, and the limits of the Gaussian error function:

LHM(P,L) =
∑

i

∑

j

πλ2

2
exp

(

−
(xi − xj)

2 + (yi − yj)
2

2λ2

)

+
∑

i

∑

j

p̂ip̂j
πλ2

2
exp

(

−
(x̂i − x̂j)

2 + (ŷi − ŷj)
2

2λ2

)

− 2
∑

i

∑

j

p̂i
πλ2

2
exp

(

−
(x̂i − xj)

2 + (ŷi − yj)
2

2λ2

)

.

(4)

This equation allows for an efficient computation of the partial derivatives of the
loss function with respect to the class probability predictions and the location
estimates used for backpropagation, see Appendix A for formulas and derivations.
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Remark While the use of dense offset regression in conjunction with Gaussian
mixtures is reminiscent of [6, 7], our model significantly differs in the nature of
the predictions it infers. Indeed, previous works have as underlying objective
the explicit estimation of prediction heatmaps. For instance, the dense point
predictions in [7] are used to estimate a continuous density, which in turn
is used to infer the final point locations. Thus, similar to classical heatmap
matching approaches, the density—or heatmap—is the target of the learning
and not the localization itself. In contrast, the points outputted by our model
directly correspond to the final point predictions; the heatmaps are not a goal in
themselves, but are rather used as building blocks of our loss function to assess
the quality of the predictions. Consequently, in our framework, the final point
predictions are an integral part of the optimization loop which allows for an
end-to-end learning of multi-instance sub-pixel point localization.

3.3 Detection Sparsity through Counting Regularization

Detection sparsity (i.e., obtaining one clear-cut non-ambiguous point estimate
per label) is a critical issue in dense multi-instance sub-pixel localization applica-
tions. Indeed, relying on post-processing operations such as NMS to map a set
of ambiguous estimates to clear-cut predictions is not suitable in this setting:
for instance, in dense setups, two predictions made within the same pixel may
correspond to two distinct ground-truth point locations, and thus should not nec-
essarily be merged into a single prediction. Additionally, systematically combining
several low-probability predictions into a single high-probability point estimate is
not advisable as it will inevitably have a negative impact on the spatial precision
of the predictions and, by extension, the model sub-pixel capability.

The continuous heatmap-matching loss function LHM does not guarantee
detection sparsity on its own; indeed, splitting a point prediction (x̂, ŷ, p̂) into two
point predictions with half probability each (x̂, ŷ, p̂/2) has no effect on the loss. To
remedy this issue without resorting to ineffective post-processing operations, we
propose adding a sparsity regularizer to the training objective; in this way, clear-
cut and precise predictions can be learned and inferred in an end-to-end fashion.

Counting regularization To that effect, we propose leveraging instance count-
ing as an additional means of supervision. In fact, the number of non-zero
instances for each training sample is implicitly given by the labels (i.e., c := |L|),
and thus can easily be compared to the predicted number of instances (ĉ).
Unfortunately, traditional counting models based on a naïve formulation of
count (i.e., ĉ =

∑

i p̂i) [32–34] have no particular impact on the sparsity of the
instance probabilities p̂i. An alternative is offered by Poisson-Binomial counting:
counts modelled as sums of independent Bernoulli (i.e., ĉ =

∑

i B(p̂i)). In this
setting, comparing the estimates count distribution with the label count through
Kullback-Leibler divergence [35] has actually a unique prediction sparsity-inducing
effect [36]. More precisely, a key feature of the resulting loss function is that it
rewards prediction sparsity by implicitly converging the individual probabilities p̂i



8 J. Schroeter et al.

0.0 0.2 0.4 0.6 0.8 1.0
p1

0.0

0.2

0.4

0.6

0.8

1.0

p
2

Without regularization

0.0 0.2 0.4 0.6 0.8 1.0
p1

0.0

0.2

0.4

0.6

0.8

1.0

p
2

With regularization

Fig. 2: Prediction sparsity through counting regularization. Gradients of the loss
function with respect to instance probabilities p1, p2 for situations described in
the example of Section 3.3. (See also convergence video in supplemental material)

towards either 1 or 0, as the model learns to count instances (see [36] for full proof
of this convergence property). Hence, in this work, we propose leveraging the
Kullback-Leibler divergence between the number of labelled objects (c= |L|) and
the Poisson-Binomial predicted count distribution implied by the class probability
estimates (ĉ =

∑

i B(p̂i)) as a regularizer to our novel heatmap-matching loss:

LCount(θ) = − log
(

∑

A∈F

∏

i∈A

p̂i
∏

j∈Ac

(1− p̂j)
)

, (5)

where F is the set of all subsets of {1, ..., |p̂|} of size c = |L|. Thus, while the
heatmap matching loss LHM does not ensure prediction sparsity (e.g., it does
not penalize the splitting of predictions into several lower-likelihood ones), this
regularizer does. For instance—recalling the example from earlier—a unique high-
likelihood prediction (x̂, ŷ, p̂=1) yields LCount=0, whereas two lower-likelihood
predictions (x̂, ŷ, p̂=1/2) produce a higher value of LCount=0.3. Fig. 2, which
displays the gradient of our loss in this two-points scenario, clearly illustrates the
benefit of the counting-based regularization as a means to obtain probabilities
that converge towards the 0,1 extremes. A full discussion including additional
advantages of this regularizer can be found in Appendix B.

4 Experiments1

4.1 Single Molecule Localization Microscopy

In this section, we replicate the experiment on molecule localization microscopy
proposed by Nehme et al. [17]. The task consists in determining the localization of
multiple blinking molecules on diffraction-limited images of fluorescent simulated
microtubules. The overall setting is particularly challenging as multiple instances
can fall within the same pixel of the input image, thus requiring precise multi-
instance sub-pixel localization capabilities.

1 https://github.com/SchroeterJulien/ACCV-2020-Subpixel-Point-Localization
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Sparse Point
Predictions
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Fig. 3: Model predictions for multi-instance sub-pixel molecule localization. No
non-maximum suppression was performed on our predictions, our model learns
to directly infer sparse point predictions as a result of counting regularization.

Model and Benchmarks The model in [17] achieves sub-pixel localization by
explicitly increasing the resolution of the input image by a factor 8 before
inferring a single localization probability for each pixel of the upsampled input
(Deep-Storm). By keeping the architecture as suggested and replacing the loss
with a classical discrete heatmap-matching approach, we obtain a benchmark
reminiscent of upsampling-based heatmap-matching (Upsampling). As the input
image is subject to high levels of upsampling, the model architecture relies on a
series of downsampling layers followed by a series of upsampling layers to obtain
a wide enough receptive field. In contrast, since our approach decouples the
resolution of the input image from the resolution of the predictions and thereby
obviates the need for upsampling, these layers are not needed to learn meaningful
representations; our method can directly operate on the original images instead
and infer n=2 points (i.e., n tuples of offsets and probabilities) for each pixel.

Evaluation and Results All models are trained with the data provided by [17]
and tested on the fluorescent simulated microtubules from [16]. The Jaccard index—
a standard metric of set similarity—is computed with the tool provided by [16]
using various tolerances τ . Table 2 reveals that our approach not only displays the
best overall performance on this experiment, but also achieves fast inference as

Stacked Input

Stacked Predictions

Fig. 4: Test microtubules rendering.

it can perform precise multi-instance sub-
pixel localization using the original input
resolution without the need for any explicit
upsampling. This outperformance can par-
tially be attributed to our approach’s abil-
ity to infer sparse clear-cut point esti-
mates without requiring any additional
post-processing, see Fig. 3. The overall
rendering of the test microtubules is pre-
sented in Fig. 4, see [17] for details.
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Table 2: Single molecule localization microscopy results. Comparison of various
methods on the sub-pixel single molecule localization experiment proposed in [17].
The Jaccard index [and F1 score] are computed with the software from [16].

.

Method

Deep-Storm [17]
Upsampling
Refinement

Ours

Jaccard Index [F1]

τ = 25nm τ = 50nm

0.153 [0.266] 0.416 [0.588]

0.171 [0.292] 0.448 [0.618]

0.195 [0.326] 0.448 [0.619]

0.234 [0.379] 0.517 [0.681]

Inference Speed

time/image

17.44 ms
17.44 ms
0.76 ms

0.76 ms

Table 3: Regularization ablation study.

.

Regularization

None
l1 (as in [17])

Counting (LCount)

Jaccard

τ=25nm 50nm

0.211 0.456
0.208 0.454

0.234 0.517

Ablation Study We replicate the
same experiment with various forms of
sparsity regularization to assess the im-
pact of the count supervision on the per-
formance of our model. Table 3 shows
that the theoretical benefits of count-
based regularization directly translate
to improved sub-pixel molecule localiza-
tion capabilities in practice.

4.2 Checkerboard Corner Detection

The precise detection of corners in checkerboards is a key component of camera
calibration. This challenging task requires the predictions to lie within a fraction
of a pixel of the ground-truth in order to be of practical use. In this section, we
compare the sub-pixel localization capabilities of our method and other learning-
based approaches with state-of-the-art classical local feature-based methods that
are specifically tailored to the sub-pixel detection of such corners [18, 37, 38].

Training Data To train the various learning-based models, we generate a
synthetic dataset composed of 20k checkerboard images. This not only allows us
to automatically simulate numerous transformations (lens distortions, lighting
variations, perspective transformations, noise) in a controllable environment, but
most importantly gives us an exact account of the ground-truth corner locations,
as opposed to human-annotated datasets that are inherently prone to inaccuracies.
More details about the dataset generation process are included in Appendix D.

Model architecture In line with previous checkerboard corner detection meth-
ods [20, 39], a “shallow” architecture comprised of only three convolutional layers—
with 32, 32 and 64 filters respectively—is considered for all learning-based models,
including ours. For faster training, two downsampling convolutional layers, with
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(480× 380) (240× 190)

(120× 95) All Relative Localization

(240× 190) predictions
(120× 95) predictions
(480× 380) centered predictions

Original Pixel Size

Fig. 5: Corner detection across different resolutions. The low-resolution loca-
tion estimates stay well within half a pixel of the original predictions, which
corresponds to 1/8 of a pixel in the lowest resolution.

stride 2, are added to our model, after both the first and second convolutional
layers. This modification merely enables our model to assign probabilities and off-
sets to bigger regions of 4×4 pixels rather than to each pixel of the original input.
In contrast, no downsampling could be performed on all other learning-based
benchmarks, as it would only deteriorate the precision of their predictions.

Baselines The following classical baselines are considered: OCamCalib [40],
ROCHADE [18], OpenCV [41], and MATLAB [42]. We also include three learning-
based benchmarks which use the model architecture described above and are
trained on our synthetic dataset: standard discrete heatmap-matching with
naïve argmax maximum picking (similar to [20, 39]), heatmap-matching with
local refinement through Gaussian distribution fitting (comparable to standard
refinement-based approaches [11]), and higher resolution heatmap-matching where
the input images are explicitly upsampled with a factor 8 (similar to [17]).

Evaluation and Results We evaluate the methods on the standard uEye and
GoPro datasets [18]. Since these real-world test datasets do not contain any
ground-truth corner positions, we assess the sub-pixel localization capabilities of
the different approaches both through prediction consistency across resolutions
and through corner reprojection errors. Note that, in these experiments, the
upsampling approach yields representations that are far too large to be supported
by standard GPUs, especially on the GoPro dataset, which illustrates its limits.

First, we measure prediction consistency by comparing the corner localizations
obtained on the original high-resolution images with those obtained on the lower-
resolution inputs downsampled by a factor δ. This experiment thus posits that
a direct correlation exists between a model’s ability to infer consistent sub-
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Table 4: Corner localization performance in low-resolution settings on the uEye
and GoPro datasets [18]. Consistency: mean-absolute displacement (and 90th
quantile) between predictions on high and low-resolution images downsampled
by δ. Reprojection Error: corresponding errors in corner reprojection [and number
of fully detected boards]. In units of original pixel size.

.

Methods

C
l
a
s
s
ic

OCamCalib [40]
Rochade [18]
OpenCV [41]
MATLAB [42]

L
e
a
r
n
. DL-Heatmap (sim. [20, 39])

+ Refinement (sim. [11])

OURS

Consistency

uEye (δ=4) GoPro (δ=6)

1.447 (2.92) 1.989 (3.61)

0.587 (1.05) 1.125 (2.07)

0.889 (2.66) 0.336 (0.50)

0.174 (0.29) 0.314 (0.50)

1.666 (2.24) 2.395 (3.61)

0.562 (1.20) 0.428 (0.76)

0.348 (0.64) 0.378 (0.66)

Reprojection Error

uEye (δ=4) GoPro (δ=6)

0.197 [114] [18]

0.107 [197] 1.716 [71]

[0] 0.994 [73]

0.059 [204] 0.325 [100]

0.230 [175] 0.797 [77]

0.086 [162] 0.531 [100]

0.073 [187] 0.417 [100]

pixel locations and its capacity to output consistent predictions across various
resolutions. The mean absolute displacement and the 90th quantile reported in
Table 4 show that our approach yields very consistent corner location estimates
(see also Fig. 5). Among others, this performance demonstrates that our model
is capable of inferring point locations well beyond pixel accuracy. Second, we
compute the reprojection errors—a standard metric in camera calibration— of the
predicted checkerboard corners in low-resolution settings (i.e., input downsampled
with factor δ) after performing camera calibration with the standard OpenCV
implementation [41]. Overall, the excellent performance of our approach on this
task (see Table 5), much higher than most classical state-of-the-art approaches,
reveals once again the high sub-pixel capabilities of our model. (Additional
results are included in Appendix D.) These results are all the more remarkable
when considering that the learning-based models are trained solely on synthetic
images and that the classical benchmarks are specifically designed for this task
only—they are not portable to other applications in contrast to our approach.

4.3 Sub-frame Temporal Event Detection in Videos

The precise temporal localization of point events in sequential data (i.e., answering
when do instantaneous events occur?) is a widespread task with applications in
numerous fields from accurate audio-to-score music transcription, to detection of
sport events in videos. In this section, we show that the loss function introduced
in Section 3.2 can be leveraged not only for spatial applications, but also for
sequential data to achieve sub-frame temporal detection. Indeed, by inferring
event occurrence times directly in R rather than on a discrete timeline [43–45],
our approach decouples the precision of the predictions from the resolution of
the input sequence, and can thus output accurate predictions without the need
for high temporal resolution inputs.
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Table 5: Golf swing event detection accuracy (within a ±1 frame tolerance) as
a function of the downsampling factor δ. Averages and standard deviations (in
brackets) are reported over 4 folds. The model architecture is from [45].

Loss

Naïve upsampling
Frame interpolation [46]
Prediction upsampling

Ours

δ = 1 frame 2 frames 4 frames 8 frames 16 frames

67.6 (0.8) 68.5 (0.7) 59.8 (1.3) 44.7 (1.0) 23.9 (0.5)

" 67.4 (0.6) 67.1 (0.6) 60.5 (1.3) 41.6 (1.9)

" 69.6 (0.6) 69.9 (0.6) 66.3 (1.1) 57.8 (1.2)

70.9 (1.4) 70.4 (1.2) 70.7 (1.3) 69.8 (1.4) 60.6 (1.6)

Experiment specifications In this section, we replicate the experiment intro-
duced by McNally et al. [45] on golf swing events detection in videos. In order to
evaluate the sub-frame capability of our model and its ability to infer precise local-
ization in low-resolution settings, we downsample the training and testing videos
with a temporal decimation rate δ. A wide spectrum of downsampling rates are
considered, ranging from the original experiment (δ=1) to highly downsampled
settings where only 1 out of 16 frames of the video samples are kept (δ=16).
Since the tolerance within which a prediction is considered correct (i.e., ±1 frame
of the original resolution) is kept unchanged across all experiments, the task
becomes progressively more challenging as the downsampling rate δ increases.
Indeed, even though the downsampled sequences retain less and less information,
predictions are expected to remain as precise as in higher resolution settings.
(The code from [45] was used as is, without any fine-tuning in all experiments.)

Our approach The continuous heatmap-matching loss function can be adapted
for 1-dimensional applications by dropping all dependence on y. Thus, the model
is trained to infer, for each timestep in the sequence, temporal offsets ∆x∈ [0, 1]

and event occurrence probabilities p∈ [0, 1]d. Since our loss is agnostic to the
underlying model, it can be directly applied in conjunction with the architecture
proposed in the original paper [45]. Once again, we leverage the properties of the
counting-based regularization to achieve prediction sparsity (see Section 3.3).

Benchmarks McNally et al. [45] leverage the widely used (e.g., [43, 44]) standard
average stepwise cross-entropy as loss function. As this loss function requires the
predictions to be set on a discrete grid, we consider two different video temporal
upsampling regimes to augment the original model with sub-frame detection
capabilities. The first one consists in duplicating each frame of the input δ times in
order to match the original (δ=1) sequence resolution (Naïve upsampling), while
the second leverages the state-of-the-art frame interpolation method proposed
by [46] to estimate the δ−1 missing frames (Frame interpolation). We also consider
an additional benchmark that operates on the downsampled resolution without
any explicit input upsampling: instead of inferring only one event probability
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Fig. 6: Consistency of our temporal point predictions across all resolutions.

per timestep, the model infers δ probabilities, one for the current timestep and
δ−1 for the missing time steps in an effort to match the original resolution of
the predictions (Prediction upsampling). This final benchmark is reminiscent of
the upsampling-based approach used in [17, 19].

Results Table 5 shows that our approach outperforms the traditional ones for
all downsampling factors δ; the performance gap becomes even more apparent as
the downsampling rate is increased. For instance, our loss function allows for the
training of a very competitive golf event detector using only 1 out of 8 frames
of the original video (i.e., δ=8). This prediction consistency across the various
downsampling rates for a given test sequence is depicted in Fig. 6.

These results overall demonstrate that our proposed approach does not only
achieve precise multi-instance sub-pixel detection accuracy in spatial applica-
tions, but can also be effective for sub-frame temporal event detection. (Note
that additional results with detailed per event class metrics can be found in
Appendix E.) Additionally, by being able to operate on lower resolution inputs
without any significant performance deterioration, our approach allows for both
a more efficient training and a faster inference, which is key for low-resource and
real-time applications, especially on mobile and embedded devices.

5 Conclusion

In this work, we leveraged dense offset regression, continuous heatmap matching-
based learning, and instance counting regularization to improve multi-instance
sub-pixel localization accuracy. The novel loss function—which allows for an end-
to-end learning of point localization—is derived as a continuous generalization
of standard heatmap matching approaches. We further showed the utility of
counting-based regularization to improve convergence and prediction sparsity.
The model demonstrates strong performance on molecule localization microscopy,
checkerboard corner detection, and sub-frame temporal video event detection.
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