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Abstract. The performance of a convolutional neural network (CNN)
based face recognition model largely relies on the richness of labelled
training data. However, it is expensive to collect a training set with
large variations of a face identity under different poses and illumination
changes, so the diversity of within-class face images becomes a critical
issue in practice. In this paper, we propose a 3D model-assisted domain-
transferred face augmentation network (DotFAN) that can generate a
series of variants of an input face based on the knowledge distilled from
existing rich face datasets of other domains. Extending from StarGAN’s
architecture, DotFAN integrates with two additional subnetworks, i.e.,
face expert model (FEM) and face shape regressor (FSR), for latent fa-
cial code control. While FSR aims to extract face attributes, FEM is
designed to capture a face identity. With their aid, DotFAN can sepa-
rately learn facial feature codes and effectively generate face images of
various facial attributes while keeping the identity of augmented faces
unaltered. Experiments show that DotFAN is beneficial for augmenting
small face datasets to improve their within-class diversity so that a better
face recognition model can be learned from the augmented dataset.

1 Introduction

Face recognition is one of the most considerable research topics in the field of
computer vision. Benefiting from meticulously-designed CNN architectures and
loss functions [1–3], the performance of face recognition models have been sig-
nificantly advanced. The performance of a CNN-based face recognition model
largely relies on the richness of labeled training data. However, collecting a
training set with large variations of a face identity under different poses and
illumination changes is very expensive, making the diversity of within-class face
images a critical issue in practice. This is a considerable problem in developing
a surveillance system for small to medium sized real-world applications. In such
cases, each identity usually has only a few face samples (we call it Few-Face
learning problem), so what dominates the recognition accuracy is the data
processing strategy, rather than the face recognition algorithm.

A face recognition model may fail, if the training set is too anemic to support
the model. To avoid this circumstance, our idea is to distill the knowledge within
a rich data domain and then transfer the distilled knowledge to enrich an in-
comprehensive set of training samples in a target domain via domain-transferred
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Fig. 1. DotFAN aims to enrich an anemic domain via identity-preserving face gener-
ation based on the knowledge, i.e., separated facial representation, distilled from data
in a rich domain.

augmentation. Specifically, we aim to train a composite network, which learns a
attribute-decomposed representation of faces from rich face datasets, so that this
network can generate face variants—each associating with a different pose angle,
a different facial expression, or a shading pattern due to different illumination
condition—of each face subject in an anemic dataset for the data augmentation
purpose. Hence, we propose in this paper a Domain-transferred Face Aug-
mentation Network (DotFAN), that aims to learn the distributions of the
faces of distinct identities in the feature space from rich training data so that it
can augment face data, including frontalized neutral faces, during inference by
transferring the knowledge it learned, as its design concept illustrated in Fig. 1.

The proposed DotFAN is a face augmentation approach through which any
identity class—no matter a minority class or not—can be enriched by synthesiz-
ing face samples based on the knowledge learned from rich face datasets of other
domains via domain transfer. To this end, DotFAN first learns a facial represen-
tation from rich datasets to decompose the face information into essential facial
attribute codes that are vital for identity identification and face manipulation.
Then, exploiting this attribute-decomposed facial representation, DotFAN can
generate synthetic face samples neighboring to the input faces in the sample
space so that the diversity of each face-identify class can be significantly en-
hanced. As a result, the performance of a face recognition model trained on the
enriched dataset can be improved as well.

Utilizing two auxiliary subnetworks, namely a data-driven face-expert model
(FEM) [4, 5] and a model-assisted face shape regressor (FSR), DotFAN operates
in a model-assisted data-driven fashion. FEM is a purely data-driven subnet-
work pretrained on a domain rich in face identities, whereas FSR is driven by
a 3D face model and pretrained on another domain with rich poses and expres-
sions. Hence, FEM ensures that the synthesized variants of an input face are
of the same identity as the input, while FSR collaborating with illumination
code enables the model to generate faces with various poses, lighting (shading)
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conditions, and different expressions. In addition, inspired by FaceID-GAN [6],
we use a 3D face model (e.g., 3DMM [7]) to characterize face attributes related
to pose and expression with only hundreds of parameters. Thereby, the size of
FSR, and its training set of faces with labelled poses and expressions as well,
is largely reduced, making it realizable with a light CNN with a much reduced
number of parameters. Furthermore, the loss terms related to FEM and FSR
act as regularizers during the training stage. This design prevents DotFAN from
common issues in data-driven approaches, e.g. overfitting due to small training
dataset.

Moreover, DotFAN is distinguishable from FaceID-GAN because of following
reasons. First, based on a 3-player game strategy, FaceID-GAN regards its face-
expert model as an additional discriminator that needs to be trained jointly
with its generator and discriminator in an adversarial training manner. Because
its face-expert model assists its discriminator rather than its generator, FaceID-
GAN guarantees only the upper-bound of identity-dissimilarity. Also, this design
may prevent FaceID-GAN’s face expert model from pretraining and impede the
whole training speeds. Furthermore, since it cannot be pretrained on a rich-
domain data, this makes it difficult to transfer knowledge from a rich dataset
to another in an on-line learning manner. On the contrary, DotFAN regards its
FEM as a regularizer to guarantee that the identity information is not altered
by the generator. Accordingly, FEM can be pretrained on a rich dataset and
play a role of an inspector in charge of overseeing identity-preservability. This
design not only carries out the identity-preserving face generation task, but also
stabilizes and speeds up the training process by not intervening the competition
between generator and discriminator. DotFAN has four primary contributions.

– We are the first to propose a domain-transferred face augmentation scheme
that can easily transfer the knowledge distilled from a rich domain to an
anemic domain, while preserving the identity of augmented faces in the target
domain.

– DotFAN provides a learning-based universal solution for the Few-Face prob-
lem. Specifically, i) when a face recognizer is re-trainable, DotFAN enriches
the Few-Face Set by data augmentation, and then the recognizer can be
re-trained on the enriched set to improve its performance; and, ii) if the face
recognizer is pretained on an incomprehensive dataset (e.g., with mainly
frontal faces and/or neutral illumination) and is NOT re-trainable, DotFAN
can assist the recognizer by frontalizing/neutralizing a to-be-recognized face.

– Through a concatenation of facial attribute codes learned separately from
existing face datasets, DotFAN offers a unique unified framework that can
incorporate prominent face attributes (pose, illumination, shape, expression)
for face recognition and can be easily extended to other face related tasks.

– DotFAN well beats the state-of-the-arts by a significant gain margin in face
recognition application with small-size training data available. This makes
it a powerful tool for low-shot learning applications.



4 H.-C. Shao and C.-W. Lin et al.

2 Related Work

Recently, various algorithms have been proposed to address the issue of small
sample size with dramatic variations in facial attributes in face recognition [8–
11]. This section reviews works on GAN-based image-to-image translation, face
generation, and face frontalization/rotation techniques related to face augmen-
tation.
(A) GAN-based image-to-image translation:

GAN and its variants have been widely adopted in a variety of fields, includ-
ing image super-resolution, image synthesis, image style transfer, and domain
adaptation. DCGAN [12] incorporates deep CNNs into GAN for unsupervised
representation learning. DCGAN enables arithmetic operations in the feature
space so that face synthesis can be controlled by manipulating attribute codes.
The concept of generating images with a given condition has been adopted in
succeeding works, such as Pix2pix [13] and CycleGAN [14]. Pix2pix requires pair-
wise training data to derive the translation relationship between two domains,
whereas CycleGAN relaxes such limitation and exploits unpaired training in-
puts to achieve domain-to-domain translation. After CycleGAN, StarGAN [8]
addresses the multi-domain image-to-image translation issue. With the aids of a
multi-task learning setting and a design of domain classification loss, StarGAN’s
discriminator minimizes only the classification error associated to a known label.
As a result, the domain classifier in the discriminator can guide the generator to
learn the differences among multiple domains. Recently, an attribute-guided face
generation method based on a conditional CycleGAN was proposed in [9]. This
method synthesizes a high-resolution face based on an low-resolution reference
face and an attribute code extracted from another high-resolution face. Conse-
quently, by regarding faces of the same identity as one sub-domain of faces, we
deem that face augmentation can be formulated as a multi-domain image-to-
image translation problem that can be solved with the aid of attribute-guided
face generation strategy.
(B) Face frontalization and rotation:

We regard the identity-preserving face rotation task as an inverse problem of
the face frontalization technique used to synthesize a frontal face from a face im-
age with arbitrary pose variation. Typical face frontalization and rotation meth-
ods synthesize a 2D face via 3D surface model manipulation, including pose angle
control and facial expression control, such as FFGAN [15] and FaceID-GAN [6].
Still, some designs utilize specialized sub-networks or loss terms to reach the
goal. For example, based on TPGAN [16], the pose invariant module (PIM) pro-
posed in [17] contains an identity-preserving frontalization sub-network and a
face recognition sub-network; the CNN proposed in [18] establishes a dense cor-
respondence between paired non-frontal and frontal faces; and, the face normal-
ization model (FNM) proposed in [5] involves a face-expert network, a pixel-wise
loss, and a face attention discriminators to generate a faces with canonical-view
and neutral expression. Finally, some methods approached this issue by means of
disentangled representations, such as DR-GAN [19] and CAPG-GAN [20]. The
former utilizes an encoder-decoder structure to learn a disentangled representa-
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Fig. 2. Data flow of DotFAN’s training process. FEM and FSR are independently
pre-trained subnetworks, whereas E, G, and D are trained as a whole. f̃p and f̃l
denote respectively a pose code and an illumination code randomly given in the training
routine; and, fl is the ground-truth illumination code provided by the training set. For
inference, the data flow begins from x and ends at G(x, f̃). Note that f̃ = [lx, fid, f̃p, f̃l]
and f = [E(G(x, f̃)), Φfem(G(x, f̃)), fp, fl].

tion for face rotation, whereas the latter adopts a two-discriminator framework
to learn simultaneously pose and identity information.

(C) Data augmentation for face recognition:
To facilitate face recognition, there are several face normalization and data aug-
mentation methods. Face normalization methods aim to align face images by
removing the volatility resulting from illumination variations, changes of facial
expressions, and different pose angles [5], whereas the data augmentation method
attempts to increase the richness of face images, often in aspects of pose angle
and illumination conditions, for the training routine. To deal with illumination
variations, conventional approaches utilized either physical models, e.g. Retinex
theory [21], or 3D reconstruction strategy to remove/correct the shadow on a
2D image [22, 23]. Moreover, to mitigate the influence brought by pose angles,
two categories of methods were proposed, namely pose-invariant face recognition
methods and face rotation methods. While the former category focuses on learn-
ing pose-invariant features from a large-scale dataset [24, 25], the latter category,
including face frontalization techniques, aims to learn the relationship between
rotation angle and resulting face image via a generative model [15–17, 19, 20,
6]. Because face rotation methods are designed to increase the diversity of the
view-points of face image data, they are also beneficial for augmentation tasks.

Based on these meticulous designs, DotFAN is implemented as an extension
of StarGAN, involving an encoder-decoder framework and two sub-networks for
learning attribute codes separately, and triggered by several loss terms, including
reconstruction loss and domain classification loss, as will be elaborated later.
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3 Domain-Transferred Face Augmentation

DotFAN is a framework to synthesize face images of one domain based on the
knowledge, i.e., attribute-decomposed facial representation, learned from others.
For a given input face x, the generator G of DotFAN is trained to synthesize a
face G(x, f) based on an input attribute code f comprising i) a general latent
code lx = E(x) extracted from x by the general facial encoder, ii) an identity
code fid indicating the face identity, iii) an attribute code fp describing facial
attributes including pose angle and facial expressions, and iv) an illumination
code fl. Through this design, a face image can be embedded via a concatenation
of several attribute codes, i.e., f = [lx, fid, fp, fl]. Fig. 2 depicts the flow-diagram
of DotFAN, and each component will be elaborated in following subsections.

3.1 Attribute-Decomposed Facial Representation

To obtain a decomposed representation, the attribute code f used by DotFAN
for generating face variants is derived collaboratively by a general facial encoder
E, a face-expert sub-network FEM, a shape-regression sub-network FSR, and an
illumination code fl. FEM and FSR are two well pre-trained sub-networks. FEM
learns to extract identity-aware features from faces (of each identity) with various
head poses and facial expressions, whereas FSR aims to learn pose features based
on a 3D model. The illumination code is a 14 × 1 one-hot vector specifying 1
label-free case (corresponding to data from CASIA [26]) and 13 illumination
conditions (associated with selected Multi-PIE dataset [27]).

(A) Face-Expert Model (FEM) Φfem: FEM Φfem, architecturally a ResNet-
50, enables DotFAN to extract and to transplant the face identity from an input
source to synthesized face images. Though conventionally face identity extraction
is considered as a classification problem and optimized by using a cross-entropy
loss, recent methods, e.g., CosFace [3] and ArcFace [2], proposed to adopt angular
information instead. ArcFace maps face features onto a unit hyper-sphere and
adjust between-class distances by using a pre-defined margin value so that a
more discriminative feature representation can be obtained. Using ArcFace’s
loss function, FEM ensures not merely a fast training speed for learning face
identity but also the efficiency in optimizing the whole DotFAN network.

(B) Face Shape Regressor (FSR): FSR, denoted as Φfsr, aims to extract face
attributes including face shape, pose, and expression. Based on a widely used
3D Morphable Model (3DMM [7]), we designed our FSR as a model-assisted
CNN rather than a fully data-driven network, which is complex and must be
trained on a large variety of labeled face samples for characterizing face attributes
because of the lack in prior knowledge. Because 3DMM can fairly and accurately
characterize the face attributes using only hundreds of parameters, the model
size of FSR can be significantly reduced. Firstly, we follow HPEN’s strategy
[28] to prepare ground-truth 3DMM parameters Θx of an arbitrary face x from
CASIA dataset [7]. Then, we train FSR via Weighted Parameter Distance Cost
(WPDC) [29] defined in Eq. (1), with a modified importance matrix, as shown



Domain-transferred Face Augmentation Network (DotFAN) 7

in Eq. (2).

Lwpdc =
(

Φfsr(x)−Θx

)t
W

(

Φfsr(x)−Θx

)

(1)

W = (wR, wT , wshape, wexp), (2)

where wR, wt3d , wshape, and wexp are distance-based weighting coefficients for the
Θx (consisting of a 9×1 vectorized rotation matrix R, a 3×1 translation vector
T , a 199× 1 vector αshape, and a 29× 1 αexp) derived by 3DMM. Note that the
facial attribute code fp = Φfsr(x) extracted by FSR is a 240×1 vector mimicking
Θx. While training DotFAN, we keep αshape’s counterpart—representing facial
shape—in fp unchanged, and we replace fp’s other code segments corresponding
to translation T , rotation R, and expression αexp by arbitrary values.
(C) General facial encoder E and illumination code fl:
E is used to capture other features, which cannot be represented by shape and
identity codes, on a face. fl is a one-hot vector specifying the lighting condition,
based on which our model synthesizes a face. Note that because CASIA has no
shadow labels, for fl of a face from CASIA, its former 13 entries are set to be
0’s and its 14th entry f casia

l = 1; this means to skip shading and to generate a
face with the same illumination setting and the same shadow as the input.

3.2 Generator

The generator G takes an attribute code f = [lx, fid, fp, fl] as its input
to synthesize a face G(x, f). Described below are loss terms composing the loss
function of our generator.
(A) Reconstruction loss:
In our design, we exploit a reconstruction loss to retain face contents after per-
forming two transformations dual to each other. That is,

Lrec = ‖G
(

G(x, f̃), f)
)

− x‖22/N , (3)

where N is the number of pixels, G(x, f̃) is a synthetic face derived according
to an input attribute code f̃ . This loss guarantees our generator can learn the
transformation relationship between any two dual attribute codes.
(B) Pose-symmetric loss:
Based on a common assumption that a human face is symmetrical, a face with
an x◦ pose angle and a face with a −x◦ angle should be symmetric about the 0◦

axis. Consequently, we design a pose-symmetric loss based on which DotFAN can
learn to generate ±x◦ faces from either training sample. This pose-symmetric
loss is evaluated with the aid of a face-mask M(·), which is defined as a function
of 3DMM parameters predicted by FSR and makes this loss term focus on the
face region by filtering out the background, as described below:

Lsym = ‖M(f̂−) ·
(

G(x, f̂−)− x̂−
)

‖22/N . (4)

Here, f̂− = [lx, fid, f̂
−

p , fl], in which f̂−

p = Φfsr(x̂
−), and the other three at-

tribute codes are extracted from x. Additionally, x̂− is the horizontally-flipped



8 H.-C. Shao and C.-W. Lin et al.

version of x. In sum, this term measures the L2-norm of the difference between a
synthetic face and the horizontally-flipped version of x within a region-of-interest
defined by a mask M .

(C) Identity-Preserving Loss:
We adopt the following identity-preserving loss to ensure that the identity code
of a synthesized face G(x, f̃) is identical to that of input face x. That is,

Lid = ‖Φfem(x)− Φfem

(

G(x, f̃)
)

‖22/N1, (5)

where N1 denotes the length of Φfem(x).

(D) Pose-consistency loss:
This term guarantees that the pose and expression feature extracted from a
synthetic face is consistent with f̃p used to generate the synthetic face. That is,

Lpose = ‖f̃p − Φfsr

(

G(x, f̃)
)

‖22/N2, (6)

where N2 denotes the length of f̃p.

3.3 Discriminator

By regarding faces of the same identity as one sub-domain of faces, the task of
augmenting faces of different identities becomes a multi-domain image-to-image
translation problem addressed in StarGAN [8]. Hence, we exploit an adversarial
loss to make augmented faces photo-realistic. To this end, we use the domain
classification loss to verify if G(x, f̃) is properly classified to a target domain label
fl, which we used to specify the illumination condition of G(x, f̃). In addition,
in order to stabilize the training process, we adopted the loss design used in
WGAN-GP [30]. Consequently, these two loss terms can be expressed as follows:

LD
adv = Dsrc(G(x, f̃))−Dsrc(x) + λgp ·

(

‖∇x̂Dsrc(x̂)‖2 − 1
)2

LG
adv = −Dsrc(G(x, f̃)), (7)

where λgp is a trade-off factor for the gradient penalty, x̂ is uniformly sampled

from the linear interpolation between x and synthesizedG(x, f̃), andDsrc reflects
a distribution over sources given by the discriminator; and,

LD
cls = − logDcls(fl|x)

LG
cls = − logDcls(f̃l|G(x, f̃)), (8)

where fl is the ground-truth illumination code of x, and f̃l is the illumination
code embedded in f̃ .

In sum, the discriminator aims to produce probability distributions over both
source and domain labels, i.e., D : x → {Dsrc(x), Dcls(x)}. Empirically,
λgp = 10.
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3.4 Full objective function

In order to optimize the generator and alleviate the training difficulty, we pre-
trained FSR and FEM with corresponding labels. Therefore, while training the
generator and the discriminator, no additional label is needed. The full objective
functions of DotFAN can be expressed as:

LG = LG
adv + LG

cls + Lid + Lpose + Lsym + Lrec

LD = LD
adv + LD

cls. (9)

Two loss terms in LD are equal-weighted; and, the weighting factors of terms in
LG in turn are 1, 1, 8, 6, 5, and 5. Note that the alternative training of generator
and discriminator was performed with ratio 1 : 1.

4 Experimental Results

4.1 Dataset

DotFAN is trained jointly on CMU Multi-PIE [27] and CASIA [26]. Multi-
PIE contains more than 750, 000 images of 337 identities, each with 20 different
sorts of illumination and 15 different poses. We select images of pose angles
ranging in between ±45◦ and illumination codes from 0 to 12 to form our first
training set, containing totally 84, 000 faces. From this training set, DotFAN
learns the representative features for a wide range of pose angles, illumination
conditions, and resulting shadows. Our second dataset is the whole CASIA set
that contains 494, 414 images of 10, 575 identifies, each having about 50 images
of different poses and expressions. Since CASIA contains a rich collection of face
identities, it helps DotFAN learn features for representing identities.

To evaluate the performance of DotFAN on face synthesis, four additional
datasets are used: LFW [31], IJB-A [32], SurveilFace-1, and SurveilFace-
2. LFW has 13, 233 images of 5, 749 identities; IJB-A has 25, 808 images of 500
identities; SurveilFace-1 has 1, 050 images of 73 identities; and SurveilFace-2 con-
tains 1, 709 images of 78 identities. We evaluate the performance of DotFAN’s
face frontalization on LFW and IJB-A. Besides, because faces in two Surveil-
Face datasets are taken in uncontrolled real working environments, they are
contaminated by strong backlight, motion blurs, extreme shadow conditions, or
influences from various viewpoints. Hence, they mimic the real-world conditions
and thus are suitable for evaluating the face augmentation performance. The
two SurveilFace sets are private data provided by a video surveillance provider.
We will make them publicly available after removing personal labels.

We exploit CelebA to simulate the data augmentation process. CelebA con-
tains 202, 599 images of 10, 177 identities with 40 kinds of diverse binary facial
attributes. We randomly select a fixed number of images of each face identity
from CelebA to form our simulation set, called “sub-CelebA” and conducted
data augmentation experiments on both CelebA and sub-CelebA by using Dot-
FAN.
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(a)

(b)

(c)

(d)

(e)

Fig. 3. Synthesized faces for face samples from different datasets generated by DotFAN.
The left-most column shows the inputs with random attributes (e.g., poses, expressions,
and motion blurs). The top-most row illustrates 3D templates with specific poses and
expressions. To guarantee the identity information of each synthetic face is observable,
columns 3–11 show shadow-free results, and columns 2 and 12 show faces with shadows.
(a) 3D templates. (b) CelebA, (c) LFW, (d) CFP, and (e) SurveilFace.

Moreover, we demonstrate all face images in grayscale because of two reasons.
First, two SurveilFace datasets are all grayscale. Second, DotFAN was trained
partially on Multi-PIE in which images have reddish color-drift, so the same
color-drift may occur on faces generated by DotFAN. Because such color-drift
never degrades the recognition accuracy, we decided not to demonstrate color
faces to avoid misunderstanding.

4.2 Implementation Details

Before training, we align the face images in the Multi-PIE and CASIA by
MTCNN [33]. Structurally, our FEM is obtained by Resnet-50 pretained on
MS-Celeb-1M [34], and FSR is implemented by a MobileNet [35] pretained on
CASIA. To train DotFAN, each input face is resized to 112×112. Both generator
and discriminator exploit Adam optimizer [36] with β1 = 0.5 and β2 = 0.999.
The total number of training iterations is 420, 000 with a batch-size of 28, and
the number of training epochs is 12. The learning rate is initially set to be 10−4

and begins to decay after the 6-th training epoch.
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4.3 Face Synthesis

We verify the efficacy of DotFAN through the visual quality of i) face frontal-
ization and ii) face rotation results.

(A) Face frontalization: First, we verify if the identity information extracted
from a frontalized face, produced by DotFAN, is of the same class as the identity
of a given source face. Following [6], we measure the performance by using a face
recognition model trained on MS-Celeb-1M. Next, we conduct frontalization
experiments on LFW. Table 1 shows the comparison of face verification results
of frontalized faces. This experiment set validates that i) compared with other
methods, DotFAN achieves comparable visual quality in face frontalization, ii)
shadows can be effectively removed by DotFAN, and iii) both both DotFAN and
casia-DotFAN (i.e., a DotFAN trained only on CASIA dataset) outperform other
methods in terms of verification accuracy, especially in the experiment on IJB-A
shown in Table 1(b), where DotFAN reports a much better TAR, i.e., 89.3% on
FAR@0.001 and 93.7% on FAR@0.01, than existing approaches.

(B) Face Rotation Fig. 3 demonstrates DotFAN’s capability in synthesizing
faces of given attributes, including pose angles, facial expressions, and shadows,
while retaining the associated identities. The source faces presented in the left-
most column in Fig. 3 come from four datasets, i.e., CelebA, LFW, CFP [37],
and SurveilFace. CelebA and LFW are two widely-adopted face datasets; CFP
contains images with extreme pose angles, e.g., ±90◦; and, SurveilFace contains
faces of variant illumination conditions and faces affected by motion-blurs. This
experiment shows that DotFAN can stably synthesize visually-pleasing face im-
ages based on 3DMM parameters describing 3D templates. Finally, Fig. 4 shows
some synthesized faces with shadows assigned with four different illumination
codes. Note that all synthesized faces presented in this paper are produced by
the same DotFAN model without manually data-dependent modifications.

Table 1. Verification Table. (a) Verification accuracy on LFW. (b) True-Accept-Rate
(TAR) of verifications on IJB-A. Note that while DotFAN has an FEM trained on MS-
Celeb-1M in our design, the FEM of casia-DotFAN was trained on CASIA dataset.

(a) (b)

Method Verification Accuracy Method FAR@0.01 FAR@0.001

HPEN [28] 96.25±0.76 PAM [24] 73.3±1.8 55.2±3.2
FF-GAN [15] 96.42±0.89 DCNN [38] 78.7±4.3 -

FaceID-GAN [6] 97.01±0.83 DR-GAN [19] 77.4±2.7 53.9±4.3
FF-GAN [15] 85.2±1.0 66.3±3.3

FaceID-GAN [6] 87.6±1.1 69.2±2.7

casia-DotFAN 98.55±0.52 casia-DotFAN 90.5±0.7 82.3±2.4
DotFAN 99.18±0.39 DotFAN 93.7±0.5 89.3±1.0
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Fig. 4. Face augmentation examples (CelebA) containing augmented faces with 4 illu-
mination conditions and 7 poses.

Fig. 5. Comparison of face verification ac-
curacy on LFW trained on different aug-
mented dataset. The horizontal spacing
highlights the size of raw training dataset
sampled from CelebA.

(a)

(b)

(c)

(e)

(f)

(d)

Fig. 6. Ablation study on loss terms. (a)
Full loss. (b) w/o Lid, (c) w/o Lcls, (d) w/o
Lrec, (e) w/o Lpose, and (f) w/o Lsym.

4.4 Face Augmentation
Because DotFAN is a face augmentation network, experiments in this subsection
were designed to show how face recognition accuracy can be improved with
DotFAN-augmented training data. We adopted MobileFaceNet to be our face
recognition network rather than other SOTAs because it’s suitable to be deployed
on mobile/embedded devices (less than 1M parameters) for small/medium sized
real-world applications.

To evaluate the comprehensiveness of domain-transferred augmentation by
DotFAN, we perform data augmentation on the same dataset by using DotFAN,
FaceID-GAN, and StarGAN first; then, we compare the recognition accuracy
of different MobileFaceNet models [39], each trained on an augmented dataset,
by testing them on LFW and SurveilFace. StarGAN used in this experiment
is trained on Mutli-PIE that is rich in illumination conditions; meanwhile, the
FaceID-GAN is trained on CASIA to learn pose and expression representations.

Table 2 summarizes the results of this experiment set. We interpret the re-
sults focusing on Sub-experiment(a). In Sub-experiment(a), we randomly select 3
faces of each identity from CelebA to form the RAW training set, namely Sub-
CelebA(3), leading to about 30, 000 training samples in raw Sub-CelebA(3).
The MobileFaceNet trained on raw Sub-CelebA(3) achieves a verification accu-
racy of 83.1% on LFW, a true accept rate (TAR) of 20.5% at FAR = 0.001
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Table 2. Performance comparison of face recognition models trained on different
datasets. Here, Sub-CelebA(x) denotes a subset formed by randomly selecting x

images of each face subject from CelebA

Method LFW SurveilFace-1 SurveilFace-2
ACC AUC @FAR=0.001 @FAR=0.01 AUC @FAR=0.001 @FAR=0.01 AUC

(a) Sub-CelebA(3) (totally 30, 120 images)
RAW 83.1 90.2 20.5 34.4 83.2 18.0 33.3 84.8

StarGAN 85.9 92.5 25.1 39.6 87.5 27.4 46.7 91.4
FaceID-GAN 92.5 97.6 34.6 53.5 92.8 32.3 54.0 94.3
Proposed 1x 93.6 98.1 35.7 56.2 93.6 34.7 57.8 95.0
Proposed 3x 94.7 98.7 36.8 58.3 94.6 36.5 60.8 95.6

(b) Sub-CelebA(8) (totally 75, 796 images)
RAW 94.0 98.5 37.8 58.7 94.4 38.3 61.0 95.2

StarGAN 94.3 98.5 42.6 60.7 94.9 42.8 65.6 95.8
FaceID-GAN 96.5 99.3 48.1 65.6 96.0 45.7 67.9 96.8
Proposed 1x 97.3 99.5 53.2 71.2 97.0 49.1 72.2 97.2
Proposed 3x 97.2 99.5 53.2 68.9 96.9 47.3 70.0 97.1

(c) Sub-CelebA(13) (totally 116, 659 images)
RAW 96.3 99.1 47.4 67.8 96.2 43.5 67.0 96.5

StarGAN 96.7 99.3 48.3 68.1 96.7 46.3 70.0 96.7
FaceID-GAN 97.2 99.5 53.3 71.3 97.0 50.2 72.3 97.4
Proposed 1x 97.6 99.6 56.2 75.1 97.7 50.4 73.9 97.7
Proposed 3x 97.5 99.7 56.7 75.5 97.7 53.9 72.2 97.8

(d) CelebA (full CelebA dataset, 202, 599 images)
RAW 97.6 99.6 53.5 73.8 97.7 48.7 73.0 97.5

StarGAN 97.7 99.6 55.0 74.2 97.7 53.0 73.8 97.6
FaceID-GAN 98.0 99.7 57.6 76.4 98.1 54.1 76.5 98.0
Proposed 1x 98.3 99.8 62.4 80.9 98.4 57.1 76.7 98.1
Proposed 3x 98.4 99.7 61.4 78.9 98.2 54.7 77.8 98.0

on SurveilFace-1, and a TAR of 18.0% at FAR = 0.001 on SurveilFace-2. After
giving each face in raw Sub-CelebA(3) a random facial attribute f̃p and a ran-

dom illumination code f̃l to generate a new face and thus to double the size of
the training set via DotFAN, the verification accuracy on LFW becomes 93.6%,
and the TAR values on SurveilFace datasets are all nearly doubled, as shown
in the row named Proposed 1x. This shows DotFAN is effective in face data
augmentation and outperforms StarGAN and FaceID-GAN significantly. Fur-
thermore, when we augment about 90, 000 additional faces to quadruple the size
of training set, i.e., Proposed 3x, we have only a minor improvement in verifi-
cation accuracy compared to Proposed 1x. This fact reflects that the marginal
benefit a model can extract from the data diminishes as the number of samples
increases when there is information overlap among data, as is what reported in
[40]. Consequently, Table 2 and Fig. 5 reveal following remarkable points.

•First, by integrating attribute controls on pose angle, illuminating condition,
and facial expression with an identity-preserving design, DotFAN outperforms
StarGAN and FaceID-GAN in domain-transferred face augmentation tasks.
• Second, DotFAN’s results obey the law of diminishing marginal utility in Eco-
nomics4 [41], as demonstrated in all (Proposed 1x, Proposed 3x) data pairs.
Take LFW-experiment in Table 2(a) for example. An additional one-unit con-
sumption of training data (1x-augmentation) brings an accuracy improvement,
i.e., marginal utility, of 93.6%-83.1%=10.5%; when two more additional units

4 This law primarily says that the marginal utility of each homogeneous unit decreases
as the supply of units increases, and vice versa.
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(3x-augmentation) are given, the improvement of accuracy is only 94.7%-93.6%=
1.1%. Therefore, a 1x procedure is adequate to enrich a small dataset, and our
experiments also show that the Proposed 3x procedure seems to reach the
upper-bound of data richness.
•Third, although the improvement in verification accuracy decreases as the size
of raw training set increases, DotFAN achieves a significant performance gain
on augmenting a small-size face training set, as demonstrated in all (RAW, Pro-
posed 1x) data pairs.

4.5 Ablation Study

We then verify the effect brought by each loss term. Fig. 6 depicts the faces
generated by using different combinations of loss terms. The top-most row shows
faces generated with the full generator loss LG in Eq. (9), whereas the remaining
rows respectively show synthetic results derived without one certain loss term.

As shown in Fig. 6(b), without Lid, DotFAN fails to preserve the identity
information although other facial attributes can be successfully retained. By con-
trast, without Lcls, DotFAN cannot control the illumination condition, and the
resulting faces all share the same shade (see Fig. 6(c)). These two rows evidence
that Lcls and Lid are indispensable in DotFAN design. Moreover, Fig. 6(d) shows
some unrealistic faces, e.g., a rectangular-shaped ear in the frontalized face; ac-
cordingly, Lrec is important for photo-realistic synthesis. Finally, Fig. 6(e)–(f)
show that Lpose and Lsym are complementary to each other. As long as either
of them functions, DotFAN can generate faces of different face angles. However,
because Lsym is designed to learn only the mapping relationship between +x◦

face and −x◦ face by ignoring background outside the face region, artifacts may
occur in the background region if Lsym works solely (see Fig. 6(e)).

5 Conclusion

We proposed a Domain-transferred Face Augmentation network (DotFAN) for
generating a series of variants of an input face image based on the knowledge of
attribute-decomposed face representation distilled from huge datasets. DotFAN
is designed in StarGAN’s style with two extra subnetworks to learn separately
the facial attribute codes and produce a normalized face so that it can effec-
tively generate face images of various facial attributes while preserving identity
of synthetic images. Moreover, we proposed a pose-symmetric loss through which
DotFAN can synthesize a pair of pose-symmetric face images directly at once.
Extensive experiments demonstrate the effectiveness of DotFAN in augmenting
small-sized face datasets and improving their within-subject diversity. As a re-
sult, a better face recognition model can be learned from an enriched training
set derived by DotFAN.
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