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Abstract. Salient object segmentation aims at distinguishing various
salient objects from backgrounds. Despite the lack of semantic consis-
tency, salient objects often have obvious texture and location charac-
teristics in local area. Based on this priori, we propose a novel Local
Context Attention Network (LCANet) to generate locally reinforcement
feature maps in a uniform representational architecture. The proposed
network introduces an Attentional Correlation Filter (ACF) module to
generate explicit local attention by calculating the correlation feature
map between coarse prediction and global context. Then it is expanded
to a Local Context Block(LCB). Furthermore, a one-stage coarse-to-fine
structure is implemented based on LCB to adaptively enhance the local
context description ability. Comprehensive experiments are conducted on
several salient object segmentation datasets, demonstrating the superior
performance of the proposed LCANet against the state-of-the-art meth-
ods, especially with 0.883 max F-score and 0.034 MAE on DUTS-TE
dataset.

1 Introduction

Salient object segmentation aims at locating the most obvious and salient objects
from a given image. It has been widely used in various challenging fields like
automatic focus, autonomous driving, scene understanding, image editing, etc.
In the past decades, salient object segmentation approaches [1–12] have already
obtained promising performances on various benchmarks [13–17]. Nevertheless,
most of the previous salient object segmentation methods treat it as a general
semantic segmentation problem, which improves the performance by increasing
the semantic receptive field, optimizing the edge accuracy or other methods.

As a pixel-level classification problem, the intrinsic properties of salient ob-
ject segmentation determine that it is different from traditional semantic seg-
mentation. Salient objects usually do not belong to the same category, and their
textures and shapes are various, which makes it hard to distinguish the salient
objects and the background by simply increasing the receptive field.

In contrast, salient objects often have obvious local context characteristic of
the image. Despite their various sizes and locations, their vivid texture are always
quite different from the surrounding backgrounds. Based on this prior, we believe
that the calculation of each pixel attention on an equal basis is computationally
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Fig. 1. Comparison of different attention approaches. From left to right: (a) Squeeze-
and-Excitation[18]. (b) Non-local Affinity[19]. (c) Local Affinity and (d) Local Corre-
lation Attention. It can be noticed that, Local Correlation is operated on the local
context of global feature, instead of the entire feature map.

inefficient and out of focus in the previous approaches. Therefore, we rethink
salient object segmentation task from a more macroscopic point of view, which
separates the salient object from the distant irrelevant background, and then
extracts local context features related to the object as supervision to enhance
the distinguish ability of foreground object.

An intuitive way to extract local context features is to construct a coarse-
to-fine architecture with multi-scale inputs[16, 20]. It generates an approximate
prediction in the first stage, then crops the image as the input of a second re-
fine network. Nevertheless, this method relies heavily on the accuracy of coarse
predictions and does not make good use of the relationship between global and
local contexts due to the cropping operation in the coarse stage. In addition,
the increase of inference time makes the coarse-to-fine methods less favorable for
practical applications. A global scene of the image can provide global semantic
information, while local context around the target object produces the relation-
ship between foreground and background. Both of them provides useful hints for
inferring the content of the target. Therefore, how to strengthen local context
features and retain global context features becomes the key to improve salient
object segmentation accuracy. To this end, we propose a novel Local Context
Attention Network (LCANet) to adapt the global and the local features with a
uniform representational power.

Specifically, the proposed LCANet is mainly built upon a one-stage coarse-
to-fine architecture. A coarse segmentation network is built from a standard
classification model to extract the discriminant feature, which is up-scaled to
generate the coarse feature map. Then an Attentional Correlation Filter (ACF)
module is designed to generate local context attention. The local feature map is
cropped based on the coarse location after image processing, and is regarded as
the correlation filter to make a convolution with the whole feature map. With
the help of convolution, the correlation feature map is taken as an attention map
to concatenate with the original feature to explicitly enhance local context de-
scription ability. In contrast to other attention modules [18, 19, 21] exploring the
channel or spatial weight, the proposed ACF module retains the global receptive
field with local context enhanced in the surrounding areas, as shown in Figure
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2 (d). Furthermore, ACF module is enhanced to Local Context Block (LCB) by
Multi-scale ACF operator and a Local Coordinate Convolution (LCC) layer. The
LCC layer adopts the relative coordinates of the coarse prediction as another
additional feature map to adaptively incorporate the local region context into
the global scene context in the spatial dimension. Based on the enhanced LCB,
a one-stage coarse-to-fine network is constructed in a type of encoder-decoder
architecture as shown in Figure 2. A multi-stage decoder is designed to aggregate
the high-level information extracted by coarse network to gradually refine the
segmentation results. The LCB is also implemented in the stages of decoder to
handle with various sizes of salient objects.

In summary, there are three contributions in our paper:

– We rethink the salient object segmentation task from the intrinsic proper-
ties of salient object, and create a newly model structure, Local Context
Attention Network (LCANet), to strengthen local context features by adap-
tively integrating local region context and global scene context in a one-stage
coarse-to-fine architecture.

– We design a novel Local Context Block (LCB), on the basis of Attentional
Correlation Filter (ACF). As a basic module, it can be used in many situa-
tions, instead of the traditional global and non-local attention map.

– Detailed experiments on five widely-used benchmarks indicate the effective-
ness of our proposed modules and architecture in improving the accuracy.
We achieve the state-of-the-art performance on all of these datasets with
thorough ablation studies, especially a new record of 0.883 max F-score

and 0.034 MAE without any other refinement steps on DUTS-TE dataset.

2 Related Work

Salient Object Segmentation: In the past decades, a number of approaches
for saliency detection are developed. Most of them regard salient object seg-
mentation as a special case of semantic segmentation, try to increase receptive
field through multi-level features[6, 22, 4, 23–25]. They think high-level features
in deep layers encode the semantic information of an abstract description of
objects, while low-level features keep spatial details for reconstructing the ob-
ject boundaries. Some researchers think edge information is the key to improve
segmentation accuracy. [22, 5] adopt post-processing heuristics to obtain the re-
fine predictions. DEA[26] simply uses an extra loss to emphasize the detection
error for the pixels within the salient object boundaries, while others [27, 28] con-
sider semantic contour information from a pretrained contour detector. Although
these methods are proved to be effective, no one analyzes the problem from the
perspective of salient objects. Local context is easily overlooked in salient object
segmentation.

Attention Module: Attention module is one of the most popular opera-
tions in recent neural networks to mimic the visual attention mechanism in the
human visual system. SE-Net[18] explores a channel-wise attention map and has
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Fig. 2. Overview of our Local Context Attention Network (LCANet). A coarse network
is built on a VGG network followed by GRB to generate coarse prediction of the input
image. Then the feature map is entered into LCB to produce local context attention
maps of the input global features. LCB consists of ACF and LCC modules. It can be
implemented on multi-stage of decoder network, cooperating with SRB to gradually
refine the final segmentation results.

achieved state-of-the-art performance in image classification. In the field of se-
mantic segmentation, several methods [29–31] adopt multi-scale attention map
to increase the receptive field of the high-level features. EncNet[32, 33] introduces
context encoding to enhance the prediction that is conditional on the encoded
semantics. Non-Local[19, 21] is further proposed self-attention with non-local
affinity matrix for vision tasks. By contract, we apply the local context atten-
tion map on the output of encoder network to integrate the local region and
global scene description.

Correlation Filter: Correlation filter [34–36] has proved to be effective
in most of single object tracking methods. It takes advantage of the fact that
they can specify the desired output of a linear classifier for several translations
and image shifts based on the dot-product at different relative translations of
two patches using only a fraction of the computational power. It is relevant
to local similarity between the object and its local neighborhood and suitable
for convolution operator. Naturally, encoding the local correlation feature as an
attention map is an immediate thought.

Coarse-to-fine: These also exist researchers finding the optimal coarse-to-
fine solutions to deal with the scale-variation problem. However, most of them
focus on the feature expression. DSS [6] proposes a saliency method by intro-
ducing short connections to the skip-layer structures within a multi-layer HED
architecture. NLDF[37] combines the local and global information through a
multi-resolution grid structure. Amulet[4] directly aggregates multi-level features
by concatenating feature maps from different layers. Although the features from
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deeper layers help to locate the target, objects with different sizes cannot be
represented in the same feature structure. A more proper way is to employ the
multi-scale features in a coarse-to-fine fashion and gradually predict the final
saliency map. However, the increase of inference time makes the coarse-to-fine
methods less favorable for practical.

3 Methodology

In this section, we first detailedly introduce the idea of the Attentional Corre-
lation Filter (ACF) module, and elaborate how this module specifically handles
the local context issue. After that, we describe the complete Local Context At-
tention Network (LCANet) based on the Local Context Block (LCB), which
builds a coarse-to-fine structure in a one-stage encoder-decoder architecture.

3.1 Attentional Correlation Filter

Let’s revisit the main prior of salient object segmentation. Salient object usu-
ally has unique feature representations that are different from the surrounding
background, such as vivid colors or clear boundaries. Pixels of salient object
have strong correlation with its local context in physical space. Based on this
observation and analysis, we propose an Attentional Correlation Filter(ACF)
module to strengthen the salient features, which apply the attention mechanism
to enhance feature expression ability of local context in global feature.

Correlation Filter. Given a target object T ∈ R
H′

×W ′

and an reference
image I ∈ R

H×W . For each pixel (x, y) ∈ I , we have the correlation map Corr

between I and T is calculated as

Corr(I, T )x,y =

W
′

2∑

v=−
W ′

2

H
′

2∑

u=−
H′

2

T [u, v]⊙ I[x+ u, y + v] (1)

The correlation map can be generated according to the sliding window on the
reference image. In the field of single object tracking[36, 34, 35], it is used widely
to obtain the similarity degree between the tracking object and its neighborhood
scene to search for the update object position in the next frame. The higher the
correlation value, the higher the probability that two patches belong to the same
object. The operation of the sliding window is similar to convolution. We regard
the feature of the target object as convolution weight, then the correlation feature
map can be generated by convolution on the original global feature.

Attentional Correlation Filter. We use the generated correlation feature
map as an attention layer for subsequent processing. Given a local feature map
T ∈ R

C′
×H′W ′

and a global feature map I ∈ R
C×HW , ACF can be generated

as,

ACF = I ⊙ Sigmoid(Corr(I, T )) (2)
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Fig. 3. Multi-scale ACF. In (a), multi-scale local feature maps are cropped based on
coarse prediction and convoluted with the original feature to generate attention maps.
In (b), attention maps of ACF with various scales (line 3,4,5) from coarse results (line
2) are compared with the attention map of non-local module (line 6).

There are many ways to implement attention map, as compared in Figure 1.
In the global attention [18] or the non-local affinity attention [19, 21], features
are used to calculate the pixel similarity in channel or spatial dimensions. When
it acts on the local area, the similar local affinity map can be generated by
multiplying the local and global features. However, it is unreasonable that the
correlation in channel dimensions loses the spatial relationship between pixels.
The direct feature fusion will lead to the migration between features. In ACF,
we crop the high-level features from encoder into local feature maps based on the
coarse prediction. The coarse object location is calculated from the maximum
and the minimum positions of the binarized course predictions. Then the coarse
feature map is warped into a given size based on the affine transformation. The
generated local context feature map is normalized to keep the same channel of
global feature map and odd kernel size, and convoluted with the original feature
to generate attention feature map. As shown in Figure 3, the non-local attention
map puts more emphasis on bright areas than significant areas, while the ACF
significantly enhances the feature discrimination ability in the region of interest.

3.2 Local Context Block

We further extend the proposed ACF module to a more robust local context
descriptor. Firstly, we introduce a Local Coordinate Convolution (LCC) layer to
increase the local context information in the spatial perspective. Secondly, the
ACF is extended to multi-scale ACF to better cope with the significant changes
of different sizes of objects, and the inaccurate results of the coarse network.

Local Coordinate Convolution. The calculation of Local Coordinate Con-
volution Layer lccx, lccy of target pixel pt = I(xt, yt) ∈ I can be formulated as
following:

lccx(x, y) = [1−
|x− xt|

H
], (x, y) ∈ H ×W (3)
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lccy(x, y) = [1−
|y − yt|

W
], (x, y) ∈ H ×W (4)

we concatenate the LCC and I in channel dimension, and then send them
into the convolution layer. The standard coordinate convolution is developed
to provide an explicit relative position relationship on the spatial feature map.
Based on the coarse location of the salient object, we modify it to further enhance
local features in the perspective of physical space. lccx and lccy are respectively
calculated through the distance of pixel relative to the center point of coarse
prediction. The nearer the distance, the greater the value. LCC module, com-
bined with ACF module, extracts the local context information of coarse results
in the dimensions of feature and space dimensions, in order to complement each
other in local area enhancement.

Multi-scale ACF. Furthermore, in order to compensate the error of the
coarse prediction, we apply the multi-scale attention maps. Based on the rough
segmentation result, the original coarse feature map is warped into different
scales. We extract local characteristics with scale changes by adjusting the ex-
pansion of the external rectangle of coarse predictions. All these multi-scale
attention maps are respectively multipled and concatenated with the global fea-
tures and to generate the local enhanced feature maps. As shown in Figure 3,
with the implementation of Multi-scale ACF, the significance of objects with
different sizes is highlighted on different attention maps. On the contrary, the
non-local attention more strengthens the distribution of global features, while
ignores the salient objects.

3.3 Network Architecture

In the task of semantic segmentation, it has been proved that high-level features
and multi-scale decoder are the main factors to improve the segmentation results.
While the performance of LCB depends on the result of coarse network, the first
stage of LCANet needs to obtain acceptable coarse prediction results under
controllable computational complexity. Then a multi-stage decoder is needed to
further refine the coarse results. Based on the above knowledge, we propose two
complementary modules that are capable of capturing the positions of salient
objects and refining their details from coarse level to fine level.

Coarse Network. The most direct way to integrate coarse and refined
results is to share the encoder layers. High-level features generated from the
encoder network already have preliminary classification ability in terms of dis-
tinguishing salient objects and backgrounds. We applied a standard VGG[38]
network as the backbone network to extract multi-layer discriminating feature
maps. Following the high-level semantic features from VGG, a Global Refine-
ment Block (GRB) is applied to improve receptive field and change the weights of
the features to enhance the semantic consistency. As illustrated in Figure 2, two
1x1 convolutions and a global pooling operations are applied to reallocate the
feature map and generate a spatial attention map onto the high-level features.
This global attention map explicitly makes feature maps be aware of the loca-
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tions of the salient objects. Then coarse prediction is generated by up-sampling
this global strengthened features.

Coarse-to-fine Network. Based on the coarse network and LCB, we con-
struct a one-stage coarse-to-fine network. We build our network based on a type
of classic U-shape architecture as shown in Figure 2. Although GRB improves
the receptive filed to capture the global information of the input images, the
classification abilities in different stages of backbone network are ignored, which
results in diverse consistency manifestation. So we design a residual structure
named Side Refinement Block (SRB) to iteratively fuse discriminant features
of different scales, which consists of two 3 x 3 convolution operations. Different
from previous symmetrical encoder-decoder architectures, we only take the result
of stage3 quadrupled as the final output. The last two abandoned up-sampling
convolution blocks save a lot of computation, but improve the accuracy in our
experiments. As mentioned above, the LCB is implemented cooperating with
SRB to strengthen local context features of each stage before up-sampling. Sim-
ilar to multi scale operations in feature level, multi-stage of LCB is also essential
to adapt to the wrong predictions and scale variations as much as possible.

Loss Function. The LCANet is trained in an end-to-end manner with losses
of coarse and refine outputs. we use the cross-entropy loss between the final
saliency map and the ground truth. Besides that, we apply a boundary preser-
vation loss to enhance the edge accuracy. Sobel operator is adopted to generate
the edge of ground truth and the predication saliency map of network. Then the
same cross-entropy loss is used to supervise the salient object boundaries. The
similar boundary supervision is used and proved in several previous works[1, 39,
23]. Different from them, Sobel operator makes the model pay more attention
to the junction of salient objects and background. The total loss function of the
LCANet is the weighted sum of the above losses.

L = λ0Lcs + λ1Lrf + λ2Lcsbd + λ3Lrfbd (5)

Where Lcs and Lrf denote the cross entropy loss function of the coarse
and the coarse-to-fine predictions respectively, and Lcsbd and Lrfbd are their
boundary preservation loss. An experimental weight are applied to combined
them all. Also, online hard example mining[40] strategy is adopted with Lcs and
Lrf respectively during training.

In contrast to other two-stage coarse-to-fine networks, LCANet is more like
inserting a layer of local context attention into a standard encoder-decoder net-
work. It doesn’t separate the coarse and the fine networks with multi times
inference. What’s more, it adaptively combines the local surrounding context
and the global scene information in a uniform feature description.

4 Experiments

In this section, we mainly investigate the effectiveness of the proposed LCB
module. While the performance of the LCB depends on the result of coarse
network, we first compare the effect of each module in the complete network
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structure. Then we conduct more experiments on the configurations of the LCB
to analyze the influence of the LCB on local context in detail. Finally, we compare
the proposed LCANet with other state-of-the-art approaches quantitatively and
qualitatively.

4.1 Experimental Setup

Datasets. To evaluate the performance of the proposed approach, we conduct
experiments on five popular benchmark datasets[14, 13, 15–17]. These datasets
all contain a large number of images as well as well-segmented annotations and
have been widely used in the filed of salient object segmentation. DUTS[14] is
the largest dataset containing 10,553 images for training and 5,019 images for
testing. Both training and test sets in DUTS contain very complex scenarios with
high content variety. ECSSD[13] contains 1,000 natural images manually selected
from the Internet. HKU-IS[16] includes 4447 images with multiple disconnected
salient objects overlapping the image boundary. DUT-OMRON[15] has 5,168
images with many semantically meaningful and challenging structures. Images of
this dataset have one or more salient objects and relatively complex background.
PASCAL-S[17] contains 850 natural images that are free-viewed by 8 subjects
in eye-tracking tests for salient object annotation.

Evaluation Metrics. In order to obtain a fair comparison with other state-
of-the-art salient object segmentation approaches, we train the proposed net-
works on DUTS training set (DUTS-TR), and evaluate them on DUTS test
set(DUTS-TE) and the other four datasets. For quantitative evaluation, two
universally-agreed, standard metrics, mean absolute error (MAE) and maxi-
mum F-measure (maxF ) are adopted respectively [6]. F-measure reflects the
overall performance of pixel classification. It is computed by weighted harmonic
mean of the precision and recall. MAE indicates the average pixel-wise absolute
difference between the estimated salient map and ground-truth.

Implementation Details. All the networks mentioned below follow the
same training strategy. A VGG-16 pre-trained on Imagenet[41] is used to ini-
tialize the convolution layers in the backbone network. The parameters in other
convolution layers are randomly initialized. All training and test images are re-
sized to 256 × 256 before being fed into the network. They are trained using
mini-batch stochastic gradient descent (SGD) with batch size 48, momentum
0.9, weight decay 1e − 5 and 300 epochs. As the common configuration, the
”poly” learning rate policy is adopted where the initial rate is multiplied by
(1 − iter

max iter
)power with power 0.9 and the base learning rate is set as 1e − 4.

Data augmentation contains mean subtraction, random horizontal flip, random
resizing with scale ranges in [0.8, 1.2], and random cropping to keep most of the
salient object intact for training.

4.2 Ablation Studies of Main Architecture

The main architecture is an encoder-decoder structure consisting of GRB, SRB
and LCB. Besides that, boundary loss (BL) is verified here as part of main
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Fig. 4. Result comparisons of different modules in our proposed method. From left to
right, each line depicts results of coarse backbone model, and the successive additions
of GRB, SRB decoder, non-local attention map, ACF, boundary preservation loss (BL)
and the ground truth.

network. We conduct ablation experiments on two challenging datasets DUTS-
TE and ECSSD to demonstrate the effectiveness of each module separately.

GRB. Firstly, we verify the accuracy of coarse output. According to Table 1,
the addition of GRB gives performance gains in term of both maxF and MAE

on the two datasets over the coarse network. While implemented on the coarse
network, the maxF of DUTS-TE is improved from 0.775 to 0.818. Also the
performance is improved further to 0.843 while applied onto the coarse-to-fine
network. The corresponding visual comparisons can be found in Figure 4. The
global pooling operator helps to increase the receptive field of the network and
highlight the areas of interest.

SRB. Here SRB refers to the decoder network containing the SRB mod-
ule. As can be observed as in Table 1, simply embedding of SRB decoder helps
improve the performance on bothmaxF andMAE. When GRB and SRB are su-
perposed concurrently, the performance of the model is further enhanced, which
indicates the effectiveness of multi-stage refinement for solving the aliasing effect
of up-sampling.

ACF. Furthermore, we implement ACF onto the above encoder-decoder net-
work. As the core of LCB module, ACF can well verify the effectiveness of local
context attention. Here we only apply the simplest single-scale ACF onto the
high-level features generated from coarse network. When it directly acts on the
coarse prediction, the accuracy is only slightly improved. This proves from the
side that a more reasonable local context is the key to improve the accuracy.
When the coarse result is poor, ACF is similar to the attention map on the
global context. When it is added to GRB and SRB in turn, the role of ACF
is highlighted, and both maxF and MAE on the two datasets are further im-
proved. As shown in Figure 4, the local guidance information generated by ACF
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Table 1. Ablation analysis for the main architecture on two popular datasets. All ex-
periments are trained on the union set of DUTS-TR. No.1 depicts the encoder network,
and the other modules are successively embedded. As can be observed, each proposed
module plays an important role and contributes to the performance.

No. GRB SRB ACF BL
DUTS-TE ECSSD

maxF↑ MAE↓ maxF↑ MAE↓

1 0.775 0.081 0.863 0.080
2 X 0.818 0.051 0.883 0.066
3 X 0.830 0.047 0.891 0.058
4 X X 0.843 0.046 0.915 0.054

5 X 0.781 0.077 0.871 0.078
6 X X 0.847 0.044 0.904 0.051
7 X X X 0.873 0.039 0.928 0.034
8 X X X X 0.875 0.038 0.931 0.033

allows our network to focus more on the salient objects, and greatly improve the
quality of resulting salient maps.

BL. Finally, the boundary preservation loss (BL) is adopted to further im-
prove the quality of boundary in the produced saliency map. Although the per-
formance is only slightly improved, the upper edge of the visual results was
optimized to be closer to the ground truth in Figure 4.

4.3 Ablation Studies of LCB

To demonstrate the effectiveness of our proposed LCB, we adopt two basic net-
works. coarse depicts the GRB enhanced coarse network, and baseline is the
combined model of GRB, SRB and BL, which has been verified in the previous
section. We study the different variants of ACF and LCC modules in LCB, and
compare them with other attention methods.

Coarse-to-fine Structures. By introducing local context into the baseline
network, the most direct way is to execute the model twice by cropping the
predictions of the first network as the input of the second one. In Table 2, we
conducted the experiments of executing the coarse and baseline twice respec-
tively. The performance of baseline×2 is significantly improved both in terms of
maxF and MAE, while the accuracy of coarse× 2 is slightly decreased. This is
mainly because the refine network is heavily dependent on the results of coarse
network. However, when baseline+ACF integrates the local context attention
and the global feature map in a joint training manner, the performance is greatly
improved as shown in Table 2.

Other Attention Modules. Also we compare the proposed ACF module
with other attention-based modules. Attse, Attnl and Attlf are effective mod-
ules of squeeze-and-excitiation[18], non-local affinity[19], and a modified local
affinity depicted in Figure 1. As can be observed from Table 2, although the ac-
curacy can be improved by increasing the receptive field, these modules are still
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Table 2. Ablation analysis for the proposed main architecture on DUTS-TE. Differ-
ent types of ACF and LCC modules are verified and compared with other attention
modules. As can be noticed, ACF is superior to others, and LCC also contributes to
the performance.

Model maxF↑ MAE↓

coarse × 2 0.813 0.050
baseline × 2 0.861 0.042

baseline + Attse 0.845 0.047
baseline + Attlf 0.847 0.046
baseline + Attnl 0.861 0.041

baseline + ACF 0.875 0.038

Model maxF↑ MAE↓

baseline + ACF0.1 0.874 0.038
baseline + ACF0.3 0.871 0.041
baseline + ACF0.5 0.875 0.038
baseline + ACFmsz 0.879 0.037

baseline + ACFmsz + LCC 0.882 0.041
baseline + ACFmsz+msa + LCC 0.883 0.034

worse than the proposed ACF module. Attlf is similar to ACF by generating
the affinity matrix bewteen local context and global feature map. Nevertheless,
the performance is even worse than results of baseline × 2, we think that the
multiplication of affinity matrix in different feature space destroys the ability of
feature description of both global and local feature map.

Multi-scale ACF. Furthermore, we investigates the effectiveness of Multi-
scale ACF. Figure 3 depicts the visualization results of attention maps produces
by the cropped feature maps with different sizes. Also the performance of Multi-
scale ACF are showed in Table 2. It can be observed both in qualitative or
quantitative analysis that different attention map corresponds to different size
of salient object. And Also the unknown segmentation errors of coarse network
also affect the performance of ACF. Although the accuracy of ACF with different
scales fluctuates, Multi-scale ACF can cope with these accidental changes, and
further improve the performance of both maxF and MAE.

LCC. LCC is another complementary module in LCB. As present in Table 2,
LCC further improves the result of Multi-scale ACF from 0.879 to 0.882. This
proves the complementary relationship between ACF and LCC. Under the guid-
ance of an explicit location provided by LCC, it realizes a more accurate and
robust segmentation on the final result. The final LCB consists of Multi-scale
ACF and LCC. It can be implemented onto the different stages of decoder to
further enhance the final performance as ACFmsz+msa depicted in Table 2.

4.4 Comparisons with the State-of-the-Arts

We compare the proposed LCANet with sixteen recent state-of-the-art methods
including PoolNet[1], PFA[39], AFNet[2], MLMSNet[3], CPD[42], BDMPM[23],
GRL[43], PAGRN[44], Amulet[4], SRM[45], UCF[46], DCL[5], DHS[47], DSS[6],
ELD[24] and NLDF[37] on five datasets. We obtain the saliency maps of these
methods from authors or the deployment codes provided by authors for fair
comparison.

Quantitative Evaluation. Table 3 shows the quantitative evaluation re-
sults of the proposed method and other state-of-the-art salient segmentation ap-
proaches in terms ofmaxF andMAE. As present, our method outperforms other
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Table 3. Quantitative comparisons of the proposed approach and sixteen state-of-
the-art CNN based salient object detection approaches on five datasets. The best two
scores are shown in red and blue.

DUTS-TE ECSSD HKU-IS PASCAL-S DUT-OM
maxF MAE maxF MAE maxF MAE maxF MAE maxF MAE

ELD[24] 0.737 0.092 0.867 0.081 0.840 0.073 0.788 0.122 0.719 0.090
DHS[47] 0.811 0.065 0.904 0.062 0.890 0.053 0.845 0.096 - -
DCL[5] 0.785 0.081 0.895 0.079 0.889 0.063 0.845 0.111 0.756 0.086
UCF[46] 0.772 0.111 0.901 0.070 0.887 0.062 0.849 0.109 0.729 0.120
SRM[45] 0.826 0.058 0.915 0.056 0.905 0.046 0.867 0.085 0.769 0.069
Amulet[4] 0.777 0.084 0.913 0.060 0.896 0.051 0.861 0.098 0.742 0.097
NLDF[37] 0.812 0.064 0.903 0.065 0.901 0.048 0.851 0.100 0.753 0.079
DSS[6] 0.813 0.064 0.895 0.064 0.901 0.047 0.850 0.099 0.760 0.075

PAGRN[44] 0.854 0.054 0.923 0.064 0.917 0.047 0.869 0.094 0.770 0.070
GRL[43] 0.834 0.050 0.923 0.044 0.913 0.037 0.881 0.079 0.778 0.063

BDMPM[23] 0.851 0.048 0.925 0.048 0.920 0.039 0.880 0.078 0.774 0.064
CPD[42] 0.864 0.043 0.936 0.040 0.924 0.033 0.866 0.074 0.794 0.057

MLMSNet[3] 0.851 0.049 0.928 0.045 0.921 0.039 0.862 0.074 0.774 0.064
AFNet[2] 0.862 0.046 0.935 0.042 0.923 0.036 0.868 0.071 0.797 0.057
PFA[39] 0.870 0.040 0.931 0.032 0.926 0.032 0.892 0.067 0.855 0.041

PoolNet[1] 0.880 0.041 0.937 0.044 0.931 0.033 0.865 0.072 0.821 0.056

LCANet 0.883 0.034 0.939 0.029 0.931 0.030 0.889 0.064 0.843 0.037

approaches across all these datasets. To be specific, LCANet achieves large im-
provement compared with the best existing approach on DUT-TE dataset. Both
of maxF and MAE are definitely increased from the ever best PoolNet[1] based
on the VGG backbone. On PASCAL-S and DUT-OMRON, although the per-
formance of maxF is slightly lower than PFA[39], the MAE exceeds it. We find
that objects in them are large or multi-subjects. When the object size is large,
local context is almost the same as global context the, the role of LCANet will be
correspondingly weakened. While the proposed approach is a simple one-stage
structure, it can be further improved with multi-branch learning algorithms.

Qualitative Evaluation. To further explain the advantages of our ap-
proach, Figure 5 provides a visual comparison of our method and other state-
of-the-arts. From the former 5 rows of Figure 5, it is clear that our method is
obviously superior to others coping with small objects. While other methods are
difficult to distinguish salient objects and background, LCANet obtains accurate
segmentation results based on the coarse-to-fine guidance. This further verifies
the effectiveness of local context in salient object location. More than this, we
notice that the consistency of larger objects is also preserved as shown in row
6,7 of Figure 5. Even when salient objects are scattered in different places of the
image, there is still a certain probability not be affected. Also it still obtains a
good segmentation prediction when the salient object located in the side of the
image. These observations indicate the intergration of local and global context
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Fig. 5. Qualitative comparisons of the state-of-the-art algorithms and our proposed
LCANet. GT means ground-truth masks of salient objects.

information is important to deal with salient object segmentation, regardless of
the position and size of the object.

5 Conclusion

In this paper, we propose a local context attention network to cope with salient
object segmentation. Based on the prior that saliency object usually has unique
feature representations that are different from the surrounding background, we
proposed a Local Context Block consisting of an Attentional Correlation Fil-
ter and a Local Coordinate Convolution layer, in order to intergrate the local
context information into the global scene features in a one-stage coarse-to-fine
architecture. Detailed experiments verify the feasibility of the proposed LCANet.
It achieves comparable performance with other state-of-the-art methods based
on a simple baseline. We believe that this model will be useful for other scenarios.
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