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Abstract. Point cloud completion estimates the complete shape given
incomplete point cloud, which is a crucial task as the raw point cloud
measurements suffer from missing data. Most of previous methods for
point cloud completion share the encoder-decoder structure, where the
encoder projects the raw point cloud into low-dimensional latent space
and the decoder decodes the condensed latent information back into the
list of points. While the low-dimensional projection extracts semantic
features to guide the global completion of the missing data, the unique
local geometric details observed from partial data are often lost. In this
paper, we propose a shape completion framework that maintains both
of the global context and the local characteristics. Our network is com-
posed of two complementary prediction branches. One of the branches
fills the unseen parts with the global context learned from the database
model, which can be replaced by any of the conventional shape comple-
tion network. The other branch, which we refer as a Symmetry-Aware
Upsampling Module (SAUM), conservatively maintains the geometric
details given the observed partial data, clearly utilizing the symmetry for
the shape completion. Experimental results show that the combination
of the two prediction branches enables more plausible shape completion
for point clouds than the state-of-the-art approaches.1

Keywords: Point cloud Completion, Point Upsampling, Symmetry, Two-
Branch Network

1 Introduction

The real-world 3D measurements enable direct interaction with the physical
environment and various applications, such as robotic grasping [1] and SLAM [2].
However, they rely on accurate 3D shapes, which require inferring the unknown
geometry given partial measurements. Recent approaches learn a shape prior
knowledge from the database of 3D shapes to complete the 3D shape. They train a
neural network that generates the complete shape given a partial shape motivated
by the success of CNN-based computer vision technology. A straight-forward
method is to represent the 3D shape with a dense 3D grid of voxels [3,4,5] and
use 3D CNNs which are robust to the irregularity of inputs [6]. However, the

1 Code available on https://github.com/countywest/SAUM
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3D grid representation requires memory cubic to the resolution, whereas the
3D shape actually occupies only a sparse set of the dense grid. The memory
inefficiency results in a coarse grid resolution, and the completed shape suffers
from the quantization effects that loses the fine-grained geometric features [7].

Point-based approaches, on the other hand, represent the 3D shape in terms of
points sampled on the surface of the geometry. It is not only memory efficient but
also can be directly applied to the real-world 3D measurements to compensate
for the prevalent scarcity of the raw point cloud data. Generating point clouds
has been suggested for various tasks such as 3D reconstruction from a single
image [8,9], super-resolution of point clouds [10,11,12,13], representation learning
[14,15,16,17], and shape completion [18,19,20,21,22,23,24,25,26]. Most of them
follow the conventional encoder-decoder structure. Given a list of 3D point coor-
dinates, the encoder compresses the high-dimensional data into a low-dimensional
global feature vector, whereas the decoder converts the compressed feature vector
back into the 3D point cloud representing the shape. Despite the wide range of
possible architecture choices, the decoder is designed to regress the 3D point
clouds solely from the encoded global feature vector, which inherently focuses
on regenerating the global semantics of the input data. While the generated
geometry is approximately similar to the inputs, often the fine details are lost or
hallucinated.

Our initiative is to create a point cloud shape completion pipeline that
preserves the local details which can be observed from the partial measurements.
In the case of images, the low-level features are successfully preserved using the
U-Net architecture [27] for tasks such as semantic segmentation. The encoder-
decoder structure for images are given as symmetric layers; the layers of the
encoder network progressively reduce the spatial resolution of the given image to
create more abstract representation and the decoder layers gradually increase
the resolution back to the original image size. The U-Net model uses so-called
“skip connections” between the symmetric layers existing in the encoder and the
decoder. As a result, the original feature maps in the early layers of encoders
are directly connected to the late-stage decoder layers, which can help the high-
frequency details pass to the output directly. However, the skip connections
cannot be applied to the networks for point cloud completion; a point cloud is
not a regular grid and the numbers of points in input and output are usually not
the same.

Instead, we create two complementary branches where one creates the global
semantics and the other compensates for existing local details. We refer to
the second branch as a Symmetry-Aware Upsampling Module (SAUM),
applicable to all of the existing encoder-decoder structured shape completion
methods. SAUM is designed to generate locally consistent point clouds by fully
utilizing the high-frequency features, and is also able to find the symmetric points
of the input point clouds without enforcing symmetry explicitly. The SAUM
can be easily combined as a parallel branch to the existing encoder-decoder
architecture and overcome the fundamental limitation. Our experiments show
that SAUM qualitatively increases the shape fidelity especially on the narrow
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structures with fine details, and quantitatively boosts the performance of various
existing methods.

2 Related Works

Our framework uses the existing point cloud completion network as a back-
bone and attaches an additional branch to guide the locally consistent shape
completion. We first review the existing point cloud completion, followed by
point upsampling, which is the task that preserves the structure but enhance the
quality by upsampling. We also compare our network with previous two-branch
architecture dealing with 3D reconstruction.

Point Cloud Completion. Point cloud completion has gained recent atten-
tion as 3D acquisition becomes readily available with commodity depth sensors.
There are two mainstreams for point cloud completion: supervised point comple-
tion [18,19,22,24,28,25,26] where the incomplete-complete pairs of point cloud
data are given, and unsupervised point completion [20,21,23] without the explicit
pairing of data.

The supervised network is trained to minimize the distance between the
generated shape and the ground truth complete shape where Chamfer distance
or Earth Mover’s distance is generally chosen as the metric to compare two
point clouds. The basic framework is encoder-decoder structure motivated from
autoencoder, where the initial list of 3D points are encoded to make a global
feature vector (GFV) from which the decoder generates point cloud.

Unsupervised shape completion uses a generative network motivated by the
l -GAN framework [14] for utilizing the learned prior knowledge of the complete
shapes. In addition to the distance between the input and output shapes, the
unsupervised shape completion is trained with additional losses such as discrimi-
nator loss for generating plausible shape and latent space loss for the semantic
similarity [20,21,23]. Even with the assistance of a generative network, the basic
framework is encoder-decoder structure as the supervised case.

While the previous works share the encoder structure originated from Point-
Net [29], different choices for decoder architecture have been introduced for
shape completion; namely fully connected layers [14], tree-based [19,17], or 2D
manifold-based [15,9] networks. Despite the progress in the decoder architecture,
the encoder-decoder framework is fundamentally limited as the shape is gener-
ated from condensed global information without local guidance. As a result, the
outputs are often blurry and inconsistent with the input shapes, instead of fully
utilizing the clear geometric features given from the input. Our work attaches
an additional network to the existing decoder architecture to complement the
performance of existing shape completion and achieve the local consistency.

Point Upsampling. Point cloud upsampling increases the number of samples
given the sparse set of points. While the task is not a shape completion, it
creates high-resolution data capturing the local details, which resembles our
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complementary goal. PU-Net [10] pioneered the deep-learning-based point cloud
upsampling. They proposed the “feature expansion” method implemented by
separated convolutions. Another key contribution in the paper is proposing the
repulsion loss to distribute the points more uniformly to alleviate the tendency
for the generated points to stick to each other. Wang et al.[12] and Li et al.[13]
used feature expansion but with different methods, namely code assignment
inspired by the 2D manifold-based decoders [15,9]. Wang et al.[24] proposed the
cascaded networks using the point upsampling networks for the point completion
task. One of the strong cues they introduced is the mirror operation assuming
the reflection symmetry, successfully generating recurring local structures. Their
network requires additional pre-trained auto-encoder to capture the shape prior.
On the other hand, our shape completion implicitly learns intrinsic symmetry
without any assumptions or additional networks. We adopted the feature expan-
sion used in the PU-Net [10] to shape completion task, and the results show that
it could find the local structure of the shapes without additional loss term.

Two-branch Network. Several works attempted to create complementary
networks to deal with both local and global contexts of the point cloud shape.
PSGN [8] first suggested the two-branch network generating point clouds, and
suggested the different nature of the fully-connected networks and convolutional
neural networks. Ours adopted the two-branch network for utilizing the local
features by SAUM and the global semantic information by the existing decoders.
Conceptually, our two-branch network emulates the skip-connection that observes
details of original data [27] and global guidance [4]. Authors of [4] implemented
global guidance by using the channel-wise concatenation of the global and local
features and insisted it plays a key role in the consistent shape completion. The
key difference between ours and their methods is the axis of the feature maps
when concatenating them. Unlike the channel-wise feature concatenation in the
skip-connection and the global guidance, ours uses point-wise concatenation of the
generated outputs, which can be interpreted as the union of the point sets. The
reason for the difference is the irregular nature of the point cloud representation
which cannot be handled as a grid-like structure directly, whereas Han et al. [4]
handle shapes in voxel grids and projected images.

3 Two-Branch Network

Given a set of incomplete point cloud Pin, our shape completion network creates
a set of points Pout that is uniformly sampled on the overall shape surface. We
present a two-branch network that is composed of the conventional encoder-
decoder framework and the symmetry-aware upsampling module (SAUM), as
shown in Fig. 1.

One of the challenges with neural network architecture using point cloud is
that the structure is irregular with a varying number of inputs, N . The encoder
aggregates the information from the varying number of points with maxpooling
operation and find a global feature vector (GFV) with a fixed dimension. Then
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Fig. 1. The overall architecture of the two-branch network using SAUM. SAUM outputs
rN points utilizing the multi-level local information. This module can be easily attached
to the existing encoder-decoder architecture and the final output is a simple combination
of outputs from two branches.

the decoder can use a fixed structure to regress to M points, Pdec. The additional
SAUM branch upsamples the input Pin by the factor of r using multi-level
features of the individual points resulting in Pup with rN points.

The final completed output is a set union of the two branches

Pout = Pup ∪ Pdec, (1)

where the Pdec is the output of the decoder comprised of M points and the Pout

is the combination of our two prediction branches. As a result, the two-branch
network will create rN +M points.

The two-branch network is jointly trained in a supervised setting, minimizing
the reconstruction loss for the completed shape compared to the ground truth.
The two most popular choices to evaluate the distance between two point sets
are the Chamfer distance (CD) and the Earth Mover’s distance. We adopted the
Chamfer Distance as the reconstruction loss because it can be calculated even if
the sizes of two point sets are different. Given two sets of 3D point cloud P1 and
P2, the Chamfer Distance is defined as

CD(P1, P2) =
1

2

( 1

|P1|

∑

x∈P1

min
y∈P2

‖x− y‖+
1

|P2|

∑

y∈P2

min
x∈P1

‖x− y‖
)

. (2)

We compare the raw output points Pout against the ground truth without further
sampling, and train the entire network to minimize the reconstruction loss.

In the following, the network structures for the two branches are further
explained.

3.1 Encoder-Decoder Network

Most of the previous approaches dealing with shape completion use the encoder-
decoder framework, which we also utilize as one of the two branches to capture
the global context from the partial data. The encoder follows the conventional
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structure motivated by the PointNet architecture. Specifically, features are ex-
tracted from individual points with d consecutive shared MLP layers, and we
used four shared MLPs as shown in Fig. 1. Starting from the N points with
three coordinates each, each MLP transforms them into C1, · · · , Cd dimensional
features, respectively. We denote the extracted N ×Ci feature from the i-th layer
of the encoder as fi. Then the information from N points at the final depth d

layer is combined into a single Cd dimensional vector with max-pooling operation,
to which we refer as GFV.

The encoder used in our experiments is the same as Yuan et al. [18], which
uses tiling the intermediate global feature (Fig. 1). The encoder structure is
shared across different choices of decoders, and from the GFV, the decoder then
regresses a list of M three dimensional points. The fine details are diluted as the
global information is compressed into a single GFV.

3.2 Symmetry-Aware Upsampling Module (SAUM)

Fig. 2. SAUM architecture. The input is a list of encoder feature map
N × C1, · · · , N × Cd, and the output is a set of rN points where r =

∑
d

i=1
ri (left).

SAUM is comprised of the d Point Expansion modules each of which maps the per-point
features to upsampled points (right).

To complement the global context captured by the encoder-decoder network,
we design a network that contains the multi-layer information of local context
captured from intermediate layers of the encoder. SAUM is inspired by the U-Net
architecture, which is widely used to transfer low-level features from the encoder
to the decoder. The point cloud is not a regular grid structure and the direct
connection between the encoder and decoder is not possible. Instead, we use the
intermediate features from the encoder and create upsampling networks to find
the underlying structure from various levels of abstraction.

Specifically, given the intermediate feature fi from i-th layer, the N × Ci

dimensional feature is mapped to riN points by our point expansion module
(Fig. 2, left). Inspired by the feature expansion operator [10], the point expansion
(written as PE) module for fi is composed of ri units of the sequential shared



SAUM: Symmetry-Aware Upsampling Module 7

MLP (Fig. 2, right):

PEi(fi) = RS([MLPi,1(fi), · · · ,MLPi,ri(fi)]), (3)

where

MLPi,j = C3

i,j(C
2

i,j(C
1

i,j)). (4)

Ck
i,j(·) is a single shared MLP block, which is implemented as a 1× 1 convolution,

meaning that k-th block for the j-th upsampling branch of the i-th feature maps.
We designed the last convolution C3

i,j(·) for the output to have 3-dimensional
channels so that it can generate a point cloud with size N × 3. Thus, point
expansion consists of independent upsampling branches as a special case of
the feature expansion [10]. In short, we effectively use three consecutive 1 × 1
convolution to convert the fi into three dimensional points for ri units. [·] operator
means the channel-wise feature concatenation, so the output for fi is a tensor
of size N × 3ri. RS(·) is a reshape operation to convert a N × 3ri tensor to a
riN × 3 point cloud. In the end, the PEi(fi) consists of ri point sets which are
the expanded from the i-th layer.

The final output of SAUM is Pup which is an union of the each expanded
point set PEi(fi)

Pup =

d
⋃

i=1

{PEi(fi)}. (5)

where the union operator
⋃

can be implemented as a point-wise concatenation.
Thus, Pup is comprised of the upsampled points of each layer, whose size is

rN × 3 where r =
∑d

i=1
ri.

4 Experimental Setting

In this section, we discuss the datasets and the implementation details to test
the performance of our suggested shape completion network.

4.1 Datasets

PCN dataset. The PCN dataset [18] is composed of pairs of partial point cloud
and corresponding complete point cloud derived from the eight categories of
ShapeNet dataset [30]. Specifically, the eight categories are: airplane, cabinet,
car, chair, lamp, sofa, table, and vessel and the number of the training models is
30974. The complete point clouds are created by uniformly sampling from the
complete mesh, and the partial point clouds are generated by back-projecting
2.5D depth images into 3D to simulate the real-world sensor data. We used the
same train/valid/test split provided by the original PCN dataset.
TopNet dataset. The TopNet dataset [19] is composed of 28974 training models



8 Son et al.

and 800 validation samples. The key difference to the PCN dataset is the number
of points of ground truth: PCN dataset contains 16384 points whereas TopNet
is comprised of 2048 points. Since TopNet dataset does not provide the ground
truth for test data, we used the provided validation set for testing and picked
600 samples from the training data to use it as a validation set.
KITTI dataset. The KITTI dataset, provided by [18], consists of the real-world
LIDAR scans of 2401 cars. Unlike the previous two datasets, the partial point
clouds in KITTI have no ground truth. Therefore we trained the networks with
the car category in the ShapeNet and tested the performance in KITTI.

4.2 Implementation Details

We tested the performance of shape completion with and without the additional
SAUM branch given the conventional encoder-decoder network. In all experi-
ments we used the PointNet-based encoder that makes the best performances in
[18] and [19]. We experimented on the four decoders to represent existing shape
completion methods as baseline models: FCAE [14], AtlasNet [9], PCN [18],
and TopNet [19]. We used N = 2048 for input point cloud by random sub-
sampling/oversampling the points and designed all of the decoders to generate
M = 16384 points for PCN dataset and M = 2048 points for TopNet dataset.

Our two-branch network is implemented by attaching our module to the
baseline architectures mentioned above and jointly trained in an end-to-end
manner. We chose the upsampling ratio r to be eight and two for the PCN
dataset and the TopNet dataset respectively. Specifically, we set the ri = 2
for i = 1, · · · , 4 for PCN dataset and the r1 = r2 = 1 for TopNet dataset. The
convolutional layers of the feature expansion (C1

i,j , C
2

i,j , C
3

i,j in Eq.(4)) are (256,
128, 3) for all experiements. For training the PCN [18], we followed the existing
two-staged generation but attached SAUM only to the final output.

We implement the networks using TensorFlow and trained them on Nvidia
RTX 2080 Ti and Titan RTX. All of the models are trained using Adam optimizer
[31] with β1 = 0.9 and β2 = 0.999 for up to 300K steps with a batch size 32. The
learning rate was initially chosen to be 10−4 and decayed by 0.7 every 50K steps.
The best model was chosen based on the reconstruction loss calculated in the
validation set.

4.3 Evaluation Metrics

For the evaluation of the consistent completion, we used three metrics: Chamfer
Distance (CD), Earth Mover’s Distance (EMD), and F-Score. We used the Eq.(2)
for calculating the CD. While CD is a widely used metric to compare a pair of
point sets, it is limited to represent the shape fidelity as points scattered without
the correct geometric details can achieve a lower value in sum. The EMD is more
sensitive metric to capture the detailed shape similarity, and is defined as:

EMD(P1, P2) = min
φ:P1→P2

1

|P1|

∑

x∈P1

‖x− φ(x)‖2, (6)
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where φ(x) represents the bijection from P1 to P2.
To demonstrate that our suggested network indeed better captures the fine

structure, we adopt the F-Score suggested by recent works [32,28] as a supple-
mentary metric. F-Score is motivated by the IoU metric in object detection and
is defined as

F-Score(d) =
2 · precision(d) · recall(d)

precision(d) + recall(d)
, (7)

with

precision(d) =
1

NPout

∑

p∈Pout

I[ min
p′∈Pgt

‖p− p′‖ < d] (8)

and

recall(d) =
1

NPgt

∑

p′∈Pgt

I[ min
p∈Pout

‖p− p′‖ < d] (9)

where I[·] represents an indicator function. Conceptually, precision represents
the portion of the correct prediction of the reconstructed point cloud, and recall
represents the reconstructed portion from the ground truth shape. The F-Score
is high when both precision and recall are high.

For the KITTI dataset, which has no ground truth shape, we cannot apply
the previous metrics. Instead, we adopt the Fidelity [18], which is the average
distance from each point in the input to its nearest neighbor in the output for
the validation of the local consistency.

5 Results

Table 1. Quantitative results on the three datasets. The average CD multiplied by 103,
EMD multiplied by 102, F-Score and, Fidelity are reported. The lower the CD, EMD,
and Fidelity, the better. The higher the F-Score, the better. Better results are in bold.

dataset PCN TopNet KITTI

metric CD EMD F-Score CD EMD F-Score Fidelity

FCAE 9.799 17.128 0.651 22.036 14.731 0.597 0.03305
FCAE+SAUM 8.668 9.015 0.745 20.295 8.573 0.654 0.01931

AtlasNet 9.739 18.295 0.669 21.903 10.751 0.612 0.03505
AtlasNet+SAUM 8.725 8.436 0.747 20.649 8.004 0.654 0.01820

PCN 9.636 8.714 0.695 21.600 10.319 0.620 0.03382
PCN+SAUM 8.900 6.631 0.741 20.400 7.847 0.665 0.01822

TopNet 9.637 12.206 0.668 21.700 10.813 0.612 0.03595
TopNet+SAUM 8.316 10.471 0.756 20.305 7.827 0.666 0.01684

The quantitative results of SAUM-attached point cloud completion are shown
in the Table 1 for PCN, TopNet, and KITTI datasets. Note that, for the fair
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comparison, we used farthest point sampling to sample the equal number of
points for the reconstruction and the provided ground truth (16384 for PCN and
2048 for TopNet) in all of the following quantitative evaluations(Table 1, 2, 3)
and visualizations(Figure 3, 4, 6) because our network doesn’t generate same
number of points with the ground truth. For the distance threshold d defined
in the F-Score, we chose the value roughly around the mean Chamfer Distance,
d = 10× 10−3 for the PCN dataset and d = 20× 10−3 for the TopNet dataset
respectively. The ground truth shape does not exist for the KITTI dataset, and
we evaluated the Fidelity which measures how well the input is preserved [18].

The results indicate that the attachment of SAUM boosts the performance of
all existing decoders for all metrics and datasets. The improvement of EMD and
F-Score, which are known to be more informative evaluation measure [14,32], is
significant with our module.

Fig. 3. Point cloud completion results of the various baselines and SAUM-attached
models (post-fixed by +) on the PCN dataset.

Figure 3 visualizes shape completion results of various input categories. We
can observe that the existing shape completion methods (shown in red) generate
approximately similar shape, but fail to preserve fine details for all of the four
implementations tested. For example, the airplane tails or decorative curves
at the lamp are diluted, and the points are scattered around the empty space
between armrests, table legs, and mast of the ship. When there exist narrow
structures or holes, points are scattered around the region, filling the space which
should have been empty or deleting fine details. This phenomenon is called as the
blindness of CD metric, discussed in [14]. In contrast, the SAUM-attached models
(shown in green) better catch detailed local information and suffer less from the
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Fig. 4. Visualization of the output of neural networks and the ground truth. Each point
is colored by the distance to the closest point in the other point cloud (nearest neighbor
distance). The F-Score is high when both precision and recall are high, namely the
ratio of blue points are high in the visualization for both of the output and the ground
truth. TopNet was used for the decoder model for the lamps(left two columns) and
PCN for the airplanes(right two columns).

problem of the blindness of CD metric, because SAUM increases the number of
points capturing the local structure. Figure 4 compares the reconstruction results
against the ground truth, and indicates that the SAUM-attached networks have
greater shape fidelity (lower distance to the nearest neighbor (NN)) compared to
the decoder-only networks. This suggests SAUM increases the precision and the
recall, and in the end increases the F-Score.

Figure 5 depicts the complementary nature of the two branches. We show the
shape completion of the individual branches before the set union in addition to
the final output compared against the ground truth. The upsampling of SAUM
(blue) complements the global shape acquired from the decoder (red) and mainly
preserves the observed details. It is interesting that our network is only trained
with the reconstruction loss defined by CD, and we did not explicitly enforce the
structural prior, but SAUM clearly utilizes the geometric structure of the input
shape, such as reflective and rotational symmetry as shown in airplane wings or
chair legs. Note that feature expansion tends to generate points located near the
original points in the upsampling task, but when applied to the completion task,
it can also generate symmetric points without additional loss term. However,
SAUM is not sufficient to generate global semantics of the underlying shape from
partial data. Conventional decoders are trained to regress to complete shapes
based on the semantic prior which compensate for the shortcomings of SAUM.
In our implementation, the joint training of SAUM and a decoder specifically
utilizes the output of the decoder to predict the residual of SAUM. As a result,
the two branches benefit from the complementary nature and the decoder relieves
the burden of predicting complete shapes from SAUM.
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Fig. 5. Visualization of generated points from different branches, namely SAUM (blue)
and decoder (red), and the union of them (green). PCN was used for the decoder.

Self-Consistency Test. Loss of detailed geometry with existing decoders is
a prevalent phenomenon regardless of the amount of incompleteness. It is due
to the last maxpooling layer[24] in the encoder limiting only a fixed number of
critical points and therefore the expressive power of the GFV. Even with an
input that has no missing region, existing methods suffer from the bottleneck
phenomenon of the performance, namely output blurry shape as ever. On the
other hand, SAUM whose architecture focuses the local features can preserve the
input geometry.

Table 2. Self-consistency test on the PCN dataset. The average CD multiplied by
103, EMD multiplied by 102, F-Score for d = 10× 10−3, and their improvement ratio
compared to the cases of the partial input (Table 1) are reported. The lower the CD
and EMD, the better and the higher the F-Score, the better. Better results are in bold.

Methods CD EMD F-Score

FCAE 8.936 (8.81% ↓) 16.851 (1.62% ↓) 0.692 (6.30% ↑)
FCAE+SAUM 6.610 (23.74% ↓) 3.523 (60.92% ↓) 0.869 (16.64% ↑)

AtlasNet 8.801 (9.63% ↓) 17.457 (4.58% ↓) 0.718 (7.32% ↑)
AtlasNet+SAUM 6.469 (25.86% ↓) 3.543 (58.00% ↓) 0.877 (17.40% ↑)

PCN 8.743 (9.27% ↓) 8.231 (5.54% ↓) 0.730 (5.04% ↑)
PCN+SAUM 6.483 (27.16% ↓) 3.717 (43.95% ↓) 0.868 (17.14% ↑)

TopNet 8.754 (9.16% ↓) 11.653 (4.53% ↓) 0.709 (6.14% ↑)
TopNet+SAUM 6.131 (26.27% ↓) 3.420 (67.34% ↓) 0.892 (17.99% ↑)
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Fig. 6. Results of the self-consistency test on the PCN dataset. Note that the input is
not partial shape but complete shape. TopNet was used for the decoder model for these
visualizations.

Motivated by the observation, we propose a self-consistency test to evaluate
the consistency of the networks by using the ground truth shape as the input and
comparing it with the output. We experimented with the pre-trained networks of
the existing methods and SAUM-attached models on the PCN dataset. Fig. 6
shows that the existing decoders cannot preserve the input geometry especially
for the thin parts [18] while our SAUM not only keeps the fine details but also
mitigates the decoder’s hedging. Quantitative results on self-consistency test are
reported in Table 2 with the same metric as shape completion: CD, EMD and
F-Score. For each metric, we also reported the improvement ratio compared to
the results of the original shape completion task(Table 1). The results show that
the improvement ratios of SAUM-attached models are much greater than those of
the decoder-only models. The augmentation of SAUM can go beyond the inher-
ent limitation of the representation power for the conventional encoder-decoder
architecture, help to resolve the bottleneck problem, and lead to consistent shape
completion.

Ablation study. In our implementation, the base-line encoder uses encoder
having four layers (d = 4) as suggested by previous works, and it is augmented
with SAUM that is composed of the point expansion modules upsampling the
points by the integer multiples of N given the intermediate features fi (i =
1, · · · , d). We change the attachment of the two-branch network and test with
different upsampling ratio r and examine the quality of completed shape as an
ablation study. The results using the PCN dataset are shown in Table 3. We
first tested the performance of SAUM only without the encoder-decoder, and the
performance is worse than most of the encoder-decoder baseline. Therefore, SAUM
cannot generate plausible shape by itself, suggesting that the balance of SAUM
and the existing decoders is important for consistent point cloud completion.
As before, the attachment of SAUM enhances the quality of shape completion
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Table 3. Ablation study on the PCN dataset. The average CD multiplied by 103, EMD
multiplied by 102 and F-Score for d = 10× 10−3 are reported. The lower the CD and
EMD, the better and the higher the F-Score, the better. The best performance results
are in bold.

Methods CD EMD F-Score

SAUM (×4) only 10.928 33.164 0.589
SAUM (×8) only 9.832 23.081 0.658

FCAE 9.799 17.128 0.651
FCAE+SAUM (×4) 8.816 14.383 0.721
FCAE+SAUM (×8) 8.668 9.015 0.745

AtlasNet 9.739 18.295 0.669
AtlasNet+SAUM (×4) 8.756 13.477 0.732
AtlasNet+SAUM (×8) 8.725 8.436 0.747

PCN 9.636 8.714 0.695
PCN+SAUM (×4) 8.898 7.366 0.737
PCN+SAUM (×8) 8.900 6.631 0.741

TopNet 9.637 12.206 0.668
TopNet+SAUM (×4) 8.785 11.376 0.731
TopNet+SAUM (×8) 8.316 10.471 0.756

when applied jointly for all of the baseline networks. We also compare the effect
of different upsampling ratio with r = 4 and r = 8. SAUM can complement
the local consistency of the existing methods, improving the consistency with
increasing r. The performance gain is more significant for EMD than CD, and
we argue the EMD better captures the shape fidelity.

6 Conclusion

We propose SAUM, the symmetry-aware upsampling module that can be aug-
mented to existing shape completion methods. Conventional shape completion
methods are comprised of a decoder structure that generates unseen points
based on semantic information condensed within a global feature vector and
often fails to preserve local information. SAUM, on the other hand, utilizes the
fine structure from the partial observation in addition to the latent symmetric
structure. We suggest a two-branch architecture where the baseline decoder is
attached with SAUM, which greatly improves the performance of the baseline.
The two branches are complementary and in union generate globally consistent
and completed shape, while maintaining the observed local structures.
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