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Abstract. Examining radiology images, such as X-Ray images as accu-
rately as possible, forms a crucial step in providing the best healthcare
facilities. However, this requires high expertise and clinical experience.
Even for experienced radiologists, this is a time-consuming task. Hence,
the automated generation of accurate radiology reports from chest X-Ray
images is gaining popularity. Compared to other image captioning tasks
where coherence is the key criterion, medical image captioning requires
high accuracy in detecting anomalies and extracting information along
with coherence. That is, the report must be easy to read and convey
medical facts accurately. We propose a deep neural network to achieve
this. Given a set of Chest X-Ray images of the patient, the proposed
network predicts the medical tags and generates a readable radiology re-
port. For generating the report and tags, the proposed network learns to
extract salient features of the image from a deep CNN and generates tag
embeddings for each patient’s X-Ray images. We use transformers for
learning self and cross attention. We encode the image and tag features
with self-attention to get a finer representation. Use both the above fea-
tures in cross attention with the input sequence to generate the report’s
Findings. Then, cross attention is applied between the generated Find-
ings and the input sequence to generate the report’s Impressions. We
use a publicly available dataset to evaluate the proposed network. The
performance indicates that we can generate a readable radiology report,
with a relatively higher BLEU score over SOTA. The code and trained
models are available at https://medicalcaption.github.io.

1 Introduction

Understanding radiology images such as X-Rays is essential for diagnosis and
treatment of many diseases. Given the amount of skill required for accurately
reading such images [1], it is challenging for less-experienced radiologists to write
medical reports. Hence in healthcare, writing medical reports from X-Ray im-
ages becomes a bottleneck for clinical patient care. To aid radiologists, many
researchers are investigating the generation of automatic reports from X-Ray
images [2,3] by formulating the problem as image captioning [4]. Although Xray
report generation task looks similar to a generic image captioning task, there
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Input Image

Radiology Report: no acute cardiopulmonary
abnormality. the lungs are clear bilaterally.
specifically no evidence of focal consolidation
pneumothorax or pleural effusion. cardio
mediastinal silhouette is unremarkable.
visualized osseous structures of the thorax are
without acute abnormality.
MTI Tags: Degenerative change

Ground Truth

Radiology Report: No acute cardiopulmonary
abnormality.Heart size within normal limits. No
pleural effusions. There is no evidence of
pnemothorax. Degenerative changes of
thoracic spine.
MTI Tags: Degenerative change

Generated Report

Fig. 1. Shows the actual medical report with MTI tags corresponding to an X-Ray
image with the report and tags generated from the proposed network. MTI tags are
automatically generated. They are the critical components of the report which capture
the essence of the diagnosis.

are fundamental differences and challenges to report generation. The Xray im-
ages contain complex spatial information and the abnormalities present in it are
difficult to find requiring subject matter expertise. Beyond everything, reports
need to be accurate. Hence, we focus on generating clinically accurate reports
with reasonably good readability in this work. Figure 1 shows one example of the
medical report and tags present in the IU datset [5] with the generated report
and tags from our proposed system. Every aspect of the proposed methodology
is designed to tackle the challenges present in automatic report generation.

The IU X-ray dataset [5] is used to perform our experiment. Each report in
the dataset corresponds to one patient. There is a variable number (N) of X-Ray
images of each patient. In the rest of the paper, Pidimg refers to a set of N X-Ray
images corresponding to a single patient id. Automatically generated tags from
the report represent most of the critical components of the report. Findings and
Impressions together constitute a report. Tags are identified for each patient, and
its embeddings are used in the report generation along with image features. The
two parts of the report are generated sequentially. The significant contributions
of this paper are as follows:

1. Since in any consortium of diagnostic data a large number of normal patient
data exists compared to abnormal patient data, we propose a 2 stage divide-
and-conquer approach. First, abnormal patients are identified from normal
patients, and their tag embeddings are generated. Conditional learning is
done based on the status of the patient’s data.

2. For predicting the report, we propose to use a novel architecture involving
transformers with 2 Encoders and 2 Decoders instead of traditionally used
recurrent neural networks.

3. Tag embeddings and Image features are encoded separately using two En-
coders. Findings and Impressions are different and can be learned by two
stacked Decoders, helping the former to improve the generation of later.
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2 Related Work

An automatic understanding of Radiology images, especially X-ray images, is a
well-studied problem. To facilitate that, Wang et al. [6] proposed a large scale
dataset for detection and localization of thoracic diseases from X-ray images.
They also provided various benchmarks. Yao et al. [7] and Rajpurkar et al. [8]
proposed using deep learning-based algorithms for efficient detection of various
diseases from chest X-ray images. Later works extended the problem by attribut-
ing ‘texts’ like tags and templates to the x-ray images. Kisilev et al. [9] build
a pipeline to predict the attributes of medical images. Shin et al. [10] adopts a
CNN-RNN based framework to predict tags (e.g., locations, severities) of chest
x-ray images. Zang et al. [11] aimed at generating semi-structured pathology
reports, whose contents are restricted to 5 predefined topics.

However, the first work that successfully created an automatic medical report
from X-ray images was proposed by Jing et al. [2]. They proposed to use a hier-
archical LSTM based recurrent model, exploiting the attention between tags and
the image features, opening the field of medical image captioning. Many other
works like Wang et al. [3], Li et al. [12], and Xiong et al. [13] enhanced the
performance achieved in medical image captioning by proposing various tech-
niques like feature level attention, reinforcement learning, and spatial attention
over the localized image regions.

The success in medical image captioning has been possible due to the latest
advances in deep learning. DenseNet [14], being a densely connected convolu-
tional network, enabled us to learn high order dependencies by using a large
number of layers with a minimal number of parameters, enabling the archi-
tectures to understand complex images like X-ray images without overfitting.
Xception [15] proposed depth-wise separable convolutional operation, which in-
turn extracts efficient image features with a decreased number of parameters in
the model. Different training strategies like triplet loss function [16] and ranking
based loss functions [17,18,19] also enhanced the performance of deep learning
based systems for application problems. Moreover, the latest enhances in im-
age captioning problems also played a vital role in developing radiology reports.
Karpathy et al. [20] achieved image captioning using deep learning by providing
the image features to the initial state of RNN. The RNN then uses the state in-
formation to predict the caption of the image. Though RNN’s capture temporal
dependencies, they have substantial computational overhead. Transformers [21],
on the other hand, can efficiently capture long and short term dependencies with
minimal computation. Hence, this work tries to utilize the latest deep learning
based techniques to generate accurate medical reports of radiology images.

3 Proposed Methodology

This work aims to propose a technique that can generate accurate medical re-
ports using X-ray images of variable sizes (N). Some of the images may cover the
neck and abdomen portions too. To avoid the network from getting confused,
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SSD to detect
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images per patient
N x m x n x 3

Set of N X-Ray images per
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lungs are clear. 

Impressions
Mild stable
cardiomegaly. No acute
disease.

Report
The heart is mildly
enlarged. The mediastinal
contours are stable. The
lungs are clear. Mild stable
cardiomegaly. No acute
disease.

C

Tag Level Chest 
Features (TLCF)

Fig. 2. Shows the overall pipeline of the proposed system. The system’s input is a set
of X-Rays taken of a patient, and output is the generated medical report containing
Findings and Impressions.

first, a Single shot multibox object detector (SSD) [22] is used to detect and
crop the lung region from the given X-ray images. The images are then padded
to a consistent size of 313× 306. For the viability of using pretrained models for
extracting image features, we repeat the images in 3 channels of RGB, forming a
313×306×3 image. Figure 2 shows the overall pipeline that is proposed for gen-
erating medical reports from a patient’s X-ray images. It consists of 4 modules,
namely (i) Chest Region Feature Extraction Net (CRFENet), (ii) Abnormality
Detection Net (ADNet), (iii) Tag Classification Net (TCNet), and (iv) Report
Generation Net (RGNet). The CRFENet takes the input X-Ray image (I) of
size 313 × 306 × 3 and provides a feature of size 10 × 10 × 512. This module
is intended to provide contextual information of the image. ADNet also takes
an input X-Ray image (I) and does a binary classification to identify any ab-
normality present. Since there is data imbalance with more data from healthy
patients, a hierarchical classification technique is chosen to classify the samples
between healthy and unhealthy classes, allowing conditional learning. Only the
abnormal samples are put through the TCNet, which ranks the tags to their
relevance to the report. The top 16 tags are chosen for each patient. We take
only the top 16 tags because the maximum number of tags associated with any
patient is 16. In the case of a normal patient, we manually set all the 16 tags
to normal. Then, the RGNet takes image features and tags to generate Find-
ings. Then in step 2, it takes Findings to generate Impressions. Finally, Findings
and Impressions are concatenated to form the full report. For efficient training
and hyper-parameterization, we employ modular training and modular hyper-
parameterization. This section discusses each module, the training procedure,
and the hyper-parameterization strategy in detail.
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Chest Region Feature Extraction Net (CRFENet)

Fig. 3. Shows the architecture of the proposed Chest Region feature extractor. The
module contains residual blocks of depth-separable convolutions to decrease the number
of overall parameters and computations. It helps to eliminate the over-fitting issues with
medical datasets in which the available data is scarce.

3.1 Chest Region Feature Extractor Net (CRFENet)

The first task in generating automatic radiology reports is to identify the salient
features present in X-Ray images that lead to the diagnosis. However, the chal-
lenge is that these features are complex to recognize and prone to subjectiv-
ity; they are highly non-linear. Hence, for extracting such features, we need to
learn a complex non-linear function that maps an input image (I) to its feature
(fimg)) as shown in Figure 3. We have designed a deep convolutional neural
network (CNN) for extracting such sophisticated non-linear features. However,
using deep CNNs have other disadvantages, such as large number of parameters
and vanishing gradient problems. Since medical datasets are scarce (this dataset
has only around 3999 patient records), learning deep networks is difficult. We
chose to ease the job by incorporating the following two ideas in CRFENet - (i)
Use Depth wise separable convolutions [15] over simple convolutions to reduce
the number of parameters. (ii) Use residual connections to solve the vanishing
gradient problem of deep networks. CRFENet contains one block of simple con-
volutional layers and four blocks of depth-wise separable convolutional layers,
as shown in figure 3. Batch-normalization and Relu non-linearity are used after
each conv layer.
Separable Convs: In convolution operation, the kernel aggregates the input
feature map’s depth information to produce a single output. Hence, to generate
an output having depth d, d such kernels are applied, giving us a vast amount of
parameters that need to be optimized. Whereas in depth-wise separable convolu-
tion operation, one kernel is applied without aggregating depth-wise information.
Instead, apply d pointwise convolution kernels to provide us with the final fea-
ture with depth d. Using this technique, we can efficiently create a deep model
with few parameters avoiding the overfitting problem.
Training: Learning a highly complex non-linear function to map image to its
features is a difficult job, especially when the data is scarce. For the CRFENet
to understand the X-Ray images, we trained it for chest disease classification on
NIH Dataset [6]. The image features of IU Dataset extracted from CRFENet for
final report generation are found to be better than the features extracted from
deep CNNs like Dense121 [14], VGG [23], and ResNet [24].
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Fig. 4. Shows the architecture of the Abnormality Detection Net (ADNet). It identi-
fies the presence or absence of abnormality in an X-Ray image using the triplet loss
function.

3.2 Abnormality Detection Net (ADNet)

As indicated earlier, before we generate medical reports, we need to find whether
a patient has any abnormality required to be included in the generated report.
To detect abnormal cases, we have proposed a binary classification module called
ADNet. ADNet classifies X-ray images into normal and abnormal classes. The
patients who do not have any MTI tag associated with them are defined as nor-
mal patients. Figure 4 shows the detailed architecture of the proposed ADNet.
As the abnormalities present in X-ray images are usually localized, it processes
the images in patches. Each input image I is divided into 16 overlapping patches
of size 128x128x3. These patches are passed through a sub-network called Em-
beddings Generator (EG), which produces embedding of size (512x1) for each
patch. EG is trained to produce embeddings such that normal patches and ab-
normal patches are as far as possible from each other in feature space. The 16
embeddings corresponding to a single I are concatenated to form a feature vector
of size (16x512). It is further reshaped to (4x4x512) to preserve the spatial re-
lationship present between these patches. Upon applying 2 Convolutional layers
and a fully connected layer of 1 neuron to (4x4x512) feature vector, ADNet gives
a probability of abnormality. Since every patient’s dataset contains a variable
number (N) of X-Ray images, we take the average probability and threshold it
at 0.5 to classify the patient as normal or abnormal.
Embeddings generator (EG): As discussed above, EG’s task is to extract a
512-D feature from a patch (128x128x3) of the X-ray image. EG is trained via
triplet loss function [16] to discriminate between normal and abnormal patches.
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Fig. 5. Shows the architecture of the proposed Tag Classification Net (TCNet). It
generates the top 16 relevant tags about a set of X-Ray images of an abnormal patient.

Each patch of size 128x128x3 is passed through rCRFENet, a reduced version
of CRFENet, to produce the output of the same size 10x10x512 feature for a
128x128x3 patch. rCRFENet only contains two maxpool layers as compared to
4 in CRFENet. rCRFENet is pretrained on NIH data [6] because it contains
the localization information of abnormality in X-Ray images, through an ROI.
Patches of 128x128x3 are chosen around the ROI for training. Given two patches
i and j, the EG must produce an embedding Θ, such that if both i and j

lie in the same class (normal or abnormal), then L2(Θ
i, Θj) should tend to 0,

otherwise, L2(Θ
i, Θj) ≥ β, where β is the margin. The loss has been defined

over 3 embeddings:

1. Θi: embedding of an anchor patch,
2. Θi+ : embedding of another patch from the same category, and
3. Θi− : embedding of a patch from other categories.

Formally:

L(i, i+, i−) = max(0, (Θi −Θi+)2 − (Θi −Θi−)2 + β) (1)

We sum the loss for all possible triples (i, i+, i−) to form the cost function J

which is minimized during training of EG:

J =
1

N

N∑

i=1

L(i, i+, i−) (2)

For efficiently training the EG network, we apply online semi-hard negative
mining and dynamic adaptive margin as proposed by [25].

3.3 Tag Classification Net (TCNet)

As the second step of hierarchy, TCNet predicts the tags associated with each
Pidimg. MTI tags play a crucial role in generating the report. As shown in
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Figure 5, N images in (Pidimg) are passed through CRFENet one after another
to obtain image features (10x10x512). Upon applying Global Average Pooling to
each of the image features, we get (1x512) feature vector, concatenated to get an
(Nx512) feature vector. This Nx512 feature vector passed through a Multi-Head
Attention module (MHA) to get the same dimensional output. MHA checks
the information in all the N images and produces a result. Over that, a simple
averaging and Dense layer of 237 neurons is applied. TCNet is trained using log
sum exponential pairwise loss function [19]. It assigns a value to each tag relative
to other tags by learning to rank via pairwise comparisons. Then, the values are
sorted, and the top 16 tags are picked to produce an output of size (16x1).

Multi Head Attention (MHA): The basic building block of multi-head atten-
tion [21] is the scaled dot product mechanism. The scaled dot product mechanism
is a sequence to sequence operation: given a sequence of values vectors v1, v2,
..., vn, it learns to provide an output sequence vectors y1, y2, ..., yn, based on a
query sequence q1, q2, ..., qn, and key sequence k1, k2, ..., kn. where each vector
in the sequence is d-dimensional. First we learn three weight matrices of size d×d

to transform each of the three sequences: Qi = Wqqi Ki = Wkki Vi = Wvvi .
Each yi is computed as weighted average over the all transformed value vector V :
yi =

∑
j wijVj , where j iterates over the whole sequence. Here wij is derived from

dot product of query and key sequences: w′
ij =

QT
i Kj√
d

, wij = softmax(w′
ij).

Alternatively, in the scaled dot product mechanism, to compute one particular
output yi, the corresponding vector of query Qi is compared (via. dot product)
to the whole sequence of key vectors K1, K2, ..., Kn to provide the attention
weights for each of the value vectors V1, V2, ..., Vn. We use the scaled dot prod-
uct mechanism to form the multi-head attention mechanism. For a given set of
value, query, and key vectors of n× d, where n is the sequence length, and d is
the dimensionality of each vector; we break each vector into r subparts of n× d

r
.

We apply r different scaled dot product mechanisms, each having independent
weight matrices of d

r
× d

r
giving us r outputs of n× d

r
. We concatenate these out-

puts to get the final output of shape n×d. Here the total number of parameters

is only 3d2

r
(3 weight matrices for each of r parts of the input sequence).

3.4 Report Generation Net (RGNet)

This is based on transformer architecture inspired from [21]. RGNet consists of
2 Encoders called Data Encoder (ED) and Tag Encoder (ET ), and 2 Decoders
called Findings Decoder (Dfin) and Impressions Decoder (Dimp). The network
architecture is shown in figure 6.

Data Encoder (ED): It takes N images of (Pidimg), passes each of them
through CRFENet to get (10x10x512) for each image. N features are concate-
nated to form a feature of size (Nx10x10x512) and reshaped to (Nx512x100).
Since neither all the N images are equally important nor every 512 features,
we try to enhance the appropriate features and images using 2 MHA modules.
The first one learns self-attention over each of N images’ features providing us
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Fig. 6. Shows the architecture of the proposed Report Generation Net (RGNet). This
module generates the report using a blend of information from image feature and
tag embeddings. Also, sequentially uses the report’s Findings to generate the report’s
Impressions.

with (Nx512) feature map. The second MHA learns self-attention to combine
the features across N images forming feature embeddings efficiently.

Tag Encoder (ET ): It takes the (16x1) tags extracted from TCNet and creates
an embedding for each of the tags. Later an MHA is used to learn self-attention
over the tag embeddings providing us with relevant tags only.

Findings Decoder (Dfin): The task of (Dfin) is, given a sequence of words
corresponding to the Findings, tag embeddings, and image features; it has to
generate the next word of the Findings. The next word will depend upon previ-
ous words as well as both tag embeddings and image features. We use a trans-
former block to learn the attention required on previous words of the report
over the tags embeddings and image features. Firstly, we learn self-attention on
the previous words of the report. It consumes all the previous information to
generate the next word. A multi-head attention mechanism is used to learn the
self-attention, where the report is given as the key, query, and value. Secondly,
we learn cross-attention between the output of the first self-attention block and
image features. We again use the multi-head attention mechanism, but for learn-
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ing cross-attention over tag embeddings. In both cases, the embeddings are given
as value and key, where the previous attention block’s output is given as query to
multi-head attention block. Self-attention gives us the next word’s dependence
on previous words, whereas the cross-attention provides us with the dependence
of the next word on the image features and tag embeddings. Both Self and Cross
attention matrices update their parameters based on the loss generated for next
word prediction. A feed-forward layer is applied after the cross attention form-
ing the transformer block. An embedding layer is used to convert the words into
embeddings of 256 dimensions, and sinusoidal positional encoding (SPE) [21] is
applied over the embeddings before inputting them into the transformer block.
Finally, a linear layer followed by softmax cross-entropy loss gives us the prob-
ability for each word in the dictionary to be the next word in the Findings.
Impressions Decoder (Dimp): Given a sequence of words corresponding to
the Impressions and output feature from Dfin), (Dimp) generates the next word
of the Impressions. It first learns the dependence of the next word on previ-
ous words by learning self-attention using MHA. Later cross-attention is learned
between previous words of Impressions and the generated Findings from Dfin)
using MHA, enabling the network to produce Impressions depending upon the
previously produced Findings. Finally, the Findings and Impressions are con-
catenated to form the final report.

3.5 Modular Training and Hyper-Parameterization

For training and searching for the optimal hyper-parameters of the proposed
methodology, we use modular training. We follow the below sequence of steps,
and each model is hyper-parameterized for efficiently performing its pretraining
task: (i) Pre-train the CRFENet and rCRFENet for chest disease classification
on NIH Dataset [6]. (ii) Then we train the EG using the triplet loss function
over patches extracted from the NIH dataset. (iii) Then ADNet is trained over
IU-dataset for normal vs. abnormal classification. (iv) The pretrained CRFENet
is used to finetune the TCNet using the ranking loss function. (v) Finally, we
train the RGNet for report generation using the image features extracted from
CRFENet and tags from TCNet.

4 Experimental Analysis

In this section, we provide the details of the experimental analysis performed
to validate the proposed methodology. We have performed a thorough ablation
study for experimentally validating every contribution proposed in this work.
Later, we show that our proposed model can produce accurate reports using
qualitative and quantitative comparative analysis.

4.1 Dataset used and evaluation metric

For validating the proposed methodology, we use a publicly available IU X-ray
dataset [5]. It contains the medical data of 3999 patients. Each data contains
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Task Model # layers # parameters Performance

Feature
Extractor

DenseNet 100 27.2 M 0.175 Loss
CRFENet 17 12.3 M 0.19 Loss

Abnormality
Detection

DenseNet 100 27.2 M 70.5% Acc
ADNet 18 13.1 M 74% Acc

Tag
Classification

TCNet with wBCE 19 12.6 M 0.44 Loss
TCNet 19 12.6 M 0.26 Loss

Report Generation RGNet 12 0.7 M 0.464 Bleu-1

Table 1. Parametric comparison and modular ablation analysis. Acc: Accuracy, wBCE:
weighted Binary Cross Entropy, M: Million. Bold represents the proposed systems.

findings, impressions, MTI tags, and a set of N number of X-ray images taken for
each patient. Findings and impressions are combined to make the medical report
of the patient. Medical text indexer (MTI) is used to extract keywords from the
report forming the MTI tags (referred to as tags in this work). Since each patient
has had multiple X-rays, there are a total of 7470 x-ray images. We tokenize each
word of the report and remove nonalphabetic tokens. Moreover, we computed
the frequency percentile of all the unique words in all the reports and picked only
the top 99 percentile of words, which amounts to 1000. The dataset contains 573
unique tags. We take only those tags that appeared in at least three reports.
Hence we are left with 283 tags for the tag prediction task. We discarded those
patients’ data, which did not contain either findings or impressions or X-ray
images. For testing the performance of our proposed network, as suggested by
Li et al. [12], we randomly split patients for training/validation/testing in the
ratio of 7/2/1. For evaluating the report generated against the original report,
we use standard image captioning evaluation metric BLEU score (Papineni et
al. [26]). BLEU score measures the quality of the text generated and assigns a
metric between 0 and 1. It analyses the statistics of overlapping words with the
reference sequence. The original report is taken as a reference to run the string
matching algorithm. A value of 0 means there is no overlap with the original
report, and 1 means there perfect overlap with the original report.

4.2 Ablation Study

For validating the contributions of the proposed network, we have performed
an extensive ablation study, as shown in Table 2 and 1. It is important to note,
though the system is broken into multiple modules, the complexity of the overall
system (38.7 M parameters and 66 layers) is comparable or lesser than state-
of-the-art systems. Table 1 shows the parametric comparison and performance
of each of the individual modules concerning corresponding state-of-the-art sys-
tems. In the first row of the table 2, we have shown our proposed methodology,
which contains four modules named CRFENet, ADNet, TCNet, and RGNet, as
described in Section 3. We performed an ablation study with alternatives for
every network mentioned above to testify each of the proposed networks’ contri-
butions. Firstly, we have tested the system by replacing the proposed CRFENet
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Model Bleu-1 Bleu-2 bleu-3 Bleu-4

Proposed Methodology 0.464 0.301 0.212 0.158

Model A(without CRFENet) 0.414 0.287 0.198 0.143

Model B(without ADNet) 0.320 0.218 0.156 0.116

Model C(without ranking loss) 0.295 0.192 0.104 0.092

Model D(without 2 decoder RGNet) 0.423 0.292 0.204 0.148

Table 2. Ablation study of the proposed methodology validating our contributions.

with pre-trained state-of-the-art CNN architectures (Model A). Among such ar-
chitectures, Densenet provides us with the best performance, as shown in the
table’s second row. Since CRFENet is only a six-block module with separable
convs, fewer parameters prevent overfitting than DenseNet and other CNN mod-
ules. Secondly, instead of ADNet, we used a simple VGG network for abnormal-
ity detection (Model B). Since most of the X-rays’ abnormalities are localized,
patch-based siamese abnormality detection (ADNet) provides us better results
than standard-sized image-based classifiers like VGG. Thirdly, we trained the
TCNet with weighted binary cross-entropy loss rather than ranking loss (Model
C). Since most of the tags are only associated with very few reports, the rank-
ing loss is better able to capture the association of tags with particular X-Ray
images. Finally, we train a single decoder RGNet, rather than the proposed two
decoder RGNet (Model D). The sequentially stacked decoders’ training, one for
Findings and Impressions, will learn better to optimize their respective models.
It will force the network to generate accurate Findings so that better Impres-
sions can get generated and vice-versa. It is evident from table 2 that each of
the ablated models performs inferior to the proposed network, which concretely
validates every contribution proposed in this work. We can also notice the mag-
nitude of the gain obtained from each of these changes. Usage of ranking loss
and hierarchical tag classification techniques gave the relatively biggest deltas
in the report generation’s quality.

4.3 Comparative Analysis

Table 3 shows the comparative analysis of the proposed system with state-of-
the-art networks. It can be seen from the table that our proposed methodol-
ogy achieves state-of-the-art for report generation task. Key components of our
proposed methodology like hierarchical tag classification, ranking based loss,
attention-based feature extraction, and transformer architecture could be the
leading cause for our model’s performance to be better than the rest.
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Input Image

Radiology Report:  heart size within normal
limits. mild hyperinflation of the lungs. mild
pectus excavatum deformity. stable left mid
lung calcified granuloma. no focal airspace
disease. no pneumothorax or effusions.
changes of chronic lung disease with no acute
cardiopulmonary finding. 

MTI Tags: Calcified Granuloma

Ground Truth

Radiology Report: the heart is normal in size.
the mediastinum is unremarkable. there is no
pleural effusion. pneumothorax. or focal
airspace disease. there is stable calcified
granuloma in the left lower lobe. no acute
disease.

MTI Tags: Calcified Granuloma

Generated Report

Radiology Report:  the heart is mildly
enlarged. the mediastinal contours are stable.
the lungs are clear. mild stable cardiomegaly.
no acute disease. 

MTI Tags: cardiomelagy

Radiology Report:  the heart is mildly
enlarged. the mediastinal contours are stable. 
there is no pleural effusion. pneumothorax. or

focal airspace disease. the lungs are clear.
mild stable cardiomegaly. no acute disease. 

MTI Tags: degenerative change, cardiomelagy

Radiology Report: No acute cardiopulmonary
abnormality. There are no focal areas of
consolidation. No suspicious pulmonary
opacities. Heart size within normal limits. No
pleural effusions. There is no evidence of
pnemothorax. Degenerative changes of
thoracic spine.

MTI Tags: degenerative change.

Radiology Report: No acute cardiopulmonary
abnormality.Heart size within normal limits. No
pleural effusions. There is no evidence of
pnemothorax. Degenerative changes of
thoracic spine.

MTI Tags: degenerative change.

Radiology Report:  status post midline
sternotomy with intact. stable mild
cardiomegaly. normal lung vascularity. the
lungs are clear. stable postop changes with
stable mild cardiomegaly and normal lung
vascularity.

MTI Tags: sterntomy

Radiology Report: the heart is normal in size.
the mediastinum is unremarkable. mild pectus
excavatum deformity is noted. the lungs are
clear. no acute disease. 

MTI Tags: pectus excravectum.

Faliure Cases

Radiology Report:  cardiomediastinal
silhouette is unchanged with mild
cardiomegaly. there is relative elevation of the
right hemidiaphragm consistent with history of
right lower lobectomy. without focal
consolidation. pneumothorax. or effusion
identified. irregularity of the right <unk> and
<unk> ribs stable since at <unk> and <unk>
postsurgical <alt> post traumatic in <unk>. left
shoulder rotator <unk> bone <unk> noted.

MTI Tags: cardiomelagy, lebactomy

Radiology Report: No acute cardiopulmonary
abnormality. There are no focal areas of
consolidation. No suspicious pulmonary
opacities. Heart size within normal limits. No
pleural effusions. There is no evidence of
pnemothorax. Degenerative changes of
thoracic spine.

MTI Tags: degenerative change.

Fig. 7. Shows the qualitative results of report generated from our proposed network.
The first 3 rows depict examples from high accuracy outputs. The correctly predicted
vocabularies are highlighted. The last 2 rows contain failure cases.
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Model Bleu-1 Bleu-2 bleu-3 Bleu-4

S&T [27] 0.265 0.157 0.105 0.073
SA&T [28] 0.328 0.195 0.123 0.080
TieNet [3] 0.330 0.194 0.124 0.081
Lie et al. [29] 0.359 0.237 0.164 0.113
CNN-RNN [10] 0.216 0.124 0.087 0.066
LRCN [30] 0.223 0.128 0.089 0.067
AdaAtt [31] 0.220 0.127 0.089 0.068
Att2in [32] 0.224 0.129 0.089 0.068
RTMIC [13] 0.350 0.234 0.143 0.096
Li et al. [12] 0.438 0.298 0.208 0.151
CoAtt [2] 0.455 0.288 0.205 0.154
Proposed Methodology 0.464 0.301 0.212 0.158

Table 3. Comparative analysis of the proposed system with state-of-the-art.

4.4 Qualitative Analysis

Figure 7 shows the qualitative results of the report generated from our pro-
posed network. The first three rows depict examples from high accuracy outputs,
whereas the last two rows contain the failure cases. In the first row, the proposed
system can correctly identify calcified granulomas and generate a technically
sound report. In the second row, the proposed system identifies cardiomelagy.
Moreover, for cases where there were only degenerative changes, our method
performed well. We can also understand from the highlighted portion that most
of the report’s predicted characteristics match the original report. We did find
two significant cases of failures; one example of both is depicted in the figure.
The first case being those abnormalities that only come ones or twice in the
dataset. In such cases, the proposed system was not able to learn about them.
The second case of failure is where the images were blurry or hazy. In such cases,
the network predicted the patient to have no disease at all.

5 Conclusion

Captioning medical images is a complex task because, unlike the natural images,
the salient features are not apparent. Here, we proposed a technique to blend
the image and tag features and use it in a unique way to generate a medical
report from a patient’s set of X-Ray images. Traditional use of recurrent neural
networks (RNNs) to solve such sequential data has a massive computational
overload. On the other hand, transformer architecture, which also captures the
sequential data, uses far fewer parameters. Furthermore, it applies attention
between and across features obtained from images, tags, and reports. While
significant improvements have been achieved over the SOTA, there is still scope
for improvement in generating useful quality reports, especially in hazy X-Rays
or cases where different X-Rays are acquired under different exposures.
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