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Abstract. Hashing is a widely used technique for large-scale approxi-
mate nearest neighbor searching in multimedia retrieval. Recent works
have proved that using deep neural networks is a promising solution
for learning both feature representation and hash codes. However, most
existing deep hashing methods directly learn hash codes from a convo-
lutional neural network, ignoring the spatial importance distribution of
images. The loss of spatial importance negatively affects the performance
of hash learning and thus reduces its accuracy. To address this issue, we
propose a new deep hashing method with weighted spatial information,
which generates hash codes by using discrete spatial importance distribu-
tion. In particular, to extract the discrete spatial importance information
of images effectively, we propose a method to learn the spatial attention
map and hash code simultaneously, which makes the spatial attention
map more conductive to hash-based retrieval. The experimental results
of three widely used datasets show that the proposed deep weighted
hashing method is superior to the state-of-the-art hashing method.
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1 Introduction

With the rapid developments in science and technology, people can use the sen-
sors around them more conveniently, which greatly increases the amount of data
uploaded through the sensors, including a large number of images and videos.
Therefore, the ability to deal with this data has become an urgent problem, and
the approximate nearest search is a method to solve it. As one of the approximate
nearest search methods, hashing maps the high-dimensional data into a compact
binary code in the Hamming space. Hashing greatly reduces the required storage
space and the calculation of the hamming distance of XOR binary codes is much
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faster than that of the Euclidean distances of the original data. Because of its
excellent storage capacity and efficient computing power, hashing has attracted
wide attention from researchers.

At the same time, with the rapid development of deep learning research, deep
model has achieved remarkable improvements in computer vision performance
including image classification [1], image retrieval [2], video classification [3] and
other directions [4] [5] [6] [7]. Therefore, many deep hashing methods have been
developed, which can learn both deep features and hash codes. At present, the
key concept of deep hashing methods is to obtain the hash codes of images by
putting the images directly into convolutional neural networks (CNNs). Unfor-
tunately, this simple operation does not distinguish the importance of the region
of the image, every pixel in the image has the same impact on the hash code
learning, which may lead to suboptimal performance [8]. Recently, the research
on fully convolutional networks (FCN) [9]in image positioning shows that the
feature map of a convolution layer can retain a great deal of spatial information.
Therefore, the ability to optimize hash codes with this spatial information has
become an important new research topic.

To fully use the spatial importance information, in this study, we propose
a deep hashing method with weighted discrete spatial importance (SIWH). To
explore spatial importance information, we designed an effective hash-based spa-
tial attention model to adaptively learn the spatial importance closely related
to the target. Meanwhile, we also used a CNN to extract semantic information,
which is much richer in detail than the handcrafted features of images [10].

In summary, we emphasize the following three contributions:
(1) We propose a unified framework to learn weighted hash codes using

discrete spatial importance distributions, which can assign different hash code
lengths to images according to their spatial importance. After reviewing avail-
able research, we believe that this is the first attempt to learn weighted hashing
according to the importance of spatial position.

(2) We develop an effective hash-guide spatial attention model. In this model,
the spatial attention network and hash learning network are trained simultane-
ously, which makes the spatial information conducive to hash code generation.

(3) We make an extensive evaluation of three widely used image retrieval
benchmarks. The experimental results show that our method significantly out-
performs the state-of-the-art methods’ results, which demonstrates the superi-
ority and effectiveness of our method.

The rest of this paper is organized as follows. In Section 2, we briefly review
related works. The proposed method is introduced in Section 3. The extensive
experiments and discussions of the experimental results are provided in Section
4, and we present conclusions in Section 5.

2 Related Works

In this section, we will briefly review the related hashing methods, including
shallow-based and deep-based models.
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In general, hashing methods can be divided into two categories data-independent
and data-dependent [11]. In the early years of these methods’ development,
researchers focused on data-independent hashing methods, such as LSH [12]
and its variants (SKLSH) [13]. The LSH method generates hash codes through
random projection. However, to achieve satisfactory performance, these data-
independent methods often need a long hash code.

To obtain more compact binary codes, data-dependent hash methods have
been proposed in more recent years. These methods attempt to learn hash func-
tions from a training set, and they can be divided into unsupervised methods
and supervised methods[14]. Unsupervised methods only use unmarked training
data to learn hash functions. For example, spectral hashing (SH) [15] minimizes
the weighted hamming distance of image pairs, where the weight is defined as
the similarity measure of the image pairs. Iterative quantization (ITQ) [16] at-
tempts to minimize quantization errors on projected image descriptors to reduce
the information loss caused by the difference between the real value feature space
and the binary hamming space.

Compared to unsupervised methods, supervised methods provide better ac-
curacy due to the usage of label information. Predictable discriminative binaries
(DBC) [17] look for hyperplanes as hash functions that separate categories with
large margins. Minimal loss hashing (MLH) [18] optimizes the upper bound of
hinged losses to learn the hash function.

Meanwhile, semi-supervised hashing (SSH) [19], uses rich unmarked data to
standardize hash functions. Although the above methods use linear projections
as hash functions, they have difficulty in handling linearly indivisible data. To
overcome this limitation, supervised hashing with kernels (KSH) [20] and bi-
nary reconstructive embedding (BRE) [21] are proposed to study the similarity–
preserving hash function in kernel space.

With the wide application of deep learning in recent years, deep hashing
frameworks have attracted more and more attention in hashing methods. Deep
hashing (DH) [22] uses nonlinear deep networks to generate improved hash codes.
Fang et al.[23] and Lai et al.[24] were the first to attempt to combine learning
feature representations and hash functions. Lu et al.[25] used a deep network
with a stacked fully connected layer to construct multiple hierarchical nonlin-
ear transforms to learn binary hash codes. Deep supervised hashing (DSH) [2]
tries to maintain similarity and minimize binary loss. A supervised semantics
preserving hash (SSDH) [26] constructs the underlying hashing layer to gener-
ate hash code by directly minimizing classification errors on the hashing layer
output. Li et al.[27] proposed deep pairwise labels supervised hashing (DPSH),
which uses pairwise labels to perform both feature learning and hash code learn-
ing. Deep supervised discrete hashing (DSDH) [28] develops DPSH based on
the ideal assumption that hash codes should be classified. Cao et al.[29] pro-
posed deep Cauchy hashing (DCH), which designed loss functions based on the
Cauchy distribution to generate highly concentrated hash codes. Jiang et al.[30]
proposed the Deep discrete supervised hashing (DDSH), which uses pairwise
supervised information to directly guide the discrete coding program and the
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deep characteristic learning program. Jiang et al.[31] proposed asymmetric deep
supervised hashing (ADSH), which processes query points and database points
in an asymmetric path. Deep ordinal hashing (DOH [32]) learns a group of
ranking-based hash functions by jointly exploiting the local spatial information
and the global semantic information. In general, deep supervised hashing can
significantly improve performance.
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Fig. 1. Framework of the proposed SIWH method, which consists of two components:
Spatial Attention Model and Deep Weighted Hashing Model

However, the aforementioned deep-learning-based hashing methods use the
deep model to generate semantics of whole images, which ignore the spatial
importance distribution of the images. To fully use this information, in this work,
we propose a spatial attention module to learn a weighted hash. In the proposed
method, we first use the spatial attention model to obtain the importance of
each position, and then learn the weighted hash function with the allocation
of the hash code length appropriately according to the different importance
information.

At the same time, attention models have been extensively studied in im-
age/video subtitling [33] and object detection [8]. [34] proposed that attention
model can selectively learn significant areas of images in specific visual tasks.
And [4] proposed attention model to learn the attention position of image subti-
tle. Although attention model has been successfully used in various visual tasks,
it is still not fully utilized in image retrieval.

3 Discrete Spatial Importance-Based Deep Weighted

Hashing

In this section, we describe the proposed deep hashing framework in detail. The
entire framework is shown in Fig. 1. Firstly, the spatial attention model is used to
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generate the spatial attention map for the input image by FCN network. Then,
the attention mask is generated according to the spatial attention map, and the
attention and non-attention parts of the input image are divided by the mask.
After that, the attention and the non-attention parts are put into CNN network
learning hash function. Finally, the learned hash codes are combined to generate
the final hash code.
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Fig. 2. An imaginary illustration of the Spatial Attention Model.

3.1 Notation and Definition

Suppose X = {xn}
N
n=1 be a set of N images, Y = {yn}

N

n=1
is the set of their

corresponding binary label vectors, where {yn} ∈ {0, 1}C , and C defines the
total number of the categories. The non-zero entry in yn indicates that the
nth image belongs to the corresponding class. Let S = {sij} ∈ {0, 1}N×N be
the similarity matrix, where sij = 1 if the image pair (xi, xj) shares at least one
common class, otherwise sij = 0. Hash coding learns a collection of K-bit binary
codes B ∈ {0, 1}K×N , where the nth column bn ∈ {0, 1}Kdenotes the binary
codes for the nth sample xn. Our goal is to learn a set of mappings H : x → b,
which maps the image x into a hash code b.

3.2 Network Architecture

The proposed method uses two networks, in which the FCN model aims to cap-
ture spatial principal distribution information using the spatial attention model,
and the CNN model explores semantic information. For CNN networks, we uti-
lize CNN-F [35] as the backbone, where the first five convolutional layers and the
first two fully connected layers of CNN-F are denoted as conv1, conv2, conv3,
conv4, conv5, fc6 and fc7, respectively. Based on these layers, we design a task-
specific fully connected layer fck. For FCN networks, we use a FCN network with
VGG [36] as its backbone to extract the attention position. The FCN network
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adopts the first 5 convolutional layers of the VGG network, containing conv1,
conv2, conv3, conv4, and conv5. In the proposed network, we use a convolutional
layer conv6 to replace the first fully connected layer fc6 of the VGG network.
Behind the above layers, there is a fully connected fcc layer for classification
prediction. In particular, we perform global average pooling on the conv5 layer
and provide the output to the fully connected classification layer (i.e. fcc). The
average of these feature maps will be used to generate the probability output
of the fcc layer. Furthermore, we introduce an intuitive method for extracting
image spatial importance by utilizing the weight matrix of the fcc layer and
the feature map of the conv5 layer. Like the CNN network, the conv6 layer is
designed to learn visual descriptors by encoding spatial information.

3.3 Spatial Attention Model

Intuitively, when searching for relevant images in the database, we always pay
more attention on the regions that are highly related to the main objects or
peoples in the image. Consequently, we introduce a hash-guide spatial attention
model, which aims to generate object-specific spatial attention map for hash
learning. Fig. 2 illustrates the generation of the spatial attention map.

As is shown in Fig. 2, we use the Full Convolution Network with the global
average pooling to generate the attention locations of the image. Specifically, we
perform the global average pooling on conv5 layer and provide the output to
the fully-connected classification layer (fcc). The outputs of the global average
pooling can be regarded as the spatial average of feature maps of the conv5 layer.
Those spatial average values are used to generate the probabilistic outputs of
the fcc layer.

In this section, we introduce an intuitive way to produce the spatial attention
map by projecting the weight matrix of the fcc layer on the feature maps of the
conv5 layer.

Let Zuv define the channel-wise representation at the spatial location (u, v)
of the conv5 layer of the FCN network, which can be computed as

Zuv = ΨF (x;ΩF ), (1)

where Zuv ∈ R
MF with MF being the number of feature maps. The notations

u ∈ {1, · · · , U} and v ∈ {1, · · · , V }, where U and V are the width and height
of feature maps. The notation x represents the input image, and ΨF defines
the non-linear projection function for the FCN network. The notation ΩF =
{Wd

F , c
d
F }

DF

d=1
defines a set of non-linear projection parameters with DF being

the depth of the FCN network.
Considering the weight matrix, W ∈ R

MF×C performs a mapping of the
spatial average values to the semantic class labels. We define the object-specific
local response at the spatial location (u, v) as µc

uv, which can be obtained by

µc
uv = max(wT

c zuv, 0), for c = 1, · · · , C, (2)
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where wc is the cth column of W. µc
uv indicates the importance at the spatial

location (u, v) in the input image x which is classified to the cth class. As each
spatial location (u, v) corresponds to a different local patch in the original image,
the local response µc

uv indicates the relative similarity of the local image patch
to the cth class.

Essentially, we can obtain local discriminative information at different spatial
locations for a particular class. The larger value of µc

uv indicates that the image
patch at the spatial location (u, v) is more related to the cth class. Inversely, the
smaller value of µc

uv indicates it is less related to the cth class. Therefore, µc is the
attention map for class c. By integrating µc together, we can define the spatial
attention map π to identify all the object-specific image patches. Specifically,
the local response at (u, v), denoted as πuv, is defined as follows

πuv =

C
∑

c=1

pcµ
c
uv/

C
∑

c=1

pc (3)

where pc is the cth probabilistic output of the classification (i.e., fcc) layer of
FCN network.

3.4 Deep Weighted Hashing Model

Given a query image, users typically pay more attention to the attention area of
the query image. Therefore, differently weighted hash codes should be assigned
between attention and non-attention areas during hash learning. To achieve this
purpose, in the proposed SIWH, we first generate an attention mask using the
spatial attention map, and then learn weighted hash codes for different attention
areas.

Using the attention map obtained before, we assign 1 to the location whose
response value is equal or greater than the threshold value t, and assign a 0 to
the rest, generating the attention mask A. We can also swap the 0 and the 1 in
A to generate Ā. Then, we expand the attention mask A to the size of the image
x, which is A′. We then multiply A′ with the image x to get the attention image
of x, which is denoted as x1. Similarly, we use Ā and the image x to generate
x2.

Next, we put the attention image x1 and non-attention image x2 into two
CNN networks to learn hash codes. First, we define the feature representation
extracted from the fc8 layer of the CNN network as g1 and g2, computed by

g1 = ΨC1(x1;ΩC1), g2 = ΨC2(x2;ΩC2), (4)

where g1 ∈ R
M

C1 and g2 ∈ R
M

C2 . The notation ΨC1 and ΨC2 define the
non-linear projection function for the two CNN networks, respectively. ΩC1 =

{Wd
C1 , cdC1}

D
C1

d=1
and ΩC2 = {Wd

C2 , cdC2}
D

C2

d=1
define two sets of non-linear pro-

jection parameters with DC1 and DC2 being the depths of the CNN networks,
respectively.
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We can use a symbolic function to get the hash code b1 and b2, which are
computed by

b1 = sgn(g1), b2 = sgn(g2). (5)

Then, we can define b as the whole hash code, which can be calculated as
b = b1

⊕

b2, where
⊕

denotes the connect operation. We define K as the code
length of b, K1 and K2 are the code lengths of b1 and b2 respectively, and
K = K1 +K2.

3.5 Objective Function

As mentioned earlier, given the binary codesB = {bi}
N
i=1 and the pairwise labels

S = {sij} for all the images, we can define the likelihood of the pairwise labels
[37]:

p(sij | B) =

{

σ(θij), sij = 1
1− σ(θij), sij = 0

(6)

where θij =
1

2
bT
i bj , and σ(θij) =

1

1+e
−θij

. Please note that bi ∈ {−1, 1}K .

By taking the negative log-likelihood of the observed pairwise labels in S, we
can obtain the following optimization equation:

min
B

Ls = − log p(S | B) = −
∑

sij∈S

log p(sij | B)

= −
∑

sij∈S

(sijθij − log(1 + eθij )).
(7)

It is easy to find that the above optimization problem can make the hamming
distance between two similar points as small as possible and the hamming dis-
tance between two different similar points as large as possible. This fits perfectly
with the goal of supervised hash of paired tags.

The problem in (7) is a discrete optimization problem, which is difficult
to solve. However, we can solve this problem by directly transferring bi from
discrete value to a continuous relaxation di. Therefore, a quantization loss term
is included as follows:

min
B

Lq =
N
∑

i=1

‖ bi − di ‖
2
2, (8)

where di is the real value output of the network.
In the FCN, the classification loss term is defined as the cross entropy loss,

which is expressed as follows:

min
B

Lc = −
N
∑

i=1

(yi log ȳi + (1− yi) log(1− ȳi)), (9)
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where ȳi is the prediction value output of the network.
Thus, the final objective function is as follows:

min
B

L = Ls + ηLq + βLc

= −
∑

sij∈S

(sijθij − log(1 + eθij ))

+ η

N
∑

i=1

‖ bi − di ‖
2
2

− β

N
∑

i=1

(yi log ȳi + (1− yi) log(1− ȳi)),

(10)

where η and β are the hyper-parameters.
Among these terms, we need to optimize parameters for ΩF = {Wd

F , c
d
F }

DF

d=1

and ΩC∗ = {Wd
C∗ , cdC∗}

DC∗

d=1
. The parameters Wd

∗
and cd

∗
can be automatically

updated by applying SGD with BP algorithm in pytorch.

4 Experiment

In this section, we report the results of our extensive experiments to verify the
efficiency of the proposed method (SIWH) on three widely used image retrieval
datasets, including CIFAR-10 [38], NUS-WIDE[39], and MS-COCO [40]. The
CIFAR-10 dataset is a single-label dataset, while the NUS-WIDE and MS-COCO
dataset are multi-label datasets.

Table 1. The results of mAP with respect to different code lengths on the three
datasets.

Method
CIFAR10 NUS-WIDE MS-COCO

24 bits 48 bits 64 bits 128 bits 24 bits 48 bits 64 bits 128 bits 24 bits 48 bits 64 bits 128 bits

LSH 0.2722 0.3586 0.4490 0.4887 0.0654 0.1882 0.2993 0.3900 0.0868 0.1462 0.1774 0.3007

SH 0.2346 0.2959 0.3187 0.5168 0.1238 0.1729 0.2358 0.3448 0.0837 0.1048 0.1289 0.2373

SKLSH 0.2378 0.2983 0.3872 0.5517 0.0922 0.1387 0.2596 0.4354 0.0551 0.1369 0.1893 0.3966

PCAH 0.1430 0.1720 0.1863 0.2018 0.0924 0.0809 0.0890 0.1131 0.0662 0.0633 0.0702 0.0918

ITQ 0.3648 0.4245 0.4283 0.4502 0.3109 0.3884 0.4139 0.4571 0.2289 0.2862 0.3085 0.3515

FSSH 0.6853 0.7124 0.6919 0.7204 0.3959 0.3716 0.4462 0.5411 0.3105 0.3415 0.4063 0.4316

DSH 0.7864 0.7830 0.7834 0.7835 0.6598 0.6653 0.6587 0.6598 0.5153 0.5069 0.5147 0.5072

DPSH 0.8821 0.8853 0.8858 0.8876 0.8390 0.8429 0.8423 0.8468 0.6623 0.6871 0.6965 0.7073

DSDH 0.8985 0.9004 0.9002 0.8970 0.8225 0.8328 0.8347 0.8415 0.6988 0.7191 0.7220 0.7227

DCH 0.8753 0.8752 0.8749 0.8273 0.7552 0.7632 0.7647 0.7602 0.5858 0.5954 0.5948 0.5953

DDSH 0.8452 0.8861 0.8916 0.8993 0.7352 0.8102 0.8083 0.7957 0.5821 0.6032 0.6142 0.6162

ADSH 0.8957 0.9040 0.9060 0.9059 0.8582 0.8893 0.8890 0.8873 0.6351 0.6376 0.6508 0.6617

DOH 0.8651 0.8616 0.8697 0.8739 0.7830 0.7846 0.7808 0.7935 0.7336 0.7487 0.7537 0.7521

SIWH 0.9231 0.9304 0.9294 0.9316 0.8673 0.8948 0.9023 0.9109 0.7522 0.7986 0.8007 0.8153
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Fig. 3. The results of Precision-recall curves with respect to 64-bit hash code on three
datasets.
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Fig. 4. The results of P@N curves with respect to 64-bit hash code on three datasets.

4.1 Baselines and Evaluation Metrics

We compare the proposed SIWH method with thirteen state-of-the-art image
hashing methods, including six non-deep hashing methods (LSH [12], SH [15],
SKLSH [13], PCAH [41], ITQ [16], and FSSH [42]) and seven deep hashing
methods (ADSH [31], DPSH [27], DSH [2], DDSH [30], DSDH [28], DCH [29],
and DOH [32]). We have briefly reviewed these hashing methods in Section 2
above. Among them, LSH, SH, and SHLSH are unsupervised hash methods, and
the rest are supervised hash methods.

For the non-deep methods, we use the CNN-F network to extract the 4096-
dimensional features of the fc7 layer. For all deep methods, we use the same
network (CNN-F) for equivalent comparison. The parameters of all comparison
methods were selected as their default values.

In addition, we use three widely used indicators to evaluate search perfor-
mance: mean average accuracy (mAP), top N precision (P@N), and Precision-
Recall curves (PR).

4.2 Experimental Settings

We implemented the proposed SIWH method using the open source pytorch
framework on the NVIDIA TITAN XP GPU server. In addition to the layers
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from VGG, conv1 to conv5, and fc6 to fc7, we use ”kaiming” initialization to
initialize the network. Our network is trained by using a small batch random
gradient descent with learning speed set to 10−5. In all experiments, we fixed
the minimum batch size to be 16. The hyperparameters η and β of the two loss
functions are set to 1e-2 and 3e-2 respectively.

SIWH involves two hyperparameters, namely the threshold value of the at-
tention mask t and the proportion of the attention hash code K1/K. For t, we
use a linear search to select t in 0.5, 0.625, 0.75, 0, 875. Specifically, for the
CIFAR-10 data set, we set t to 0.875 and for the NUS-WIDE and MS-COCO
data sets, we set t to 0.75. For K1/K, we conducted a comparative experiment
of the parameters.

4.3 Experimental Results and Analysis

(1) Accuracy. The mAP results for SIWH and all baselines are shown in Table
1. From Table 1, we observe that SIWH is significantly better than the compar-
ative baselines from different datasets with different lengths of code. Compared
with the best deep hash method ADSH, the mAP values of SIWH implemented
on the CIFAR10 and NUS-WIDE datasets achieve an average performance im-
provement of 2.57% and 1.29%, respectively. When compared to the existing best
deep hash method DOH on the MS-COCO dateset, SIWH achieves an average
performance improvement of 4.47%. The substantial improvements demonstrate
the effectiveness of the proposed method.

In Fig. 3, we plot the PR curves for a 64-bit code length on the three datasets.
Specifically, the PR curve represents overall performance, and the PR curve near
the upper right indicates superior performance. As shown in Figure 3, SIWH
achieves superior performance compared to the benchmarks of the other methods
on all datasets. Additionally, SIWH can achieve higher accuracy at lower recall
points, which is preferred for an actual image retrieval system.

In Fig. 4, we report the performance of P@N in terms of a 64-bit code length,
and dependent on the number of top samples returned. We observe that SIWH
performs better than any of the comparison methods on different datasets.

Overall, it was observed from the experimental results that in terms of mAP,
P@N, and PR curves, SIWH was significantly better than the baseline for all
comparisons on the different datasets. Such a major improvement shows the
superiority of the proposed hashing method.

Table 2. The mAP results of Our method and its variants.

Method
CIFAR10 NUS-WIDE MS-COCO

24 bits 48 bits 64 bits 128 bits 24 bits 48 bits 64 bits 128 bits 24 bits 48 bits 64 bits 128 bits

SIWH-wa 0.7853 0.7809 0.7951 0.8095 0.5947 0.6698 0.7084 0.7260 0.5570 0.5727 0.5922 0.6043

SIWH-oa 0.8343 0.8444 0.8400 0.8566 0.6337 0.6421 0.6445 0.6526 0.5370 0.5509 0.5821 0.5891

SIWH-ona 0.4601 0.4794 0.4466 0.4558 0.2163 0.2352 0.2553 0.2131 0.2327 0.2326 0.2461 0.2434

SIWH 0.9231 0.9304 0.9294 0.9316 0.8673 0.8948 0.9023 0.9109 0.7522 0.7986 0.8007 0.8153
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Table 3. The mAP results of Our method with different K1/K.

K1/K (%)
CIFAR10 NUS-WIDE MS-COCO

24 bits 48 bits 64 bits 128 bits 24 bits 48 bits 64 bits 128 bits 24 bits 48 bits 64 bits 128 bits

87.5 0.8941 0.8944 0.8996 0.8936 0.8479 0.8295 0.8363 0.8452 0.7281 0.7653 0.7979 0.7959

75 0.9231 0.9304 0.9294 0.9316 0.8673 0.8948 0.9023 0.9109 0.7522 0.7986 0.8007 0.8153

62.5 0.8927 0.8843 0.8816 0.8922 0.8451 0.8370 0.8453 0.8476 0.7058 0.7556 0.7936 0.7904

50 0.8713 0.8790 0.8821 0.8857 0.8238 0.8272 8247 0.8215 0.7066 0.7646 0.7807 0.7907

Table 4. The mAP results of Our method With Different Attention.

Method
CIFAR10 NUS-WIDE MS-COCO

24 bits 48 bits 64 bits 128 bits 24 bits 48 bits 64 bits 128 bits 24 bits 48 bits 64 bits 128 bits

classification 0.8921 0.8990 0.9055 0.8964 0.8097 0.8018 0.8192 0.8016 0.6566 0.6655 0.6606 0.6737

hashing 0.9231 0.9304 0.9294 0.9316 0.8673 0.8948 0.9023 0.9109 0.7522 0.7986 0.8007 0.8153

CIFAR10 NUS-WIDE MS-COCO
0

0.2

0.4

0.6

0.8

1

m
A

P

0.5 0.625 0.75 0.875

Fig. 5. The mAP with respect to different t for 64-bits hash code on three datasets.

(2) Comparison With Variants. In the proposed deep network, we con-
struct a spatial attention model to learn spatial importance distribution infor-
mation and combine it with a CNN network to learn hash codes uniformly. To
prove the influence of spatial attention models, we studied three variations of
SIWH: 1) SIWH-wa: the proposed SIWH learns hash codes without an atten-
tion model; 2) SIWH-oa: the proposed SIWH learns hash codes only using the
attention region; and 3) SIWH-ona: the proposed SIWH learns hash codes only
using the non-attention region.

Table 2 presents the mAP results for SIWH and the three variations de-
scribed above. As we can see, the proposed method is superior to SIWH using
no attention method. Therefore, the spatial attention model utilized by the pro-
posed hashing method can be used to generate an identifiable hash code and will
produce higher retrieval performance. Additionally, our method is significantly
better than using either the attention or non-attention area alone. This result
demonstrates that our integration is effective.

(3) Effect Of Parameter. One of the parameters involved in the proposed
SIWH is the threshold value of attention mask t. To verify sensitivity, we per-
formed experiments to analyze the effects on different datasets by using a linear
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search in 0.5, 0.625, 0.75, 0.875. The retrieval performance expressed by mAP
is shown in Figure 5. For the CIFAR10 data set, the performance impact under
different settings is very small. However, on NUS-WIDE and MS-COCO, when
t is set to 0.5, the performance is slightly reduced. As shown in Figure 5, for
CIFAR-10, we can set t to 0.875. For NUS-WIDE and MS-COCO, we can set t
to 0.75.

Original 

Images

Original 

Images

Original 

Images

Classification

Attention Map

Classification

Attention Map

Classification

Attention Map

Hashing

Attention Map

Hashing

Attention Map

Hashing

Attention Map

Fig. 6. Some visual examples of spatial attention maps for CIFAR-10, NUS-WIDE and
MS-COCO datasets, respectively. The first line shows the original images. The second
line represents the classification attention maps. The third line displays the DWSH-D
hashing attention maps. The bottom line indicates the DWSH-C hashing attention
maps.

The proposed SIWH also involves another parameter, the proportion of the
attention hash code K1/K. We set different values for it, and the retrieval per-
formance represented by mAP is shown in Table 3. We found that on all three
datasets, when K1/K was set to 0.75, the performance was superior to the rest.

(4) Comparison With Classification Attention. Generally, most atten-
tion models are used for classification. However, in the proposed method SIWH,
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the attention model is guided by the hash learning process. In fact, there exists
many differences between classification-guided and hash-guided attention map
generation. Some visual examples of spatial attention maps are shown in Fig. 6,
including classification-guided and hash-guided attention maps. It can be seen
that both attention models can learn to distinguish the attention regions, which
are indicated by the red border areas, and we can also see that there are some
differences in the attention regions selected.

In the proposed method, the generation of the attention map is guided by
hash learning. Therefore, we explored the performance difference between the
hash-guided attention model and classification-guided attention model, and the
mAP performance is shown in Table 4, where the mAP of hash-guide model
is superior to that of the classification-guided model. It is indicated that the
proposed attention model is beneficial to hash-based retrieval tasks.

5 Conclusions

In this study, we propose a novel deep weighted hashing method that learns
hash codes by discrete spatial importance. Specifically, two network branches are
designed to generate hash codes while simultaneously learning the spatial im-
portance distribution. The proposed method can generate distinguishable hash
codes with high quality, thus achieving excellent performance in image retrieval.
Many experimental results on three datasets verify the superiority of the pro-
posed method in learning hash codes for image retrieval. In future work, we will
investigate how to learn the weights automatically for the weighted hash codes.
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