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Abstract. Existing unsupervised 3D object reconstruction methods can
not work well if the shape of objects varies substantially across images or
if the images have distracting background. This paper proposes a novel
learning framework for reconstructing 3D objects with large shape vari-
ation from single in-the-wild images. Considering that shape variation
leads to appearance change of objects at various scales, we propose a
fusion module to form combined multi-scale image features for 3D re-
construction. To deal with the ambiguity caused by shape variation, we
propose side-output mask constraint to supervise the feature extraction,
and adaptive edge constraint and initial shape constraint to supervise the
shape reconstruction. Moreover, we propose background manipulation to
augment the training images such that the obtained model is robust to
background distraction. Extensive experiments have been done for both
non-rigid objects (birds) and rigid objects (planes and vehicles), and the
results prove the superiority of the proposed method.
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Fig. 1: Our proposed 3D object reconstruction method can infer more accurate 3D
shapes especially for objects with large shape variation and images with cluttered
background. For easy comparison, we overlay ground truth masks (in grey color) with
the reconstructed ones (in cyan color), and highlight their common regions in red color.
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1 Introduction

Knowing 3D shapes of objects is of significant importance in many tasks, e.g.,
scene understanding [1] and surgical navigation. While inferring the 3D shape of
an object from a single view of the object seems effortless for the human vision
system, it is still quite difficult for computer vision systems. Some researchers
implement 3D object reconstruction by using multi-view geometry based ap-
proaches [2][3][4], which estimate 3D object shapes by exploring the motion or
appearance clues among the multiple views of objects. These methods are lim-
ited by the availability of multi-view images of objects, and are consequently
not always applicable in different scenarios. In this paper, we focus on 3D object
reconstruction from single images.

Learning-based approaches are nowadays dominant in 3D object reconstruc-
tion. These methods use 3D volumes [5], point clouds [6], or meshes [7] to repre-
sent 3D objects, among which meshes can provide finer shape details and effec-
tively support various shape editing and are thus preferred in many applications.
Most of these methods [8][9][10] require ground truth 3D shapes as supervision
during learning. Some of them [11] first learn morphable models based on the
ground truth 3D shapes and then estimate 3D shapes for input images by fitting
the morphable models. Others [12] learn mappings from 2D images to 3D shape
deformations that are needed to transform the initial shape estimate towards its
true value. Despite the impressive results obtained by these methods, collecting
ground truth 3D shapes of objects is not always affordable or feasible. As a re-
sult, learning for 3D object reconstruction without supervision of ground truth
3D shapes is attracting increasing attention.

When ground truth 3D shapes are not available for the training 2D images,
3D object reconstruction learning can be supervised by various prior-based con-
straints or by features on 2D images. While priors such as smoothness [13] and
low-rank [14] have been proven effective for unsupervised 3D object reconstruc-
tion, features like keypoints, silhouettes, foreground masks, texture values, and
perceptual features [15] are widely used to enforce the coincidence between the
input image and the image rendered from the estimated 3D object. To apply
such supervision, existing methods [16] simply extract from the input image
a latent feature representation, which is assumed to encode the shape, texture
and camera parameters associated with the input image, and based on which the
3D object in the image is regressed. Despite the impressive results obtained by
them, they work poorly when the objects have large shape variation or when the
images have distracting background, as shown in Fig. ??. We believe that this is
due to their inefficient utilization of data (or features) and constraints. For in-
stance, when enforcing the coincidence, existing methods consider only locations
of keypoints and apply geometric constraints like foreground mask constraint at
the output layers only. As a consequence, they are poor both at dealing with
invisible keypoints that are caused either by occlusion or by large pose variations
of objects and at capturing rich shape deformations of objects.

This paper aims to boost the 3D reconstruction performance for objects
with large shape variation and for images with cluttered background. To this
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end, we propose a novel learning framework by exploiting the training data
and the geometric constraints in more efficient manners. Specifically, considering
that shape variation leads to appearance change of objects at various scales, we
propose a fusion module to combine multi-scale features extracted from the input
image, based on which the 3D object is estimated. Considering the ill-posed
nature of reconstructing 3D objects from single 2D images and the ambiguity
caused by shape variation, we propose side-output mask constraint to supervise
the feature extraction, and adaptive edge constraint and initial shape constraint
to supervise the shape reconstruction. Moreover, we augment the training images
via manipulating their background to improve the robustness of the obtained
model to background distraction. We validate the superiority of our proposed
method by extensive experiments for reconstructing both non-rigid objects, i.e.,
birds, and rigid objects, i.e., vehicles and planes.

2 Related Work

In this section, we first discuss the shape representations used in 3D object
reconstruction, and then review the 3D reconstruction methods for animals,
typical categories of objects with large shape variation.

Shape Representations: Early deep-learning-based methods [17][18] di-
rectly predict the final output shapes using voxel in low-resolution due to the high
computation cost of 3D convolution operators. Based on the fact that the core
difference between high-resolution and low-resolution shapes lies in the boundary
surface details and detailed shape information, methods in [10][19] take octree,
a sub-category of volume, as representation to implement high-resolution re-
construction in a computationally-efficient manner. Compared to volume, point
cloud represents 3D shapes in a more flexible and expressive way. Fan et al. [20]
firstly propose a framework to generate 3D shapes based on point cloud. Many
other methods [21][22][23][24] then choose point cloud as representation and
focus on how to alleviate the shape ambiguity and improve accuracy. Neverthe-
less, the predicted point clouds are still of low accuracy. Consequently, more and
more methods [25][3][16][26][7][9][12][27] have replaced point cloud with mesh
as the representation of 3D shapes. Mesh, particularly triangular mesh com-
posed of node and triangular face, describes shapes in a more comprehensive
way, enabling not only topology constraints but also alignment between shapes.
Therefore, we will use mesh to represent 3D objects in this paper.

3D Animal Reconstruction: Little work has been done on 3D animal
reconstruction. The seminal work in [28] learns a deformable model of animals
from several images. The method is however restricted by precise manual anno-
tations and not ready for strongly articulated objects. Method in [29] takes a set
of segmented images as input, and adopts a patch-based approach to implement
reconstruction. This way, articulated and relatively accurate 3D animal shapes
can be reconstructed. In order to model 3D animal shape as a whole, method in
[30] captures shape deformation by defining the stiffness value of local regions.
To ease the lack of 3D scans, method in [31] instead uses 3D scans of toy an-
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imals to learn a parametric model called SMAL. Later, method in [32] makes
the initial parametric model fit the characteristic of the individual shape of the
given animal before optimization such that some species unseen in training set
could have a better reconstruction. Most recently, a learning-based approach
called SMALST [33] integrates SMAL model into a regression network. The
method uses the existing SMAL model to spawn training data in various poses,
shapes, camera parameters and backgrounds, which are naturally equipped with
ground truth 2D annotations. Without relying on parametric model, Kanazawa
et al. [13] learn from a collection of images of a specific category of objects (e.g.,
birds) a regression network that can deform an initial shape toward the true
shape of the object instance in the input image. Common drawbacks of these
methods include (i) exploiting features in a coarse manner without considering
the impact of shape variation on object appearance, (ii) inefficient utilization of
geometric constraints resulting in ambiguity in the reconstructed shape and low
coincidence between the obtained 3D object and the input image, and (iii) poor
generalization to in-the-wild images with messy background. As we will show in
this paper, our proposed method can effectively get rid of these drawbacks and
substantially improve the 3D object reconstruction accuracy.

Fig. 2: Schematic diagram of the proposed method of unsupervised 3D object recon-
struction from single images.

3 Method

3.1 Overview

Fig. 2 shows the overall framework of our proposed single-image-based unsu-
pervised 3D object reconstruction method. The input is a single RGB image
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of an instance of the target object category (e.g., birds). Note that during test
the method does not require any annotation. To reconstruct the 3D model of
the object instance, shape deformation, in addition to the UV-flow (i.e., texture
feature; see ref. [13] for detail) and camera parameters, is estimated with respect
to an initial shape. First, latent representations at multiple scales are extracted
by using a backbone deep encoder network, and combined by using a fusion
module. Shape deformation, UV-flow and camera parameters are then predicted
all by inference from the fused features but with respective regressors. Multi-
scale features are used such that richer appearance change induced by shape
variation can be captured in 3D reconstruction. It is worth highlighting that the
initial shape is also taken as input by the shape deformation regressor, which
serves as additional constraint on the search of correct shape deformation. The
3D shape of the object in the input image can be finally obtained by applying
the estimated shape deformation to the initial shape, while the texture value of
each vertex in the 3D object shape can be obtained according to the estimated
UV-flow and the input RGB image.

To determine the parameters involved in the encoder and regressor networks,
a set of images of the target category of objects is required as training data.
These training images are annotated with keypoints and foreground masks, but
do not have ground truth 3D shapes. The training is supervised based on the
re-projection of the reconstructed 3D object onto 2D image plane and by coin-
cidence constraints and various prior constraints. In the rest of this section, we
introduce in detail the key components of our proposed method for coping with
shape variation and cluttered image background, including inference with multi-
scale features, shape-sensitive geometric constraints, and training data augmen-
tation via background manipulation.

3.2 Inference with Multi-Scale Features

Existing 3D object reconstruction methods mostly extract latent representation
at a single scale, i.e., the feature of the deepest layer of the encoder, based
on which shape deformation, texture, and camera parameters all are predicted.
In contrast, many other tasks have proven the necessity of using features at
multiple scales. Specific to 3D object reconstruction, especially for objects with
large shape variation, we argue that it is important to fuse multi-scale features
for 3D object inference because shape variation could lead to object appearance
change at a variety of scales. We thus propose to fuse the multi-scale features
extracted from different layers of the encoder network for predicting 3D objects.

Unlike the method in [34] that concatenates multiple features to estimate 3D
objects, we propose a convolution-based fusion module to combine multi-scale
features. This is because the concatenation method dramatically increases the
number of parameters which makes the network difficult to converge, especially
without 3D supervision in our case. To solve this problem, in our proposed fusion
module, the feature maps of lower layers are first convoluted and down-sampled
to the same size as the feature map of higher layer, and afterwards the feature
maps of different layers are added up via element-wise summation to produce
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the fused feature. Obviously, our proposed fusion module, while itself has very
few parameters, does not affect the complexity of the regression network.

3.3 Shape-Sensitive Geometric Constraints

Keypoints, silhouette, and foreground mask are routinely used by existing unsu-
pervised 3D object reconstruction methods as geometric constraints by enforcing
the coincidence of these geometric features between the input image and the im-
age generated from the reconstructed 3D object. Yet, as we will show below,
the way of existing methods to apply geometric constraints can not effectively
supervise the extraction of shape-sensitive features or avoid shape ambiguity.
Therefore, we propose the following three shape-sensitive geometric constraints
to enhance the ability of learned 3D object reconstruction model to handle ob-
jects with large shape variation.

Side output mask constraint. While existing methods train the 3D object
reconstruction network in an end-to-end manner, the geometric constraints ap-
plied on the final output might be of low efficiency in supervising the training of
the encoder that is located at the frontal end of the entire network. Moreover,
as being discussed above, multi-scale features extracted by different layers of
the encoder are employed to regress the 3D object. Therefore, it is demanded
to make the features capture as much shape information as possible. To this
end, we propose to directly predict foreground mask from the feature extracted
by the intermediate layer of the encoder. We use these side output foreground
masks to evaluate the mask coincidence as additional supervision for training
the encoder, which is defined as follows.

Lsidemask =

N∑

i=1

Nb∑

k=1

∑

(x,y)

[−Mgt,i(x, y) log(M
k
pred,i(x, y))

− (1−Mgt,i(x, y)) log(1−Mk
pred,i(x, y))],

(1)

where Mgt,i and Mpred,i denote the ground truth mask and predicted mask,
respectively, N is the total number of training images, Nb is the number of
intermediate blocks that are considered in side output mask constraint, and
(x, y) denotes the pixel on the mask.

Edge constraint. Using mean squared error (MSE) to measure the coinci-
dence of keypoints, existing methods face the difficulty in coping with ambigu-
ous shapes. As shown in Fig. 3, two predictions of the four keypoints share the
same MSE, but they are obviously not of the same optimality with respect to
the ground truth. This is partially due to the missing edge or inter-keypoint con-
straint that can capture the shape topology. Motivated by the recent progress
in human body pose estimation [35], we define the following edge loss to enforce
the topology coincidence of the keypoints.

Ledge =

N∑

i=1

Ni

E∑

j=1

‖Ei,j − Êi,j‖
2
2, Ei,j ∈ DT (Xi), (2)
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Fig. 3: Existing unsupervised 3D object reconstruction methods use mean squared error
(MSE) to measure the coincidence of keypoints. MSE can not deal with ambiguous
shapes: The two predictions share the same MSE; however, Prediction 1 is obviously
better than Prediction 2. Introducing edge constraint can alleviate this problem.

where E and Ê are, respectively, the ground truth and estimated edges connect-
ing two keypoints, DT (∗) denotes the operation creating the edge set for a set of
visible keypoints via Delaunay Triangulation, i refers to the ith of the N training
images, j refers to the jth of the N i

E edges on the ith image, and Xi is the set
of visible 2D keypoints on the ith image. Different from the edge loss defined in
human body pose estimation which uses pre-specified keypoint connectivity, we
adaptively generate edges for each image based on the visible keypoints on it.
This way, our method can effectively deal with objects with large pose variation.

Initial shape constraint. Although existing unsupervised 3D object recon-
struction methods mostly infer shape deformation (with respect to an initial
shape estimate) rather than the shape itself, they calculate the shape deforma-
tion based purely on the extracted feature of the input image without considering
the initial shape at all. We believe that explicitly utilizing the initial shape when
predicting the shape deformation can serve as another constraint and thus help
to improve the prediction accuracy. For this sake, we propose to concatenate the
vertex coordinates of the initial shape with the extracted feature and feed the
expanded feature vector into the shape deformation regressor. This is effective
especially for largely deformed objects, e.g., birds with open wings.

3.4 Training Data Augmentation via Background Manipulation

In this paper, we employ a pre-trained ResNet-18 [36] as the backbone encoder
network, and train the entire 3D object reconstruction network in an end-to-end
manner with the following overall loss function,

Loss =λ1Ledge + λ2Lsidemask + λ3Lkp + λ4Lsil

+ λ5Lcam + λ6Lsmooth + λ7Ldef + λ8Ltexture.
(3)

Here, Lkp, Lsil, and Lcam are defined as the MSE loss between ground truth and
predicted values of keypoints, silhouettes, and camera parameters, respectively.
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The predicted 2D key-points are computed by reprojecting 3D key-points back
to the image plane. We use NMR [37] to get the predicted silhouettes and tex-
ture under the observed view. Lsmooth and Ldef as defined in [13] are used to
constrain the inferred shape to be natural; specifically, Lsmooth is the discrete
Laplace-Beltrami operator and Ldef is to penalize large deformation. Ltexture, a
perceptual loss [38], is used to constrain the prediction of texture.

As we attempt to apply our proposed method to reconstructing 3D objects
from in-the-wild images, we have to consider the impact of clutter background.
Taking bird images as example, we observe that foreground birds could appear
quite similar to the background in real-world images because of the natural
camouflage of birds. Such camouflage would distract the trained reconstructor
during testing as the foreground is not annotated on the test image. To solve
this problem, we propose to augment the training data with images that are
generated from the original training images by erasing or substituting the back-
ground (note that foreground has been annotated on the training images). We
will experimentally show the effectiveness of such augmentation though it is very
simple to apply.

4 Experiments

4.1 Implementation Details

The network is implemented in Pytorch and optimized using Adam with batch
size as 16 and learning rate as 1e-5. The values of hyperparameters in Equation
(3) are set as λ1 = 5.0, λ2 = 5.0, λ3 = 60.0, λ4 = 5.0, λ5 = 5.0, λ6 = 50.0,
λ7 = 10.0, λ8 = 0.5. We assume that objects are at the center of images. In
our experiments, we crop the images according to the bounding boxes of objects
such that the objects locate at image center.

4.2 Datasets and Protocols

We evaluate our proposed method with comparison to state-of-the-art (SOTA)
methods for reconstructing both non-rigid objects and rigid objects. For non-
rigid objects, we take birds as the target 3D objects, and use the CUB-200-2011
dataset. For the sake of fair comparison with the SOTA bird reconstruction
method, namely CMR, in [13], we follow the same setup of data division into
training, validation, and test sets. Each bird image is annotated with 9 ∼ 15
keypoints, foreground mask as well as camera parameters. As for rigid objects,
we consider vehicles and planes, and use the PASCAL 3D+ dataset [39] with
the same data division as for the counterpart methods.

Due to the lack of ground truth 3D shapes, as being normally done in the
literature [13][15], we also use the two metrics of Intersection over Union (IoU)
and Percentage of Correct Keypoints (PCK) to assess the reconstruction accu-
racy. However, IoU puts more weight on the interior of reconstructed objects,
while neglecting to some extent the discrepancy of boundary. For a more compre-
hensive evaluation of the reconstruction performance, therefore, we propose to
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use the structural similarity (SSIM) as another metric to measure the similarity
between the input image and the rendered image. SSIM as a perceptual metric
can effectively measure the structural difference, which is essential in evaluating
the reconstructed 3D objects.

In the following experiments, we conduct model analysis and ablation study
on the CUB-200-2011 dataset, and compare the proposed method with state-of-
the-art methods on both CUB-200-2011 dataset and PASCAL 3D+ dataset.

4.3 Model Analysis

We compare different implementations of the proposed method to evaluate the
impact of (i) number of side output mask constraints, (ii) definition of edges in
edge constraint, (iii) background manipulation methods in data augmentation,
and (iv) down-sampling methods in feature fusion.

Number of side output mask constraints. We consider four cases {Si|i =
1, 2, 3, 4} where Si denotes applying side output mask constraint for the first i

blocks following the input block (ordered from shallow to deep) in the encoder
network. Fig. 4 presents the mean IoU with regard to the number of side output
mask constraints. The results demonstrate that more side output mask con-
straints can generally improve the reconstruction accuracy, but the performance
gain becomes saturated as more deep blocks are included.

Fig. 4: Impact of number of side out-
put mask constraints.

Definition of edges. In this experi-
ment, besides our proposed edge defini-
tion (DT), we consider three other defini-
tions of edges, i.e., two prior-knowledge-
based manual definitions (M1 and M2)
and the full set of edges between visi-
ble keypoints (FC). The results are shown
in Table 1. As can be seen, edge loss
can effectively improve the reconstruction
accuracy, and defining edges adaptively
according to visible keypoints is better
than using fixed edge definitions. More-
over, considering the computational cost,
the proposed edge definition is more pre-
ferred than using the full set of edges.

Background manipulation methods. Table 2 shows the results when differ-
ent background manipulation methods are applied for data augmentation. We
can see that while manipulating background of training images is effective in
improving the reconstruction accuracy, the best way is to substituting the back-
ground pixel values with the average values of the background pixels across all
the training images.

Down-sampling methods. In this experiment, we implement and compare
three down-sampling methods for feature fusion: sampling (choose the value
of center pixel in the sampling grid), average pooling, and max pooling. Table 3
gives the results. Note that according to the above evaluation results, we apply



10 Shichen Sun et al.

Table 1: Impact of edge definitions. DT is the proposed one. M1 and M2 are two
manual definitions (see supplementary material for detail) that are fixed for all images
no matter which keypoints are visible. FC denotes the full set of edges between visible
keypoints. Time shows the additional time required for evaluating the edge loss.

Method Time IoU PCK.1 PCK.15 SSIM

Baseline - 0.740 0.783 0.916 0.8568
Baseline + edge (DT) 0.01062 0.747 0.848 0.943 0.8587

Baseline + edge (M1) 0.02320 0.742 0.813 0.922 0.8574
Baseline + edge (M2) 0.05936 0.745 0.828 0.938 0.8580
Baseline + edge (FC) 0.12469 0.748 0.855 0.952 0.8581

Table 2: Impact of background manipulation methods in data augmentation. Black,
White, and Mean denote replacing the background pixel values with black (0, 0, 0),
white (255, 255, 255), and the average values of the background pixels across all the
training images, respectively.

Method IoU PCK.1 PCK.15 SSIM

Baseline 0.740 0.783 0.916 0.8568
Baseline + Black 0.743 0.854 0.951 0.8573
Baseline + White 0.750 0.852 0.949 0.8601
Baseline + Mean 0.753 0.855 0.952 0.8605

the edge constraint (‘edge’), side output mask constraint (‘so’) as well as initial
shape constraint (‘isc’) to the baseline in this experiment. As can be seen, the re-
construction accuracy is further improved after feature fusion. Moreover, among
the three down-sampling methods, max pooling achieves the best results. We
argue that max pooling has the ability to preserve the prominent feature ben-
efiting the reconstruction, whereas average pooling would distract the regressor
from the prominent feature, leading to poor results.

4.4 Ablation Study

In this experiment, we evaluate the contribution of different components to the
performance gain of the proposed method. For this purpose, we gradually inte-
grate the following components: initial shape constraint (‘isc’), edge constraint
(‘edge’), side output mask constraint (‘so’) and multi-scale feature fusion (‘msf’).
Note that in this experiment the best implementation for ‘edge’, ‘so’ and ‘msf’ is
employed according to the model analysis results. Table 4 summarizes the abla-
tion study results, which clearly demonstrate that all the proposed components
effectively improve the reconstruction accuracy.

4.5 Comparison to State-of-the-arts
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Table 3: Impact of down-sampling methods in feature fusion. Three down-sampling
stratagies, Sampling at center pixels (Sampling), Average pooling (AvgPool) and Max
pooling (MaxPool), are implemented.

Method IoU PCK.1 PCK.15 SSIM

Baseline 0.740 0.783 0.916 0.8568
Baseline + isc 0.742 0.798 0.933 0.8572
Baseline + isc + edge + so 0.749 0.851 0.953 0.8597

Baseline + isc + edge + so + Sampling 0.756 0.862 0.954 0.8620
Baseline + isc + edge + so + Avgpool 0.754 0.858 0.952 0.8607
Baseline + isc + edge + so + Maxpool 0.757 0.866 0.957 0.8631

Table 4: Ablation study results. ‘isc’, ‘edge’, ‘so’ and ‘msf’ denote, respectively, initial
shape constraint, edge constraint, side output mask constraint and multi-scale feature
fusion.

Model IoU PCK.1 PCK.15 SSIM

Baseline 0.740 0.783 0.916 0.8568
Baseline + isc 0.742 0.798 0.933 0.8572
Baseline + isc + edge + so 0.749 0.851 0.953 0.8597
Baseline + isc + edge + so + msf 0.757 0.866 0.957 0.8631

Fig. 5: Comparison with the SOTA
method CMR [13] on CUB-200-2011.
X-axis represents threshold (tPCK or
tIoU ) and Y-axis is the proportion
of test instances whose PCK/IoU is
lower/higher than the threshold.

We lastly compare our method with
the state-of-the-art (SOTA) method
CMR [13] on CUB-200-2011 dataset.
The overall results in terms of PCK
and IoU are presented in Fig. 5. It can
be observed that the proposed method
consistently outperforms CMR. The
average results in terms of different
metrics are shown in Table 5. Some ex-
amples of reconstructed 3D birds are
shown in Fig. 6. As can be seen, our
proposed method can generate visually
more pleasant shapes, particularly for
the torso and wings of birds.

We also evaluate our method for
the reconstruction of vehicles and
planes. We use the images in PAS-
CAL VOC [39] and ImageNet [13] for
training. An off-the-shelf segmentation
framework [40] is used to obtain the sil-
houettes (and thus foreground masks)
for the images. We report the IoU re-
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sults of our method and the counterpart methods on the test PASCAL 3D+
dataset in Table 6. Our method improves the reconstruction accuracy for both
categories of objects with a large margin. Some reconstructed planes and vehicles
are visualized in Fig. 7.

Table 5: Comparison with the state-of-the-art method CMR [13] for 3D bird recon-
struction on CUB-200-2011.

Method IoU PCK.1 PCK.15 SSIM

CMR 0.703 0.812 0.93 0.8439
Ours 0.766 0.854 0.953 0.8657

Table 6: Comparison of our method with state-of-the-art methods for reconstructing
vehicles and planes on the PASCAL 3D+ dataset [39] in terms of IoU. ‘+pose’ indicates
that the method requires ground truth camera parameters as input during test.

Method Planes Vehicles

CSDM [41] 0.398 0.600
DRC + pose [42] 0.415 0.666
CMR [13] 0.460 0.640
VPL + pose [15] 0.475 0.679
Ours 0.584 0.853

5 Conclusion

In this paper, we have made an attempt to boost the accuracy of reconstructing
3D objects with large shape variation from single in-the-wild images when 3D su-
pervision is not available during training. Specifically, it provides an efficient and
effective fusion module for aggregating multi-scale features for 3D reconstruc-
tion, and trains the entire reconstruction network with shape-sensitive geometric
constraints including edge constraint, side output mask constraint, and initial
shape constraint. Moreover, by augmenting the training data via manipulating
the background in training images, our method can better deal with real-world
images with distracting background. The effectiveness of our method has been
proven on images of birds, vehicles and planes.
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Fig. 6: Reconstruction results of our method and the CMR method [13] on CUB-200-
2011. For easy comparison, we overlay ground truth masks (in grey color) with the
reconstructed ones (in cyan color), and highlight their common regions in red color.
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Fig. 7: Reconstruction results of our method and the CMR method [13] on PASCAL
3D+. For easy comparison, we overlay ground truth masks (in grey color) with the
reconstructed ones (in cyan color), and highlight their common regions in red color.
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