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Abstract. A number of scene text in natural images have irregular
shapes which often cause significant difficulties for a text detector. In
this paper, we propose a robust scene text detection method based on
a parameterized shape modeling and regression scheme for text with
arbitrary shapes. The shape model geometrically depicts a text region
with a polynomial centerline and a series of width cues to capture global
shape characteristics (e.g. smoothness) and local shapes of the text re-
spectively for accurate text localization, which differs from previous text
region modeling schemes based on discrete boundary points or pixels. We
further propose a text detection network PolyPRNet equipped with an
iterative regression module for text’s shape parameters, which effectively
enhances the detection accuracy of arbitrary-shaped text. Our method
achieves state-of-the-art text detection results on several standard bench-
marks.

1 Introduction

Scene text carries useful semantic information for various content-based image
applications such as image parsing, classification, and retrieval. Due to the com-
plexity and wide variation of scene text’s appearance and various contextual
interferences such as complicated background and low contrast, to reliably de-
tect scene text in natural images remains a challenging task.

Traditional scene text detection methods [1–3] usually work in a bottom-up
manner which first localizes candidate character regions in the image with man-
ually designed features and some classifiers and then combines them into text.
The multi-stage detection pipeline often keeps these methods from achieving
overall optimized performance.

More recent scene text detection methods [4–8] often employ deep neural net-
works such as convolutional neural network (CNN) and recurrent neural network
(RNN) to automatically learn effective representations of text and predict text
candidates in an end-to-end manner, which significantly enhance the detection
performance compared to traditional methods.

Compared to the detection performance on regular scene text which has been
continuously improved to a rather high level, there is still large improvement
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space in the detection of arbitrarily shaped scene text such as multi-oriented
and curved ones due to their largely varied irregular appearances. Accordingly,
the focus of increasing researches [5, 6, 8, 7, 9] has turned to it and a number of
promising results have been attained. On the other hand, most existing methods
employ discrete boundary points or a pixel mask to depict a text region, and few
efforts have been made on devising more effective shape models of text to capture
its distinctive geometric characteristics beyond a general connected object, which
limits potential performance improvements of existing text detection methods.

In this paper, we propose a robust scene text detection method based on a
novel parameterized geometric shape modeling and iterative regression scheme
for arbitrary-shaped text. The key contributions of our work are summarized as
follows:

– We propose a geometric, parameterized shape model for text with arbitrary
shapes. The model depicts one text region with a polynomial centerline that
captures global shape characteristics such as smoothness of the text as an
artificial object and a series of width cues capturing local text shape, which
provides effective shape constraints and sufficient flexibility for accurate lo-
calization of the text region. The model essentially differs from the pixels-
or boundary points-based representations of text region employed by most
previous text detection methods.

– Based on the parameterized text shape model, we take the text detection
task as a conditional shape parameter regression problem. Accordingly, we
propose an end-to-end trainable detection network PolyPRNet that intro-
duces an iterative shape parameter regression module on the basis of back-
bone networks, which iteratively refines the shape parameters of a potential
text candidate for enhanced detection accuracy. We also devise an effective
labeling scheme and corresponding loss functions for training the text detec-
tion network on the basis of the boundary points based annotations of text
provided in most datasets.

– The proposed text detection method is evaluated on several challenging
benchmark datasets and achieves state-of-the-art text detection results.

2 Related Work

Generally, existing scene text detection methods can be divided into two main
categories: traditional methods employing multi-stage detection pipelines, and
recent methods based on end-to-end deep neural networks.

Most traditional scene text detection methods [1, 2, 10, 3, 11] first employed
connected component analysis or sliding windows to extract character candidates
from the image, and then classified them to either text or non-text using some
classifiers and finally grouped characters into text. Due to the bottom-up step-
wise detection pipelines employed, however, these methods are usually difficult
to be optimized holistically to attain state-of-the-art detection performance.

Recently, with deep learning techniques being extensively employed in diverse
computer vision problems, a number of scene text detectors based on various
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deep neural network models such as CNN and RNN have emerged, which can be
roughly classified into two categories: segmentation-based and regression-based.

Segmentation-based methods localize text regions in an image by inferring
the text/non-text label of every pixel using some fully convolutional networks
(FCN) [12]. For example, in [13], a multiresolution FCN was proposed for text
detection, which classified pixels into three categories — non-text, text border,
and text to help separate adjacent text. TextSnake [5] depicted one text instance
by a sequence of overlapping disks centered at symmetric axes with variable ra-
diuses and orientations, and then an FCN-based network was used to predict
score maps of text center line, text region, and geometry attributes. PSENet [6]
depicted text instances with kernels of different scales and, starting from the min-
imal scale, gradually expanded the kernel to separate and detect adjacent text
instances utilizing multi-scale segmentation maps. LOMO [7] iteratively refined
detected text proposals to handle long text and introduced a shape expression
module to generate more accurate representation of text for detection. CRAFT
[8] first localized individual character regions by inferring both character region
probability and affinity probability between adjacent characters and then linked
the detected characters belonging to one word as final detection results.

Regression-based methods first employ some object detection frameworks
such as Faster R-CNN [14] and SSD [15] to generate a set of region proposals,
and then predict text candidates by regressing text region parameters based on
the proposals. For example, TextBoxes [16] extended SSD with text-box layers,
in which the anchor scales and convolution kernel shapes were modified to better
adapt to the text detection task. EAST [4] and Direct Regression [17] exploited
fully convolutional networks to regress candidate text boxes based on the pre-
dicted offsets from each pixel to the box boundaries. In [9], RNN was exploited
to predict a pair of boundary points of one potential text region at each time
step until the stop label, which allowed the method to handle text regions with
arbitrary shapes and adaptive number of boundary points.

Different from most state-of-the-art segmentation-based detection models for
arbitrary-shaped text [5, 18, 6, 8, 7, 19], we geometrically depict and regress one
text region with a parametric shape model which effectively enhances the detec-
tion performance for text with arbitrary shapes.

3 Approach

In this work, we propose a novel polynomial-based parameterized shape modeling
and iterative regression scheme for arbitrary-shaped text and, on the basis of it,
a robust end-to-end scene text detection network PolyPRNet.

3.1 Polynomial-Based Parameterized Shape Model of Text Region

Existing scene text detection methods usually employ one of two different schemes
to model a text region — a quadrangular or polygonal boundary depicted by
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Fig. 1. Illustration of the proposed polynomial-based shape model of text region (left)
and an example of text region (right) depicted by the shape model.

discrete vertices, or a set of pixels constituting the text region in a segmenta-
tion manner. Both schemes encode only local or general (e.g., connectedness)
constraints between vertices or pixels and do not precisely capture distinctive
holistic shape characteristics of text as one specific class of man-made objects.

In this work, we propose a parameterized text region modeling scheme that
geometrically depicts the shape of one text with a polynomial centerline curve
and a series of width cues along the centerline as shown in Fig. 1. Specifically, the
n-polynomial centerline of a text region (n denoting the degree of the polyno-
mial), which depicts the global layout and smoothness of the text, is formulated
as:

y = an × xn + an−1 × xn−1 + · · ·+ a0 (1)

where an, an−1, . . . , a0 are coefficients of respective polynomial terms, and x and
y denote the coordinates of a point on the centerline.

Different from [20] that similarly employs a polynomial text centerline (for
generating control points used to rectify text shape), as shown in Fig. 1, we
further introduce a series of k path points located on the medial axis of the text
region as the explicit constraints for the polynomial centerline — it should fit
the path points as precisely as possible (as described in Section 3.2 and 3.5),
which help attain more accurate prediction of centerline parameters.

Besides the centerline capturing the global shape characteristics of the text,
we further depict the width and orientation of each local part of the text along
the centerline with a series ofm width lines as shown in Fig. 1. A width line is de-
picted by its intersection point pi with the centerline, which is termed a sampling
point with coordinates (xi, yi), and a pair of parameters lai and lbi indicating its
length above and below the centerline respectively and a parameter θi indicat-
ing its angle relative to y-axis. Unlike [20] employing a single width parameter,
the two separate width parameters (lai and lbi ) allows the shape model to depict
text with different-sized parts on the two sides of the centerline such as those
comprising mixed upper and lower case characters and helps keep the smooth-
ness of centerline. Moreover, the explicit depiction of the sampling points saves
the computation of intersection points between the polynomial centerline and
width lines to facilitate constructing a differentiable network with easier gradi-
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Fig. 2. Illustration of label generation for the text shape representation model.

ent computation. The polynomial parameters {an, an−1, . . . , a0} of the centerline
and the parameters {xi, yi, l

a
i , l

b
i , θi} of the set of width lines together depict the

geometric model of the text region.
Note the above parameterization scheme of text region applies to mainly

horizontal text, for vertical ones, we exchange the roles of y and x in the scheme
for effective representation of the text region. Accordingly, we employ two sepa-
rate sets of shape model parameters for horizontal and vertical text respectively,
which more accurately capture distinct characteristics of text in two different
orientations for enhanced detection accuracy.

3.2 Label Generation

To derive training labels for the parameters of the proposed polynomial-based
text shape model from the common polygonal annotations of text regions pro-
vided by most text datasets, we propose an effective labeling scheme for arbitrary
snake-shaped text instances, i.e., text not forking into multiple branches.

Specifically, as shown in Fig. 2, given the polygon boundary of one text
region provided by the dataset, we first divide it into four connected boundary
segments: two line segments marking the head and tail positions of the text,
and two polylines marking the upper and lower boundaries of the text. Next, we
evenly sample a series of k contour points on the upper and lower boundaries
of the text region respectively, which cover the total length of each boundary
with equal spacing. Then, we connect every pair of two corresponding contour
points on the upper and lower boundaries with a line segment denoted by si=1..k,
and take its midpoint as one path point which is supposed to be located on the
centerline of the text region. We further sample a set of m width lines from the
line sequence {s1, · · · , sk}, taking s1 and sk as the first and the last width lines
respectively. We then take the midpoint (also a path point) of each width line
as one sampling point and label its two endpoints as boundary points.

Moreover, we assign each text region a direction label represented as a 2-
dim one-hot vector d, which is set to horizontal (d0 = 1) if the angle between
the text’s main axis (i.e., the line connecting the first and the last path points)
and x-axis is less than 50 degrees, otherwise it is set to vertical (d1 = 1). To
accommodate text regions of varied sizes, we normalize the coordinates of all
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Fig. 3. Illustration of the architecture of the proposed text detection network.

points to the range [−0.5, 0.5] after generating the labels. Note that no informa-
tion other than standard annotations provided by the dataset is exploited in the
label generation process.

3.3 Network Architecture

We propose an end-to-end text detection network PolyPRNet on the basis of
the polynomial-based text shape model, which adopts a two-stage R-CNN based
framework as illustrated in Fig. 3.

In the first stage, the ResNet50 [21] and a Feature Pyramid Network (FPN)
[22] with a four-level feature pyramid are employed to extract multi-level fea-
ture maps from the input image, which are then used as the shared input to
subsequent network modules. Next, we employ the RPN network [14] to gener-
ate a set of text region proposals, and an RoIAlign operation [23], which evenly
splits input RoI feature maps into 16× 16 blocks, is applied on each proposal to
generate feature maps of fixed size which preserve the proposal’s exact spatial
location information.

In the second stage, we employ an R-CNN module with a bounding box
regression branch and a classification branch to refine the bounding box of a
text region proposal generated by RPN with more accurate location informa-
tion and assign it a text/non-text score. Specifically, in this work, we employ
a Cascade R-CNN [24] as the R-CNN module, which comprises three stages
with IoU thresholds {0.5, 0.55, 0.6} and loss weights {1, 0.5, 0.25} for each stage
respectively.

Given the text region proposals generated by RPN, we introduce a polynomial-
based shape parameter regression (PPR) module to infer the shape parameters
and direction of a potential text candidate based on the proposed parameterized
text shape model. Specifically, the feature maps of one text region proposal first
undergo a 3 × 3 convolutional layer followed by two groups of 3 × 3 convolu-
tional layers and 2× 2 max-pooling layers. Finally, two full-connected layers are
employed to predict the shape parameters of the candidate text region.
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Fig. 4. Illustration of the iterative shape parameter regression pipeline. The ’Parameter
Regression’ block is composed of the last two full-connected layers of the PPR module
for text shape parameter prediction. ⊕ denotes the addition operation. The black input
to ⊕ is the shape parameter values obtained in the previous iteration, and the grey
input is the predicted refinements to the parameter values. The output of ⊕ is the
updated parameter values of the current iteration.

3.4 Iterative Shape Parameter Regression

To help attain optimal regression of shape parameters of a text region, we employ
an iterative parameter regression pipeline as shown in Fig. 4. Specifically, with
the values of shape parameters being initialized to zero, in each iteration, the
parameter regression block takes the concatenation of the flattened feature maps
of a text region and the vector of current shape parameter values as input, and
predicts a refinement to be added to each current parameter value to generate its
updated value for the next iteration. This iterative shape parameter regression
process repeats until a predefined number (3 in this work) of refinement iterations
is reached, which yields the final shape parameter values of the text candidate.
Comparing the detection results shown in Fig. 4 with and without the iterative
refinement process, the iteration mechanism effectively improves the accuracy of
shape parameter regression.

3.5 Loss Functions

We define a multitask loss on each text region proposal as the sum of the loss Lrpn

for the RPN subnetwork [14], the loss Lrcnn for the Cascade R-CNN subnetwork
[24], and the loss Lppr for the PPR module in the proposed PolyPRNet:

L = λ1Lrpn + λ2Lrcnn + λ3Lppr (2)

where the weights λ1, λ2, and λ3 are set to 1.0 in this work.
Specifically, the loss Lppr is composed of the text region approximation loss

Lreg and the text direction classification loss Ldir:

Lppr = λ4Id∗

0
=1Lreg(ax, cx,Θx, lx,P

∗, c∗x,Θ
∗

x, l
∗

x,T
∗)

+λ4Id∗

1
=1Lreg(ay, cy,Θy, ly,P

∗, c∗y,Θ
∗

y, l
∗

y,T
∗)

+λ5Ldir(d,d
∗) (3)
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where, a denotes the vector of the predicted coefficients of the polynomial center-
line function defined by Eq. (1). c denotes the vector of predicted x/y coordinates
of the sampling points of a horizontal/vertical text, and Θ and l denote the vec-
tors of predicted angles and length of the width lines respectively. c∗, Θ∗, and l∗

are corresponding ground-truth. The subscript x and y indicate the associated
terms applying to horizontal and vertical text regions respectively. P∗ denotes
the vector of ground-truth path points that the predicted polynomial centerline
is supposed to pass through. T∗ denotes the vector of ground-truth boundary
points of the text region. Ldir(d,d

∗) is the binary cross-entropy loss between
the predicted text direction probability vector d and the ground-truth one-hot
direction vector d∗. I denotes the indicator function for the text direction. The
balancing weights λ4 and λ5 are set to 5.0 and 0.5 respectively.

The text region approximation loss Lreg measures the approximation accu-
racy of the predicted text region relative to the ground-truth annotation, which
is formulated as a combination of the approximation loss Lline

reg on the polynomial

centerline and the approximation loss Lwidth
reg on the width lines:

Lreg(a, c,Θ, l,P∗, c∗,Θ∗, l∗,T∗) = Lline
reg (a,P

∗)+Lwidth
reg (a, c,Θ, l, c∗,Θ∗, l∗,T∗)

(4)

The centerline approximation loss Lline
reg measures the fitting accuracy of the

predicted polynomial centerline (parameterized by a) against the ground-truth
path points P∗, which is formulated as:

Lline
reg (a,P

∗) = smoothL1(sum(|f(a,P∗)|)) (5)

f(a,P∗) =
[

an an−1 .. a0 −1
]













un
0 un

1 .. un
k

un−1
0 un−1

1 .. un−1
k

.. .. .. ..

u0
0 u0

1 .. u0
k

v0 v1 .. vk













(6)

smoothL1(x) =

{

0.5x2 if |x| < 1

|x| − 0.5 otherwise
(7)

where ui and vi correspond to the coordinates xi and yi of the ith path point in
P∗ respectively if d∗

0 ≥ d∗

1, otherwise they correspond to yi and xi.

The width line approximation loss Lwidth
reg is formulated as:

Lwidth
reg (a, c,Θ, l, c∗,Θ∗, l∗,T∗) = smoothL1(sum(|c− c∗|))

+smoothL1(sum(|Θ−Θ∗|)) + smoothL1(sum(|l− l∗|))

+smoothL1(sum(|T−T∗|)) (8)

where T denotes the vector of predicted boundary points, whose coordinates
are computed based on the predicted width line parameters Θ and l and the
predicted sampling point coordinates computed based on a and c.
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3.6 Inference

Given an input text image, each text region proposal generated by the RPN net-
work is first fed to the R-CNN module to obtain its accurate bounding box and
classification score. Then, proposals whose scores fall below 0.7 (0.65 in multi-
scale testing — see Section 4.4) are discarded, and non-maximum suppression
[25] with IoU threshold 0.4 is applied on the proposals to obtain a set of at most
200 detection boxes with highest scores, which are fed to the PPR module for
text region parameter prediction.

With the shape parameters predicted by the PPR module, we first determine
the direction of the text to be the one corresponding to the greater probability in
the predicted 2-dim direction vector. We then calculate the y coordinate of each
sampling point on the polynomial centerline of a horizontal text region according
to Eq. (1) given its predicted x coordinate — for a vertical text region, the roles
of y and x are exchanged. Finally, given the predicted parameters θi, l

a
i , and lbi

of a width line crossing the sampling point (xi, yi), we calculate the coordinates
of its two endpoints and further obtain the polygonal boundary of the text
region by sequentially connecting the endpoints of all width lines. Note that, for
datasets adopting quadrangular annotations of text, we calculate the minimal
area bounding rectangle of the predicted polygonal boundary of the text as the
final detection result.

4 Experiments

4.1 Dataset

We evaluate our scene text detection method on four challenging benchmark
datasets: TotalText, CTW1500, ICDAR2015, and ICDAR2017-MLT.

TotalText dataset [26] consists of 1255 and 300 images for training and
testing respectively, which contain multi-oriented and curved text instances,
each with a polygonal annotation comprising 10 vertices. CTW1500 dataset
[27] comprises 1000 training images and 500 testing images with a large number
of challenging long curved text. Each text is annotated by a polygon with 14
vertices. ICDAR2015 dataset [28] is composed of 1000 training images and
500 testing images, which contain accidental scene text instances with quad-
rangular annotations. ICDAR2017-MLT dataset [29] consists of 7200, 1800,
and 9000 images for training, validation, and testing respectively, which con-
tain multi-oriented, multi-scripting, and multi-lingual scene text instances with
quadrangular annotations.

We adopt the standard evaluation protocol for text detection, which measures
the detection performance by precision P , recall R, and f -measure F (i.e., the
harmonic mean 2∗P∗R

P+R
of P and R).

4.2 Implementation Details

We implement the proposed PolyPRNet on the basis of the PyTorch framework
and conduct the experiments on one NVIDIA Tesla V100 GPU.
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With the ResNet [21] backbone pre-trained on ImageNet dataset [30], we
train the whole detection network end-to-end using stochastic gradient descent
(SGD) with 0.0001 weight decay and 0.9 momentum and mini-batch of 10.

The training process comprises two stages: pre-training on a combined dataset
and fine-tuning on each dataset. The pre-training dataset is the same as that
employed in [6], which is composed of 10K images from ICDAR2015 dataset’s
training set and the training and validation sets of ICDAR2017-MLT dataset.
We train the detection model on the pre-training dataset for 60K iterations with
the learning rate starting from 0.01 and reduced to 0.001 for the last 20K iter-
ations. In the fine-tuning stage, we train separate detection models for different
test datasets using their own training sets on the basis of the pre-trained model.
For curved text datasets TotalText and CTW1500, the learning rate is initialized
to 0.01 for first 40K training iterations and is reduced to 0.001 for further 20K
iterations. For ICDAR2015 and ICDAR2017-MLT datasets, the learning rate is
set to 0.001 during 40K training iterations of the model.

We use a polynomial centerline of degree 3 and 5 width lines as default
for depicting a text region, and the number of path points is set to 13 in the
experiments.

4.3 Ablation Study

Effectiveness of Polynomial-Based Text Shape Modeling and Regres-
sion. We validate the effectiveness of the proposed polynomial-based text shape
modeling and regression mechanism for scene text detection by comparing the
performance of some variants of PolyPRNet in Table 1. Specifically, the model
’Cas. R-CNN’ removes the PPR module from PolyPRNet and uses the Cascade
R-CNN for text detection, which employs rectangular bounding boxes to de-
pict text regions. The model ’Cas. R-CNN + QuadPR’ employs a quadrangle
to depict the text region and replaces the PPR module in PolyPRNet with a
regression branch to predict the parameters of quadrangles. The model ’Cas.
R-CNN + Mask’ replaces the PPR module with the mask branch proposed in
Mask R-CNN [23] for text candidate prediction. The model ’Cas. R-CNN +
PPR’ denotes the proposed PolyPRNet with the iterative shape parameter re-
gression mechanism being removed for fair comparison with other variants in
which this mechanism cannot be similarly employed.

As shown in Table 1, compared to the Cascade R-CNN backbone, introducing
the PPR module significantly enhances the detection f -measure by 9 − 19%,
which clearly demonstrates the effectiveness of the proposed text shape modeling
and regression mechanism. Moreover, the proposed PPR module is more effective
than the mask mechanism [23] as it effectively captures and exploits distinctive
shape characteristics of text rather than low-level segmentation information.
Figure 5 shows some examples of detection results by variant models in Table 1.
The PPR-based detection model yields more accurate text region boundaries
than other models.

To further evaluate the effectiveness of the PPR module, we combine it with
the more general Faster R-CNN backbone. Compared to the detection f -measure
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Table 1. Effectiveness of the proposed PPR module for enhancing text detection
performance (%)

Model TotalText CTW1500 ICDAR2015
P R F P R F P R F

Cas. R-CNN 64.6 65.0 64.8 69.0 67.1 68.0 78.1 78.7 78.4
Cas. R-CNN + QuadPR 73.3 72.7 73.0 69.2 68.4 68.8 79.5 74.8 77.1
Cas. R-CNN + Mask 86.5 82.0 84.1 82.2 81.0 81.6 89.4 81.0 85.0
Cas. R-CNN + PPR 84.5 84.7 84.6 84.2 82.7 83.4 89.1 86.0 87.5

62.2%, 65.3%, and 76.7% attained by Faster R-CNN on TotalText, CTW1500,
and ICDAR2015 datasets respectively, introducing the PPR module achieves
again the significantly enhanced f -measure 83.5%, 82.7%, and 87.1% which re-
veal its effectiveness.

(a) (b) (c) (d)

Fig. 5. Examples of detection results by variant text detection models in Table 1: (a)
Cas. R-CNN, (b) Cas. R-CNN + QuadPR, (c) Cas. R-CNN + Mask, and (d) Cas.
R-CNN + PPR.

Influence of Degree of Polynomial. We investigate the influence of the
degree of the polynomial text centerline on the detection performance in Table 2.
It can be seen that, for curved text in TotalText dataset, the degree of the
polynomial needs to be large enough to accommodate complex shapes of text,
and the detection performance increases with the polynomial degree and reaches
the peak around a degree of 5. On the other hand, for mostly straight text in
ICDAR2015 dataset, as expected, different polynomial degrees do not change
the detection performance much.

Influence of Number of Width Lines. We further inspect the influence
of the number of width lines in the proposed text region shape model on the
detection performance in Table 3. It can be seen that using more width lines
to depict the text region usually yields better detection results due to the more
accurate text boundary. For text instances in the experiment datasets, 5 to 9
width lines are generally sufficient for the detection task.
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Table 2. Comparison of text detection
performance (%) using different degrees
(n) of polynomial for text region modeling

n TotalText ICDAR2015
P R F P R F

1 82.0 82.2 82.1 89.2 85.8 87.5
2 84.1 83.5 83.8 88.4 86.0 87.1
3 84.5 84.7 84.6 89.1 86.0 87.5
4 84.6 84.7 84.7 89.7 85.8 87.7
5 84.8 84.9 84.9 88.6 86.9 87.7
6 84.9 84.7 84.8 89.4 85.7 87.5

Table 3. Comparison of text detection
performance (%) using different numbers
(m) of width lines for text region model-
ing

m TotalText ICDAR2015
P R F P R F

3 83.9 83.4 83.6 88.3 86.0 87.1
5 84.5 84.7 84.6 89.1 86.0 87.5
7 85.1 84.1 84.6 89.1 86.1 87.6
9 85.6 84.5 85.0 89.9 86.0 87.9
11 83.9 83.6 83.8 89.4 85.7 87.5

Note that increasing the number (m) of width lines and the polynomial degree
(n) has limited impact on the network’s efficiency as the network size is enlarged
little. For example, increasing n from 1 to 6 causes only a 0.4 drop in FPS on
TotalText dataset, and increasing m from 3 to 11 results in a 0.2 drop in FPS.

Effectiveness of Iterative Shape Parameter Regression (IPR). We ver-
ify the effectiveness of the iterative shape parameter regression mechanism by
comparing the detection performance with and without it in Table 4. It can be
seen that, owing to the more accurate text boundaries predicted, iterative shape
parameter regression effectively improves the detection results without introduc-
ing much computational overhead (e.g. 0.2 drop in FPS on TotalText dataset
compared to no IPR).

Table 4. Comparison of text detection performance (%) with and without IPR

Model TotalText CTW1500 ICDAR2015
P R F P R F P R F

w/o IPR 84.5 84.7 84.6 84.2 82.7 83.4 89.1 86.0 87.5
w. IPR 86.3 85.0 85.6 84.3 83.4 83.8 89.0 86.6 87.8

4.4 Comparison with State-of-the-Art Text Detection Methods

Curved Text Detection. To demonstrate the effectiveness of PolyPRNet for
detecting curved text, in Table 6 and 5, we compare both the single-scale and
the multi-scale (MS) performance of PolyPRNet with other state-of-the-art text
detection methods on CTW1500 and TotalText datasets respectively, using the
same evaluation scheme as [26]. In the single-scale testing, the shorter sides of a
test image are scaled to 720, while in the multi-scale testing, they are scaled to
{640, 720, 800} respectively. For CTW1500 dataset, the number of width lines in
the text shape model is set to 7 to correspond to the 14-vertices annotations in
the dataset, and it is set to 5 for TotalText and other datasets.
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Table 5. Comparison of text detection
performance (%) on TotalText dataset

Method P R F FPS

SegLink[31] 30.3 23.8 26.7 -
DeconvNet[26] 33.0 40.0 36.0 -
EAST[4] 50.0 36.2 42.0 -
TextSnake[5] 82.7 74.5 78.4 -
Wang et al.[9] 80.9 76.2 78.5 -
TextDragon [32] 84.5 74.2 79.0 -
PSENet-1s[6] 84.0 78.0 80.9 3.9
SPCNet[18] 83.0 82.8 82.9 -
CRAFT [8] 87.6 79.9 83.6 -
PAN [19] 89.3 81.0 85.0 39.6
PolyPRNet 86.3 85.0 85.6 13.5

LOMO MS[7] 87.6 79.3 83.3 -
PolyPRNet MS 88.1 85.3 86.7 3.7

Table 6. Comparison of text detection
performance (%) on CTW1500 dataset

Method P R F FPS

SegLink [31] 42.3 40.0 40.8 10.7
EAST [4] 78.7 49.1 60.4 21.2
CTD+TLOC [27] 77.4 69.8 73.4 13.3
TextSnake [5] 67.9 85.3 75.6 1.1
Wang et al. [9] 80.1 80.2 80.1 -
TextDragon [32] 79.5 81.0 80.2 -
PSENet-1s [6] 84.8 79.7 82.2 3.9
CRAFT [8] 86.0 81.1 83.5 -
PAN [19] 86.4 81.2 83.7 39.8
PolyPRNet 84.3 83.7 84.0 14.1

LOMO MS [7] 85.7 76.5 80.8 -
PolyPRNet MS 85.4 83.9 84.7 3.8

On both TotalText and CTW1500 datasets, PolyPRNet surpasses all other
methods on f -measure in both single-scale and multi-scale testings, which reveal
the superiority of our method in detecting various curved scene text with the
polynomial-based text shape model and iterative regression mechanism.

Multi-Oriented Text Detection. We validate the effectiveness of PolyPRNet
for detecting multi-oriented text in ICDAR2015 dataset. The shorter sides of a
test image are scaled to 1320 in the single-scale testing and {720, 1320, 1920}
respectively in the multi-scale (MS) testing. As shown in Table 7, PolyPRNet
achieves the highest f -measure in both single-scale and multi-scale testings in
the comparison, demonstrating PolyPRNet’s well capability to localize text with
arbitrary orientations.

Multilingual Text Detection. We also evaluate PolyPRNet’s performance
on multilingual text in ICDAR2017-MLT dataset. The test images are scaled in
the same way as for ICDAR2015 dataset in single-scale and multi-scale testings.
As shown in Table 8, PolyPRNet yields the highest f -measure in the compar-
ison, showing that the proposed polynomial-based text shape model effectively
captures the largely varied shape characteristics of text in different languages.

4.5 Qualitative Results

Figure 6 shows some text detection results of our method. Notice the curved text
in the images, regardless of their variant styles and tight spacing, are accurately
localized. The results demonstrate our method’s capability of robustly detecting
text with varied shapes, orientations, sizes, and languages.
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Table 7. Comparison of text detection
performance (%) on ICDAR2015 dataset

Method P R F FPS

MCN [33] 72.0 80.0 76.0 -
Lyu et al. [34] 94.1 70.7 80.7 3.6
TextSnake [5] 84.9 80.4 82.6 1.1
PAN [19] 84.0 81.9 82.9 26.1
TextDragon [32] 84.8 81.8 83.1 -
PixelLink [35] 85.5 82.0 83.7 7.3
PSENet-1s [6] 86.9 84.5 85.7 1.6
IncepText [36] 89.4 84.3 86.8 -
SPCNet [18] 88.7 85.8 87.2 -
Wang et al. [9] 89.2 86.0 87.6 -
PolyPRNet 89.0 86.6 87.8 7.4

RRD MS [37] 88.0 80.0 83.8 -
Lyu et al. MS [34] 89.5 79.7 84.3 -
LOMO MS [7] 87.6 87.8 87.7 -
PolyPRNet MS 91.5 86.1 88.7 1.5

Table 8. Comparison of text detection
performance (%) on ICDAR2017-MLT
dataset

Method P R F FPS

E2E-MLT [38] 64.6 53.8 58.7 -
He et al. [17] 76.7 57.9 66.0 -
Lyu et al. [34] 83.8 56.6 66.8 -
AF-RPN [39] 75.0 66.0 70.0 -
SPCNet [18] 73.4 66.9 70.0 -
PSENet [6] 73.8 68.2 70.9 -
PolyPRNet 81.2 66.8 73.3 7.4

Lyu et al. MS [34] 74.3 70.6 72.4 -
LOMO MS [7] 80.2 67.2 73.1 -
SPCNet MS [18] 80.6 68.6 74.1 -
PolyPRNet MS 82.9 69.3 75.5 1.5

Fig. 6. Examples of text detection results of our method.

5 Conclusions

We present a robust scene text detection method with a polynomial-based pa-
rameterized shape modeling and regression scheme for arbitrary-shaped text,
which effectively captures the shape characteristics of text and significantly en-
hances the performance of the R-CNN based detection backbone. The state-
of-the-art text detection results our method obtains on standard benchmarks
demonstrate its effectiveness.
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