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Abstract. We propose a novel, highly efficient sparse approach to region-
based 6DoF object tracking that requires only a monocular RGB camera
and the 3D object model. The key contribution of our work is a prob-
abilistic model that considers image information sparsely along corre-
spondence lines. For the implementation, we provide a highly efficient
discrete scale-space formulation. In addition, we derive a novel mathe-
matical proof that shows that our proposed likelihood function follows
a Gaussian distribution. Based on this information, we develop robust
approximations for the derivatives of the log-likelihood that are used in a
regularized Newton optimization. In multiple experiments, we show that
our approach outperforms state-of-the-art region-based methods in terms
of tracking success while being about one order of magnitude faster. The
source code of our tracker is publicly available.1

1 Introduction

Tracking a rigid object and estimating its 6DoF pose is an essential task in
computer vision that has a wide range of applications, from robotics to aug-
mented reality. The aim is to estimate both the rotation and translation of an
object relative to the camera from consecutive image frames. Typical challenges
include partial occlusions, object ambiguities, appearance changes, motion blur,
background clutter, and real-time requirements. To address those issues, many
approaches have been proposed. Based on surveys [1, 2], as well as recent devel-
opments, methods are typically differentiated by their use of key-points, explicit
edges, template images, deep learning, depth information, and image regions.

While methods based on key-points [3, 4] are very popular, rich texture is
required, which limits the range of suitable objects. This is also the case for
template-based approaches [5, 6]. Methods that use explicit edges [7–9], while
more suitable for texture-less objects, have the disadvantage of struggling with
background clutter. Deep-learning-based approaches [10–12] have also been used
but are either computationally expensive or do not reach state-of-the-art results.

1 https://github.com/DLR-RM/RBGT
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s = 5 s = 2 s = 1

Fig. 1. Example of the optimization process for the ape object on the RBOT dataset
[19]. The outermost images display a rendered overlay before and after the optimization.
The images in the middle visualize pixel-wise posteriors that describe the probability
of a pixel belonging to the background. White pixels indicate pb = 1. Also, the images
show orange correspondence lines that converge toward the final pose with decreasing
scale s. High probabilities for the contour position are illustrated in red. Notice that
during the operation of the tracker, pixel-wise posteriors are only calculated along lines.

Another recent development are methods that use depth cameras [13–16], which
provide good results but depend heavily on depth image quality. Because of
their capability to track texture-less objects in cluttered scenes, using only a
monocular RGB camera, region-based methods [17–21] have become increasingly
popular. However, while they reach state-of-the-art results, most methods feature
computationally expensive, dense formulations that hardly run in real-time.

To overcome this issue, we propose a novel, sparse approach to region-based
6DoF object tracking that is based on correspondence lines (see Fig. 1). Also, we
prove that the developed probabilistic model follows a Gaussian distribution and
use this information in a regularized Newton optimization. Finally, in multiple
experiments on the RBOT dataset [19], we show that our algorithm outperforms
state-of-the-art methods both in terms of runtime and tracking success.

2 Related Work

In general, region-based methods differentiate between a foreground area that
corresponds to the object and a background area. To model the membership of
each pixel, differences in image statistics, such as color, are used. Based on the
3D geometry of the object, the goal is to find the pose that best explains the two
regions. While early approaches [22, 23] treated segmentation and pose tracking
as independent problems that are solved sequentially, [24] combined both stages
to increase tracking robustness. Building on this approach and including the
pixel-wise posterior membership suggested by [25], [17] developed PWP3D, a
real-time capable algorithm that uses a level-set pose embedding.

Based on the concepts of PWP3D, multiple enhancements to incorporate ad-
ditional information, extend the segmentation model, or improve efficiency were
suggested. To fuse depth information, [26] added a term based on the Iterative
Closest Point (ICP) approach to the energy function. Another method, intro-
duced by [18], maximizes the probability of a model that tightly couples region
and depth information. Recently, methods that incorporate texture information
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were suggested by both [21] and [27]. To better handle occlusion, learning-based
object segmentation was proposed by [28]. The incorporation of orientation in-
formation from an inertial sensor was presented by [29]. To improve the segmen-
tation model, [30] introduced a boundary term to consider spatial distribution
regularities of pixels. Another approach, that was inspired by [31], proposed
the use of local appearance models [32]. The idea was later enhanced with the
development of temporally consistent local color histograms [33, 19]. The most
recent method introduced by [20], which is based on [27], uses polar-based region
partitioning and edge-based occlusion detection to further improve tracking.

With respect to efficiency, enhancements such as a hierarchical rendering
approach with Levenberg-Marquardt optimization [29], a simplified signed dis-
tance function [21], or a Gauss-Newton approach [19] were suggested. Another
idea by [26] suggests to precompute contour points and use a sparse calculation
of the energy function along rays. Starting from those ideas, this work focuses on
the development of a highly efficient, sparse approach to region-based tracking.
To keep complexity at a minimum, we use the global segmentation model of
PWP3D and do not consider additional information. Notice, however, that our
formulation is general enough to incorporate most of the discussed ideas.

3 Probabilistic Model

In this section, basic mathematical concepts are defined. This is followed by an
introduction to our sparse probabilistic model. Finally, we extend this model and
develop a discrete scale-space formulation to improve computational efficiency.

3.1 Preliminaries

In this work, 3D model points are defined by XXXi =
[
Xi Yi Zi

]⊤∈ R
3 or the

corresponding homogeneous form X̃̃X̃Xi =
[
Xi Yi Zi 1

]⊤
. We denote a color image

by III : ΩΩΩ → {0, . . . , 255}3, with the image domain ΩΩΩ ⊂ R
2. The RGB values yyyi

at image coordinate xxxi =
[
xi yi

]⊤∈ R
2 are described by yyyi = III(xxxi). To project

a 3D model point into an undistorted image, we use the pinhole camera model

xxxi = πππ(XXXi) =

[
Xi

Zi

fx + px
Yi

Zi

fy + py

]
, (1)

with fx and fy the focal lengths and px and py the principal point coordinates
for the directions x and y given in pixels.

To describe the relative pose between the model reference frame M and the
camera reference frame C, we use the homogeneous matrix CTTTM and calculate

CX̃̃X̃Xi = CTTTMMX̃̃X̃Xi =

[
CRRRM CtttM
000 1

]
MX̃̃X̃Xi, (2)

with CX̃̃X̃Xi a 3D model point represented in the camera reference frame C, MX̃̃X̃Xi

a 3D model point represented in the model reference frame M, CRRRM ∈ SO(3)
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the rotation matrix for the transformation from M to C, and CtttM ∈ R
3 the

translation vector for the transformation from M to C.
For small rotations, the angle-axis representation, which is a minimal repre-

sentation, is used. With the exponential map, the rotation matrix writes as

RRR = exp([rrr]×) = III + [rrr]× +
1

2!
[rrr]2× +

1

3!
[rrr]3× + ..., (3)

where [rrr]× represents the skew-symmetric matrix of rrr ∈ R
3. Linearizing Eq. (3),

by neglecting higher-order terms of the series expansion, the linear variation of
a 3D model point represented in the camera reference frame C is described by

CX̃̃X̃X
+
i =

[
CRRRM CtttM
000 1

] [
III + [θθθr]× θθθt

000 1

]
MX̃̃X̃Xi, (4)

with the variated model point CX̃̃X̃X
+
i , the rotational variation θθθr ∈ R

3, and the
translational variation θθθt ∈ R

3. In general, variated variables that depend on the
full variation vector θθθ⊤ =

[
θθθ⊤r θθθ⊤t

]
are indicated by a plus operator. Notice that

it is more natural to variate a model point in the reference frame M instead of
C since the object is typically moved significantly more than the camera.

3.2 General Formulation

In contrast to most state-of-the-art algorithms, we do not compute a joint prob-
ability over the entire image. Instead, inspired by RAPID [7], we introduce a
sparse model where the probability is only calculated along a small set of entities
that we call correspondence lines. Note that the name is motivated by the term
correspondence points used in ICP, since we also first define correspondences
and then optimize with respect to them. A correspondence line is described by

a center ccci =
[
cxi cyi

]⊤∈ R
2 and a normal vector nnni =

[
nxi nyi

]⊤∈ R
2, with

‖nnni‖2 = 1. Both values are defined by projecting a 3D contour point XXXi and an
associated vector normal to the contour NNN i into the image. With the distance
r ∈ R from the center, pixels on the line are described by rounding as follows

xxxcli(r) = ⌊ccci + r nnni +0.50.50.5⌋. (5)

Once a correspondence line is established, and pixels have been defined, it re-
mains fixed. During the pose variation in 6DoF, the projected difference ∆c+i
from the unmoved center ccci to the variated model point CXXX

+
i is calculated as

∆c+i = nnn⊤
i

(
πππ(CXXX

+
i )− ccci

)
. (6)

A visualization of a correspondence line with ∆c+i is shown in Fig. 2.
We now adopt the segmentation model of [25] and use color histograms to

estimate the probability distributions for the foreground and background in the
RGB color space. For each pixel on the correspondence line and associated color
yyyi(r) = III(xxxcli(r)), we use those distributions to calculate pixel-wise posteriors

pji(r) =
p(yyyi(r)|mj)

p(yyyi(r)|mf) + p(yyyi(r)|mb)
, j ∈ {f, b}, (7)
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r ∆c+
i

πππ(CXXX
+

i
) nnni ccci

pbi

Fig. 2. Correspondence line defined by a center ccci and a normal vector nnni, with selected
pixels and the projected difference ∆c+

i
from ccci to the variated point CXXX

+

i
. The color

intensity in red indicates the magnitude of the pixel-wise posterior pbi for each pixel.

with mf and mb the foreground and background model, respectively. Based on
PWP3D [17], we finally develop a probabilistic formulation. It describes how well
a pose dependent contour model, which uses smoothed step functions to model
uncertainty in the contour location, explains the calculated pixel-wise posteriors

p(DDDi|θθθ) ∝
∏

r∈Ri

(
hf(r −∆c+i )pfi(r) + hb(r −∆c+i )pbi(r)

)
, (8)

with DDDi the data specific to a single correspondence line, Ri a set of distances r
from the line center to pixel centers that ensures that every pixel along the line
appears exactly once, and hf and hb the smoothed step functions for foreground
and background, which will be specified in Section 4.1. Finally, assuming ncl

independent correspondence lines, the full likelihood can be calculated as

p(DDD|θθθ) ∝
ncl∏

i=1

p(DDDi|θθθ). (9)

3.3 Discrete Scale-Space Formulation

In order to improve computational efficiency, we develop a discrete scale-space
formulation that allows the combination of multiple pixels into segments and
the precomputation of hf and hb (see Fig. 3). Real-numbered values, like the
distances in Ri, which depend on both the angle and the center of the corre-
spondence line, are projected into a discrete space that is scaled according to

rs = (r −∆ri)
n̄i

s
, ∆c+si = (∆c+i −∆ri)

n̄i

s
, (10)

with s ∈ N
+ the scale that describes the number of pixels combined into a

segment, n̄i = max(|nxi|, |nyi|) the normal component that projects a corre-
spondence line to the closest horizontal or vertical coordinate, and ∆ri ∈ R a
distance from the correspondence line center ccci to a defined segment location.
Notice that while, in theory, arbitrary values can be chosen for ∆ri, it is typically
chosen to point either to the closest center or border of a segment.

Based on Eq. (8), we write the likelihood function in scale-space as follows

p(DDDi|∆c̃si) ∝
∏

rs∈Rs

(
hf(rs −∆c̃si)psfi(rs) + hb(rs −∆c̃si)psbi(rs)

)
, (11)
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ccci

hf(rs −∆c̃si)

∆ri

∆ri +
s

n̄i

r

rs

∆ri −
s

n̄i

x

−1 0 1∆c̃si

0 21−1

Fig. 3. Example of the relation between the unscaled space r along the correspondence
line, the discretized scale-space rs, and the space x of the smoothed step functions hf

and hb. Neighboring pixels combined into segments are visualized by the same color.
∆ri was chosen such that the center rs = 0 lies on a defined location on the border
between two segments. Blue and yellow dots indicate precalculated values of hf and
segment centers. Dashed vertical lines connecting those dots highlight that ∆c̃si has to
be chosen such that precalculated values are aligned with segment centers.

with Rs a set of distances to segment centers that ensures that every segment
along the correspondence line appears exactly once, ∆c̃si a discretized projected
difference value that ensures the alignment with precomputed values of hf and
hb, and psfi and psbi segment-wise posteriors. Assuming pixel-wise independence,
we define segment-wise posteriors similar to pixel-wise posteriors as

psji(rs) =

∏
r∈S(rs)

p(yyyi(r)|mj)

∏
r∈S(rs)

p(yyyi(r)|mf) +
∏

r∈S(rs)

p(yyyi(r)|mb)
, j ∈ {f, b}, (12)

where S is a set-valued function that maps rs to a set of values r that describe
the s closest pixel centers of a segment. Note that pixel-wise independence is a
well-established approximation that avoids ill-defined assumptions about spatial
distribution regularities and is close enough to reality to ensure good results.

Due to a limited number of precalculated values for hf and hb, the likelihood
function in Eq. (11) can only be evaluated at discrete values ∆c̃si. To approxi-
mate the likelihood for arbitrary θθθ and corresponding ∆c+si, the upper and lower
neighboring discretized values ∆c̃+si and ∆c̃−si are used to linearly interpolate

p(DDDi|θθθ) ∝∼ (∆c̃+si −∆c+si)p(DDDi|∆c̃−si) + (∆c+si −∆c̃−si)p(DDDi|∆c̃+si). (13)

4 Optimization

In the following section, a novel mathematical proof is derived to find functions
hf and hb that ensure that the likelihood follows a Gaussian distribution. This
is followed by a description of the regularized Newton method that is used to
optimize the likelihood. Finally, we define the required gradient and Hessian and
discuss how to find robust approximations in the presence of noise.
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4.1 Gaussian Equivalence

In general, Newton optimization yields particularly good results for Gaussian
distributions. In the case of a perfect normal distribution, where the application
of the logarithm leads to a quadratic function, the algorithm converges in a
single step. To improve convergence, we thus try to find smoothed step functions
hf and hb that ensure that the developed likelihood function follows a normal
distribution. Please note that only the main concepts of the proof are covered
in this section. A detailed version is provided in the supplementary material.

To make the problem tractable, a contour at the correspondence line center
and perfect segmentation are assumed. This results in simple unit step func-
tions for pixel-wise posteriors. Also, the smoothed step functions hf and hb are
restricted to sum to one and to be symmetric. Consequently, we define

hf(x) = 0.5− f(x), hb(x) = 0.5 + f(x), (14)

where f(x) is an odd function that lies within the interval [−0.5, 0.5] and that
fulfills lim

x→∞
f(x) = 0.5 and lim

x→−∞
f(x) = −0.5. Finally, we assume infinitesimally

small pixels to write the likelihood from Eq. (8) in continuous form

p(DDDi|θθθ) ∝ exp

(∫ ∞

r=−∞

ln
(
hf(r −∆c+i )pfi(r) + hb(r −∆c+i )pbi(r)

)
dr

)
. (15)

Using the assumption of perfect pixel-wise posteriors, one is able to simplify

p(DDDi|θθθ) ∝ exp

(∫ −∆c
+
i

x=−∞

ln
(
hf(x)

)
dx+

∫ ∞

x=−∆c
+
i

ln
(
hb(x)

)
dx

)
. (16)

To eliminate constant scaling terms and the integral, we apply the logarithm
and use Leibniz’s rule for differentiation under the integral to calculate the first-
order derivative with respect to ∆c+i . This is then factorized using Eq. (14)

∂ ln
(
p(DDDi|θθθ)

)

∂∆c+i
= − ln

(
hf(−∆c+i )

)
+ ln

(
hb(−∆c+i )

)
(17)

= 2 tanh−1
(
2f(−∆c+i )

)
. (18)

Finally, equality is enforced for the first-order derivative of the logarithm of both
the likelihood in Eq. (18) and the normal distribution N (∆c+i |0, sh). Knowing
that for the normal distribution one obtains −s−1

h ∆c+i , we solve for f and use
Eq. (14) to find the following expressions for the smoothed step functions

hf(x) =
1

2
− 1

2
tanh

( x

2sh

)
, hb(x) =

1

2
+

1

2
tanh

( x

2sh

)
, (19)

where sh is at the same time the slope parameter for the smoothed step functions
and the variance of the designed likelihood function.



8 M. Stoiber et al.

N (∆c+
i
|0, 1)

hb(r −∆ci)

hf(r −∆ci)

1
pfi(r)

0.4

r∆ci ∆ci ∆c+
i

0 4−4 0−2 22−2

Fig. 4. Example of the relation between our smoothed step functions hf and hb and the
normal distribution of ∆c+

i
for sh = 1. The graph on the left shows perfect pixel-wise

posterior probabilities pfi for the foreground and smoothed step functions for a specific
projected difference ∆ci. The graph on the right displays the corresponding normal
distribution for all values of ∆c+

i
. The probability value for ∆ci is depicted in red.

Since equality is enforced for the first-order derivatives of the logarithms, the
original functions can only differ by a constant scaling factor, and we can write

p(DDDi|θθθ) ∝ N (∆c+i |0, sh). (20)

An example of the relation between the smoothed step functions and the result-
ing normal distribution is shown in Fig. 4. In summary, the proof shows that
with the derived smoothed step functions, we attain a probabilistic model that
follows a Gaussian distribution. Although assumptions, such as perfect pixel-
wise posteriors and infinitesimally small pixels, are not an exact description of
reality, experiments demonstrate that, with the constructed probabilistic model,
we achieve excellent convergence for the used regularized Newton optimization.

4.2 Regularized Newton Method

To maximize the likelihood, we estimate the variation vector and iteratively
update the pose. For a single iteration, the variation vector is calculated using
Newton optimization with Tikhonov regularization as follows

θ̂̂θ̂θ =

(
−HHH +

[
λrIII3 000
000 λtIII3

])−1

ggg, (21)

where ggg and HHH are the gradient vector and the Hessian matrix defined as

ggg⊤ =
∂

∂θθθ
ln
(
p(DDD | θθθ)

)∣∣∣
θθθ=000

, HHH =
∂2

∂θθθ2
ln
(
p(DDD | θθθ)

)∣∣∣
θθθ=000

, (22)

and λr and λt the regularization parameters for rotation and translation, respec-
tively. Using the log-likelihood has the advantage that scaling terms vanish and
products turn into summations. Finally, the pose can be updated according to

CTTTM = CTTTM

[
exp([θ̂̂θ̂θr]×) θ̂̂θ̂θt

000 1

]
. (23)

Notice that due to the exponential map, no orthonormalization is necessary. By
iteratively repeating the process, we are now able to estimate the optimal pose.
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∆c̃si0−2−4 2 4

∝ p(DDDi|∆c̃si)

N (∆c̃si|µ∆c̃si , σ
2
∆c̃si

)

Fig. 5. Example showing normalized values of a noisy discrete likelihood p(DDDi|∆c̃si)
and the normal distribution N (∆c̃si|µ∆c̃si , σ

2
∆c̃si

) that approximates that likelihood.
The red line indicates a threshold for the probability values. To avoid errors from image
noise and invalid pixel-wise posteriors, for values below this threshold, the normal
distribution is used in the calculation of partial derivatives of the log-likelihood.

4.3 Gradient and Hessian Approximation

Using the chain rule, the gradient vector and Hessian matrix can be defined as

ggg⊤ =

ncl∑

i=1

∂ ln
(
p(DDDi | θθθ)

)

∂∆c+si

∂∆c+si
∂CXXX

+
i

∂CXXX
+
i

∂θθθ

∣∣∣∣
θθθ=000

, (24)

HHH ≈
ncl∑

i=1

∂2 ln
(
p(DDDi | θθθ)

)

∂∆c+si
2

(
∂∆c+si
∂CXXX

+
i

∂CXXX
+
i

∂θθθ

)⊤ (
∂∆c+si
∂CXXX

+
i

∂CXXX
+
i

∂θθθ

) ∣∣∣∣
θθθ=000

. (25)

Notice that since the first-order partial derivative of the log-likelihood becomes
zero when the optimization reaches the maximum, second-order partial deriva-
tives for ∆c+si and CXXX

+
i are neglected. Omitting the plus operator for variables

evaluated at θθθ = 000 and using Eq. (4), (6), and (10), we calculate

∂CXXX
+
i

∂θθθ

∣∣∣∣
θθθ=000

= CRRRM

[
−[MXXXi]× III

]
, (26)

∂∆c+si
∂CXXX

+
i

∣∣∣∣
θθθ=000

=
n̄i

s

1

CZ2
i

[
nxifxCZi nyifyCZi −nxifxCXi − nyifyCYi

]
. (27)

For the first-order partial derivative of the log-likelihood, two cases are dis-
tinguished. If the normalized values of p(DDDi|∆c̃+si) and p(DDDi|∆c̃−si) are above a
defined threshold, we assume that they are reliable and, based on Eq. (13), write

∂ ln
(
p(DDDi | θθθ)

)

∂∆c+si

∣∣∣∣
θθθ=000

≈ p(DDDi|∆c̃+si)− p(DDDi|∆c̃−si)

(∆c̃+si −∆csi)p(DDDi|∆c̃−si) + (∆csi −∆c̃−si)p(DDDi|∆c̃+si)
. (28)

If one value is below the threshold, the knowledge that p(DDDi | ∆c̃si) follows a
normal distribution is used. The distribution can be estimated using the mean
µ∆c̃si and the standard deviation σ∆c̃si calculated from p(DDDi | ∆c̃si) (see Fig. 5).
Consequently, the first-order partial derivative can be approximated by

∂ ln
(
p(DDDi | θθθ)

)

∂∆c+si

∣∣∣∣
θθθ=000

≈ − 1

σ∆c̃si
2

(
∆csi − µ∆c̃si

)
. (29)
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For the second-order partial derivative, we always use the approximation

∂2 ln
(
p(DDDi | θθθ)

)

∂∆c+si
2

∣∣∣∣
θθθ=000

≈ − 1

σ∆c̃si
2
. (30)

The approximations ensure that our partial derivatives maintain a global view
of the distribution and that they are robust in the presence of image noise
and invalid pixel-wise posteriors. Also, notice that distinguishing between the
two cases allows the first-order derivative to direct the optimization toward the
actual maximum while remaining stable for small, inaccurate probability values.

5 Implementation

For the proposed method, 3D points and normal vectors from the contour of the
model are required. To ensure computational efficiency, we take an approach sim-
ilar to [16] and precompute template views that store the required information.
The 3D model of an object is thereby rendered from 2562 different viewpoints
that are placed on the vertices of a geodesic grid with a distance of 0.8m to the
object center. For each rendering, we randomly sample ncl = 200 points from
the object contour. Based on those coordinates, 3D model points and associated
normal vectors are reconstructed. In addition, we compute continuous distances
for the foreground and background, where the corresponding regions are not in-
terrupted by the other. Starting from a coordinate, those distances are measured
along the normal vector. For each view, the data is then stored together with a
direction vector Mvvvi ∈ R

3 that points from the camera to the model center.
Each tracking step starts either from the previous pose or an initial pose

provided by a 3D object detection pipeline. Based on this pose, we first retrieve
the template view it that is closest to the direction in which the object is located

it = argmax
i∈{1,...,2562}

(Mvvv⊤i MRRRCCtttM). (31)

Model points and normal vectors from the template view are then projected into
the image plane to define correspondence lines. For the probabilistic model, a
continuous foreground and background on each side of the contour are required.
We thus scale precomputed continuous distances according to the current camera
distance and scale s and reject correspondence lines with a continuous distance
below 8 segments. After that, each distribution p(DDDi | ∆c̃si) is calculated for
11 discrete values ∆c̃si ∈ {−5,−4, . . . , 5}. The distance ∆ri is thereby chosen
to be minimal such that the distribution center at ∆c+si = 0 is closest to the
correspondence line center ccci. For the smoothed step functions, 10 precomputed
values corresponding to x ∈ {−4.5,−3.5, . . . , 4.5} are used. Both hf and hb are
defined using a slope of sh = 1.3. Notice that with this slope, the smallest
considered value is hf(4.5) = 0.03. Values smaller than that are neglected since,
in general, they do not contribute significantly to the overall distribution.

Following the calculation of the distributions, 2 iterations of the regularized
Newton method are performed. Both the gradient and Hessian are recomputed
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for each iteration. As threshold for the normalized values of p(DDDi|∆c̃+si) and
p(DDDi|∆c̃−si), we use 0.01. Also, we check if the standard deviation σ∆c̃si is above
the theoretical minimum

√
sh. If it is smaller, due to the limited number of values

considered in the distribution, it is set to
√
sh. Similarly, the magnitude of the

first-order derivative of the log-likelihood in Eq. (28) is limited by the theoretical
maximum 10/sh. For the regularization, we use λr = 5000 and λt = 500000.

To find the final pose, the process is repeated 7 times, starting each time
with the retrieval of a new template view. The first and second iterations use a
scale of s = 5 and s = 2, respectively. For all other iterations, the scale is set to
s = 1. Examples of different scales are shown in Fig. 1. The specified scales have
the effect that in the first iteration a large area with low resolution is considered
while short lines with high resolution are used in later iterations.

Once the final pose is estimated, the color histograms, that correspond to
the probability distributions p(yyy|mf) and p(yyy|mb), are updated. The RGB color
space is thereby discretized with 32 equidistant bins in each dimension, leading to
a total of 32768 values. For the calculation, correspondence lines are established.
Pixels along the line are then assigned to either the foreground or background,
depending on which side of the center they are. Starting with an offset of 2
pixels, the first 10 pixels are used in both directions. Based on [25], we allow for
online adaptation of the foreground and background statistical model as follows

pt(yyy|mi) = αipt(yyy|mi) + (1− αi)pt−1(yyy|mi), i ∈ {f, b}, (32)

where αf = 0.1 and αb = 0.2 are the learning rates for the foreground and
background, respectively. The update ensures that effects such as changes in il-
lumination or in the background are considered. For the initialization, we directly
use the computed histograms instead of blending them with previous values.

To take into account known occlusions, a renderer that generates occlusion
masks for the rejection of correspondence lines is implemented. It only uses a
fourth of the camera resolution to ensure computational efficiency. Also, the
silhouette of each object is dilated by 1 pixel in the mask domain to consider
uncertainty in the object pose. Finally, to reject occluded correspondence lines,
the algorithm checks if the center ccci falls on the mask of another object.

6 Evaluation

In the following, we first introduce the Region-Based Object Tracking (RBOT)
dataset [19] and describe the conducted experiments. Our results are then com-
pared to the state of the art in region-based tracking [33, 19, 27, 20]. Finally,
based on an ablation study in the supplementary material, we discuss the es-
sential aspects of our method. To ensure reproducibility, we provide the source
code on GitHub1. Also, for visualization, we added a video in the supplementary
material that illustrates the RBOT dataset, our approach, and the experiments.
In addition, multiple real-world sequences are available on our project site2.

1 https://github.com/DLR-RM/RBGT
2 https://rmc.dlr.de/rm/staff/manuel.stoiber/accv2020
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Ape⋆ Soda⋄ Vise⋆ Soup⋄ Camera⋆ Can⋆ Cat⋆ Clown⋄ Cube⋄

Driller⋆ Duck⋆ Egg Box⋆ Glue⋆ Iron⋆ Candy⋄ Lamp⋆ Phone⋆ Squirrel

Fig. 6. Overview of all objects in the RBOT dataset [19]. Objects from the LINEMOD

dataset [34] and Rigid Pose dataset [35] are marked with ⋆ and ⋄, respectively.

6.1 Experiments

The RBOT dataset consists of a collection of eighteen objects (see Fig. 6): twelve
from the LINEMOD dataset [34], five from the Rigid Pose dataset [35], and one
from its creators. For each object, four sequences exist. Each sequence consists
of 1001 semi-synthetic monocular images with a resolution of 640 × 512 pixels.
Objects were rendered into real-world images, recorded from a hand-held camera
that moves around a cluttered desk scene (see Fig. 1). To simulate motion blur, a
3× 3 Gaussian kernel was applied. The first sequence features a regular version
with a static point light source. The second, dynamic light, variant simulates
simultaneous motion of the camera and object. For the third sequence, Gaussian
noise and dynamic lighting were added. Finally, the fourth sequence features an
additional squirrel object that leads to occlusion by orbiting around the first
object. It also includes dynamic lighting. In all sequences, objects move along
the same trajectories. The ground-truth pose is given by the rotation matrix

CRRRMgt
(tk) and the translation vector CtttMgt

(tk) for k ∈ {0, . . . , 1000}.
The evaluation is conducted on a computer with an Intel Xeon E5-1630 v4

CPU and a Nvidia Quadro P600 GPU. All experiments are performed exactly
as in [19], with the translational and rotational error calculated as

et(tk) = ‖CtttM(tk)− CtttMgt(tk)‖2, (33)

er(tk) = cos−1
(
0.5

(
trace(CRRRM(tk)

⊤
CRRRMgt

(tk))− 1
))

. (34)

Starting from an initialization with the ground-truth pose at t0, the tracker runs
automatically until either the recorded sequence ends or tracking was unsuc-
cessful. A pose is considered successful if both et(tk) < 5 cm and er(tk) < 5◦.
Otherwise, the tracker is re-initialized with the ground-truth pose at tk. For the
occlusion sequence, we differentiate between two variants. In the first, only the
main object is tracked, and occlusions are considered as unmodeled. In the sec-
ond, both objects are tracked, and occlusions are modeled using occlusion masks.
Notice that, while the occluding object is re-initialized if tracking is unsuccessful,
it is not considered in the evaluation of the tracking success.
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6.2 Results

In Table 1, we compare the success rates of state-of-the-art methods to our pro-
posed approach. Note that [27] and [20] do not support the modeled occlusion

Table 1. Tracking success rates of [33], [19], [27], [20], and our method, featuring all
variants of the RBOT dataset. The best values are highlighted in bold numbers.
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Regular
[33] 62.1 30.5 95.8 66.2 61.6 81.7 96.7 89.1 44.1 87.7 74.9 50.9 20.2 68.4 20.0 92.3 64.9 98.5 67.0
[19] 85.0 39.0 98.9 82.4 79.7 87.6 95.9 93.3 78.1 93.0 86.8 74.6 38.9 81.0 46.8 97.5 80.7 99.4 79.9
[27] 82.6 40.1 92.6 85.0 82.8 87.2 98.0 92.9 81.3 84.5 83.3 76.2 56.1 84.6 57.6 90.5 82.6 95.6 80.8
[20] 88.8 41.3 94.0 85.9 86.9 89.0 98.5 93.7 83.1 87.3 86.2 78.5 58.6 86.3 57.9 91.7 85.0 96.2 82.7
Us 96.4 53.2 98.8 93.9 93.0 92.7 99.7 97.1 92.5 92.5 93.7 88.5 70.0 92.1 78.8 95.5 92.5 99.6 90.0

Dynamic Light
[33] 61.7 32.0 94.2 66.3 68.0 84.1 96.6 85.8 45.7 88.7 74.1 56.9 29.9 49.1 20.7 91.5 63.0 98.5 67.0
[19] 84.9 42.0 99.0 81.3 84.3 88.9 95.6 92.5 77.5 94.6 86.4 77.3 52.9 77.9 47.9 96.9 81.7 99.3 81.2
[27] 81.8 39.7 91.5 85.1 82.6 87.1 98.1 90.7 79.7 87.4 81.6 73.1 51.7 75.9 53.4 88.8 78.6 95.6 79.0
[20] 89.7 40.2 92.7 86.5 86.6 89.2 98.3 93.9 81.8 88.4 83.9 76.8 55.3 79.3 54.7 88.7 81.0 95.8 81.3
Us 96.5 54.6 99.1 93.9 93.1 94.7 99.5 97.0 93.0 93.4 93.3 92.6 74.9 91.0 79.2 95.6 89.8 99.5 90.6

Noise
[33] 55.9 35.3 75.4 67.4 27.8 10.2 94.3 33.4 8.6 50.9 76.3 2.3 2.2 18.2 11.4 36.6 31.3 93.5 40.6
[19] 77.5 44.5 91.5 82.9 51.7 38.4 95.1 69.2 24.4 64.3 88.5 11.2 2.9 46.7 32.7 57.3 44.1 96.6 56.6
[27] 80.5 35.0 80.9 85.5 58.4 53.5 96.7 65.9 38.2 71.8 85.8 29.7 17.0 59.3 34.8 61.1 60.8 93.6 61.6
[20] 79.3 35.2 82.6 86.2 65.1 56.9 96.9 67.0 37.5 75.2 85.4 35.2 18.9 63.7 35.4 64.6 66.3 93.2 63.6
Us 91.9 53.3 90.2 92.6 67.9 59.3 98.4 80.6 43.5 78.1 92.5 44.0 31.3 72.3 62.0 59.9 71.7 98.3 71.5

Unmodeled Occlusion
[33] 55.2 29.9 82.4 56.9 55.7 72.2 87.9 75.7 39.6 78.7 68.1 47.1 26.2 35.6 16.6 78.6 50.3 77.6 57.5
[19] 80.0 42.7 91.8 73.5 76.1 81.7 89.8 82.6 68.7 86.7 80.5 67.0 46.6 64.0 43.6 88.8 68.6 86.2 73.3
[27] 77.7 37.3 87.1 78.7 74.6 81.0 93.8 84.3 73.2 83.7 77.0 66.4 48.6 70.8 49.6 85.0 73.8 90.6 74.1
[20] 83.9 38.1 92.4 81.5 81.3 85.5 97.5 88.9 76.1 87.5 81.7 72.7 52.5 77.2 53.9 88.5 79.3 92.5 78.4
Us 90.8 51.7 95.9 88.5 88.0 90.5 96.9 91.6 87.1 90.3 86.4 85.6 65.8 87.0 72.7 91.2 84.0 97.0 85.6

Modeled Occlusion
[33] 60.3 31.0 94.3 64.5 67.0 81.6 92.5 81.4 43.2 89.3 72.7 51.6 28.8 53.5 19.1 89.3 62.2 96.7 65.5
[19] 82.0 42.0 95.7 81.1 78.7 83.4 92.8 87.9 74.3 91.7 84.8 71.0 49.1 73.0 46.3 90.9 76.2 96.9 77.7
Us 95.0 53.8 97.8 92.4 90.6 93.5 99.1 96.3 91.5 92.6 90.9 91.3 70.5 91.8 77.2 93.7 87.0 99.0 89.1

scenario. The results show that our approach outperforms the competition in
almost all cases by a large margin. Only for very few cases, [19] or [20] produce
better results. With respect to the average success rates, our method consis-
tently achieves about seven percentage points more than [20], which previously
performed best on the RBOT dataset. The superior tracking success is especially
interesting since, in contrast to the competition, we do not use advanced seg-
mentation models. Assuming that localized appearance models provide better
segmentation, this represents a major disadvantage.

With respect to the remaining failure cases, we notice that there are mainly
two causes. One challenge are local ambiguities, where the object silhouette is
very similar in the vicinity of a particular pose. Naturally, in such cases, there
is not enough information to converge to the correct pose. Another problem
arises if large regions in the background contain colors that are also present in
the object. Depending on how well the pose is constrained, this might perturb
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the final result. Together with the requirements that the 3D model has to be
known and that frame-to-frame motion should not exceed the area covered by
correspondence lines, these are the natural limitations of our algorithm.

For the average runtime, we measure 1.04ms. The only exception is the mod-
eled occlusion scenario, which features two objects and requires to render occlu-
sion masks. For this scenario, we obtain an average execution time of 7.41ms. In
comparison, [33], [19], [27], and [20] report average runtimes of 12.5 ∼ 33.3ms,
15.5 ∼ 21.8ms, 47.0ms, and 41.2ms, respectively. While experiments were per-
formed on different computers, the significantly lower execution time demon-
strates our method’s computational efficiency. Also, our algorithm only utilizes
a single CPU core and, except for the modeled occlusion variant, does not rely on
a GPU. In contrast, the competition always requires a GPU. We thus conclude
that, with less computational resources, our method is approximately one order
of magnitude faster while achieving significantly better tracking success.

6.3 Essential Aspects

Based on an ablation study that is presented in the supplementary material, in
the following, we want to highlight essential aspects that contribute to our excel-
lent results. Regarding computational efficiency, the biggest performance gain is
associated with our sparse formulation that considers fewer pixels. In addition,
we simply measure the projected distance along correspondence lines instead of
calculating a two-dimensional signed distance function over the entire image.
Also, with our discrete scale-space formulation, we are able to both combine
multiple pixels and use precomputed values for the smoothed step functions.

Concerning tracking success, one essential aspect is the adopted Tikhonov
regularization, which constrains the optimization relative to the previous pose.
Also, due to the one-dimensionality of our correspondence lines and the devel-
oped discrete scale-space implementation, multiple probability values along lines
can be sampled in reasonable time. This allows the calculation of sound deriva-
tives that maintain a global view of the distribution. Together with the derived
smoothed step functions, that ensure Gaussian properties, a realistic gradient
and Hessian are provided to the regularized Newton optimization.

7 Conclusion

In this work, we presented a novel, sparse approach to region-based 6DoF ob-
ject tracking. On the RBOT dataset, we showed that our algorithm outperforms
state-of-the-art region-based methods by a considerable margin, both with re-
spect to tracking success and computational efficiency. Because of its general
formulation, it is easy to conceive future methods that extend our approach
with other developments in region-based tracking. Potential directions include
the implementation of more advanced segmentation models or the incorpora-
tion of additional information such as depth or texture. In addition, by proving
that our probabilistic model follows a Gaussian distribution, we provided a solid
foundation for sound uncertainty estimation based on the Hessian matrix.
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