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Abstract. Most existing Person Re-identification (Re-ID) models aim
to learn global and multi-granularity local features by designing a multi-
branch structure and performing a uniform partition with the various
number of divisions in different branches. However, the uniform partition
is likely to separate meaningful regions in a single branch, and interaction
between various branches disappeared after the split. In this paper, we
propose the Branch Interaction Network (BIN), a multi-branch network
architecture with three branches for learning coarse-to-fine features. In-
stead of traditional uniform partition, a horizontal overlapped division
is employed to make sure essential local areas between adjacent parts
are covered. Additionally, a novel attention module called Inter-Branch
Attention Module (IBAM) is introduced to model contextual dependen-
cies in the spatial domain across branches and learn better shared and
specific representations for each branch. Extensive experiments are con-
ducted on three mainstream datasets, i.e., DukeMTMC-reID, Market-
1501 and CUHK03, showing the effectiveness of our approach, which
outperforms the state-of-the-art methods. For instance, we achieve a top
result of 90.50% mAP and 92.06% rank-1 accuracy on DukeMTMC-reID
with re-ranking.

1 Introduction

Person re-identification (Re-ID) aims to retrieve a person of interest across non-
overlapping camera views in a large image gallery with a given probe. Recently,
deep learning methods dominate this community, which obtain state-of-the-art
results. Deeply-learned features provide discriminative representation ability but
still are not robust for many challenges like variations in view angle, pose, and
illumination.

To relieve these issues, many part-based methods [1–3] are proposed to learn
part features and achieve promising results. They can be categorized into two
groups by the number of branches. The first group applies single branch methods,
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Fig. 1. Overview of problems in the single branch and multiply branch interaction. Left:
uniform partition on input images. Heads are divided into two parts, which diminish the
representational capability in head regions. Right: multi-branch network architecture.
Strong relations between branches vanished after the split.

which split the deep feature maps into several pre-defined patches and promote
the network to focus on fine-grained features in each local region. The second
group, using multiple branch methods, combines local and global information in
different granularities and learns coarse-to-fine representations. Although they
push the performance of Re-ID to a new level, they still suffer from the problems
of learning in the single branch and ignore the correlation between different
branches.

Feature learning in the single branch By the uniform partition, local
information is preserved, which is robust for occlusion and partial pedestrian
retrieval. For example, Part-based Convolutional Baseline (PCB) [1] is imple-
mented by partitioning feature maps into 6 horizontal stripes. Nevertheless, in
PCB, as the number of stripes increases, retrieval accuracy improves at first, but
drop dramatically in the end. Over-increased numbers break the balance between
learning fine-grained features and extracting meaningful body region informa-
tion. In other words, the division will separate important semantic parts, as
illustrated in Fig. 1.

Correlation between different branches Multi-branch networks have
gained state-of-the-art performance by sharing lower layers of network and ex-
tracting different granularity features at the higher layers in different branches,
as shown in Fig. 1. Since lower layers capture the same low-level features for
different branches with the same input image, branch relatedness in lower layers
is built. Besides, sharing lower layers keeps the model parameters in a low level.
However, during testing, features of all branches are concatenated, but context
information between them vanish after the split during training. As a result,
interaction among branches is neglected in higher layers of the network.

In this paper, we propose a novel Branch Interaction Network (BIN) to ad-
dress the above problems. The network learns coarse-to-fine representations for
Re-ID in a multi-branch structure. It has three branches. One is for capturing
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coarsest information i.e., global information, while others are for learning multi-
level fine-grained information with the various number of partitions. In order
to preserve the consistency of meaningful regions across equally-sliced parts,
Horizontal Overlapped Pooling (HOP) is adopted to extract local features on
horizontal overlapped patches of equal size. Furthermore, we propose a new at-
tention module, namely Inter-Branch Attention Module (IBAM), which contains
three submodules called Inter-Branch Attention Submodule (IBASM). IBAM ag-
gregates features from three branches and produces three refined corresponding
representations complementary to the other two branches. Besides, IBAM, in-
jected in higher layers of the network, promotes all the branches to learn shared
features while they are trained in its specific granularity.

To sum up, our main contributions are three-fold:

– We introduce a new pooling strategy called HOP on multi-branch network
architecture. HOP, which employs an overlapped division and Global Max
Pooling (GMP) to obtain a vector representation, is shown superior to the
combination of original uniform partition and GMP.

– We incorporate a novel attention module into BIN to model spatial contex-
tual, multi-level dependencies across branches. It is found that complemen-
tary information efficiently promotes the performance of Re-ID. To the best
of our knowledge, this is the first work which builds strong relations between
different branches for Re-ID.

– We conduct extensive experiments on three datasets and show that BIN
achieves competitive results in comparison with state-of-the-art methods.
HOP and IBAM are also verified that each enhances accuracy.

2 Related Works

This section mainly discusses part-based and attention-based Re-ID, which are
strongly related to our method.

2.1 Part-based Re-ID

Part-based methods focus on learning local parts information for region-level em-
beddings of person. It can be divided into two groups, as mentioned in Section 1.
In the single branch methods, considering that methods slicing the last feature
map horizontally into a small fixed number may not be robust for challenges
like low resolution, viewpoint variation, HPM [4] explore a coarse-to-fine pyra-
mid model to discover sufficient part descriptors of a given person. OSNet [5]
achieves multi-scale feature learning by designing a omni-scale residual block.
Multiple branch methods are proposed to model multiple information such as
fine-grained features, pose information in different branches. It is proved that
integrating the local and global features can promote the results. In CA3Net [6],
appearance network consisting of three branches is designed to extract global,
horizontal human parts and vertical human parts features. In order to overcome
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the misaligned problem, pose information is utilized in FEN [7] to match the
feature from global and local body parts.

Different from previous part-based methods, we crop the feature maps into
overlapped patches to learn local features as well as preserve essential informa-
tion.

2.2 Attention-based Re-ID

The attention mechanism can enhance features, which helps to locate meaningful
regions. Mancs [8] emphasize discriminative features by the proposed fully atten-
tion block (FAB). HA-CNN [9] extracts features by jointly learning hard region-
level and soft pixel-level attention. Person attributes like gender, handbag can
guide attention mechanisms to find meaningful information. In AANet [10], la-
tent attribute regions are located by combining class sensitive activation regions
from each attribute in attribute detection task. A3M [11] proposes an attribute-
category reciprocal attention module to leverage attribute information, and it is
helpful to select key features for Re-ID.

Previous methods strengthen representational capability by utilizing infor-
mation from single branch. However, we propose the IBAM to help BIN generate
more discriminative features by combining information from different branches.

3 Branch Interaction Network (BIN)

In this section, we first describe the overall architecture of Branch Interaction
Network (BIN). Then the proposed Horizontal Overlapped Pooling (HOP) is
discussed, followed by a novel attention module named Inter-Branch Attention
Module (IBAM). Finally, we discuss the relations between the proposed modules
and some existed methods.

3.1 Overview

As is shown in Fig. 2, the BIN is a multi-branch network, including a base net-
work and three independent branches. ResNet-50 [12] is applied for our feature
extraction backbone. The base network consists of previous layers before conv4 2,
which is capable of generating shared low-level visual features. Specifically, three
branches are directly borrowed from subsequent layers after conv4 1, namely
Stripe 1 Branch (S1B), Stripe 2 Branch (S2B), Stripe 3 Branch (S3B) based
on the number of stripes. S1B performs the global-level person re-identification
task, while S2B and S3B perform part-level and global-level feature learning.
In S2B and S3B, we remove the last spatial down-sampling operation to enrich
the granularity. As a result, feature tensors T 1,T 2,T 3, the output of conv5 from
S1B, S2B and S3B have different spatial sizes. In order to integrate multi-branch
features, we inject IBAM on the outputs of conv4 to exploit complementary in-
formation across branches. Refined feature maps are fed into the following layers.
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Fig. 2. The overall architecture of the proposed BIN. BIN contains a base network
and three independent branches, i.e., S1B, S2B, S3B. IBAM is added after conv4 to
capture complementary information among branches. BIN extracts global features by
employing GMP on three branches and learns local features by applying HOP on S2B
and S3B. The whole network is trained with triplet loss and classification loss.

With the Global Max Pooling (GMP), BIN generates global feature repre-
sentations gi(i = 1, 2, 3) for each branch. A parameter shared 1x1 convolution
layer, followed with a batch normalization layer and ReLU layer, is applied to
reduce the dimension from 2048-dim gi(i = 1, 2, 3) to 256-dim ui(i = 1, 2, 3).
Finally, each ui(i = 1, 2, 3) is trained with triplet loss [13] and classification loss.
Specifically, triplet loss on global features can be formulated as :
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where Ng and Nt are the numbers of global features and sampled triplets, ui
(j),

ui
(j+), ui

(j−) are the feature ui extracted from anchor, positive and negative
samples in j-th triplet respectively, m is the margin parameter, and [·]+ denotes
max(·, 0). Classification loss on global features can be formulated as :
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where N , C are the number of input images and identities, yj is the ground
truth of j-th input image. (W i)k denotes the weight matrix for k-th identity in
the fully connected layer whose input is ui.

With our proposed HOP, BIN partitions T i(i = 2, 3) into 2 and 3 horizon-
tal stripes in S2B and S3B, and pools these stripes to generate column feature
vectors i.e., pn

m, where m, n refer to the m-th stripe in Stripe n Branch. The
dimension of pn

m is also reduced to 256 by the 1x1 convolution layer. Finally,
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dimension-reduced features vn
m are only trained with classification loss. Classi-

fication loss on local features are formulated as :
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whereNb is the number of branches, (W n
m)k is the weight matrix for k-th identity

in the fully connected layer whose input is vn
m. And the final loss is defined as

following:
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where Ntri and Ncls are the numbers of features trained with triplet loss and
classification loss, λ is a trade-off parameter. Specifically, we set λ to 2 in the
following experiments.

3.2 Horizontal Overlapped Pooling (HOP)

Fig. 3. Illustration of HOP. Firstly, uniform partition is performed on the feature map.
Then, each stripe is padded with two overlapped portions. Finally, we pool them by
GMP.

Given an input feature map F ∈ R
C×H×W , locating meaningful parts by

original uniform partition may cause within-part inconsistency, and introduce
many outliers near division lines. HOP is proposed to solve this problem by
making meaningful regions covered in adjacent parts. It has two parameters,
which are l and k. l is the total height of overlapped areas in one stripe. k is the
number of partitions. When k=1, we remain the global information. In BIN, we
keep the k=2 in S2B and k=3 in S3B.

The HOP is illuminated in Fig. 3. Firstly, we perform a uniform partition on
the feature map horizontally. With the aim of devoting equal attention to each
stripe, parts on the top or bottom are extended in one direction while others are
extended in two directions to keep the same spatial size. An overlapped portion
is a smaller 3D tensor whose size is C×h×W , where h refers to its height. As a
result, l = 2h. However, it is obvious that l can be an odd number when k=2. To
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make HOP universal, we require that l must be an even number. Finally, each
horizontal stripe is pooled by GMP to generate a part-level vector.

3.3 Inter-Branch Attention Module (IBAM)

Features extracted from different branches help together to boost the feature rep-
resentative capability. In order to model spatial contextual dependencies between
branches, an IBAM is applied, as shown in Fig. 2. Features from paired branches
are fed into an Inter-Branch Attention Submodule (IBASM), and output paired
refined features. BIN has three branches, and form C2

3 = 3 combinations when
we choose paired branches. As a result, each branch is selected twice and has
two refined outputs which build contextual dependencies between features from
various branches. A mean operation on these two outputs is performed to update
the original features.

Fig. 4. The detail architecture of Inter-Branch Attention Submodule (IBASM).

Specifically, IBASM captures the similarity between input paired feature
maps and aggregate together to produce more discriminative features. Fig. 4
depicts the detail structure of IBASM. Given two feature maps A ∈ R

C×H×W ,
B ∈ R

C×H×W from different branches, a 1x1 convolution layer is employed
to generate four new feature maps X, Y , M , and N , where X,Y ,M ,N ∈

R
C
8
×H×W . These four feature maps are reshaped to R

C
8
×L, where L = H ×W

is the number of feature locations. Pixel-wise similarity is calculated by matrix
multiplication between transposed X and N , and then normalized to obtain the
spatial attention map S ∈ R

L×L, as shown below:

Si,j =
exp (mi,j)

∑L

i=1 exp (mi,j)
,mij = XT

i N j (5)

where Xi, N j denote the ith and jth spatial features of X and N respectively.
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To calculate the output C, BIN first predicts A by exploiting the information
from input B based on spatial attention map S. The prediction is reshaped to
R

C×H×W , then BIN performs an element-wise sum between weighted prediction
and original A. The output C denotes refined A guided by B, which is defined
as :

Cj = γ1

L
∑

i=1

ST
i,jM i +Aj (6)

where γ1 is a learnable weight which is initialized as 0. The output D denotes
refined B guided by A, which is defined as :

Dj = γ2

L
∑

i=1

Si,jY i +Bj (7)

As a result, IBASM keeps the size unchanged. With this property, IBAM and
IBASM can be incorporated into any existing multi-branch architecture.

Armed with our proposed IBASM, spatial contextual, multi-level dependen-
cies across branches are well established, and the shared information in multi-
granularity features are utilized in higher layers.

3.4 Discussion

To highlight the difference between our proposed modules and other related
methods, we provide a brief discussion on the relations between them.

Relations between HOP and OBMOBM [14] propose a multiple overlap-
ping blocks structure to pool features from overlapping regions. OBM requires
pyramid-like horizontal partitions. However, HOP performs on a single scale,
which is a lightweight method in the training procedure for its relatively fewer
fully connected layers.

Relations between HOP and RPP RPP [1] is proposed to relocate out-
liers incurred by uniform partition to the parts they are closest to. In other
words, RPP aims to address problems brought by “hard” partition. However,
HOP focuses on keeping the balance between learning fine-grained features and
extracting meaningful region information. HOP is a new kind of “hard” parti-
tion, and uniform partition can be seen a special case of HOP when l=0.

Relations between IBASM and non-local block In some ways, IBASM
can be regarded as a variation of the non-local block [15]. IBASM differs from
non-local block in: (1) IBASM takes two input features while non-local block
takes one input feature. IBASM performs non-local operation on two features.
This modification helps model refine one input feature with the consideration of
the other input feature. (2) IBASM produces two output features correspond to
two refined input features by the guidance from each other. “Encoder-decoder
attention” layers from [16] and pairwise non-local operation from [17] both take
two input features to compute non-local operation and produce one output fea-
ture corresponds to one refined input feature guided by the other input feature.
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Relations between IBAM and dual attention block We make the
comparison with IBAM and dual attention block [18] on image input. Given an
image input, feature sequence is formed by rearranging feature vectors by loca-
tions. Dual attention block contains inter-sequence attention and intra-sequence
attention. They have similarities because they both seek to find relations be-
tween branches or sequences. IBAM and dual attention block differ in: For the
same image, intra-sequence attention refined itself by focusing on context-aware
information in the single scale, and inter-sequence attention generates aligned
counterpart by focusing on consistent regions from the opposite image. However,
IBAM is designed to model spatial contextual dependencies from features with
multiple granularity from the same image. IBAM has the capability to aggregate
complementary information in multiple granularity.

Relations between IBAM and PS-MCNN IBAM has some similari-
ties with PS-MCNN [19], because both are designed to interact with different
branches. However, our IBAM is different from PS-MCNN in three aspects. (1)
IBAM aims to build relations between different branches with various granular-
ities while PS-MCNN focuses on building relations between different branches
with various attribute groups. (2) IBAM builds interactions between all branches
by modeling the relations of paired branches while PS-MCNN introduces a new
Shared Network (SNet) to learn shared information for all branches. Besides,
IBAM considers the spatial information in the process of interaction, which is
ignored by PS-MCNN. (3) IBAM is a module that can be easily embedded into
any multi-branch network architecture, while PS-MCNN is a network designed
for building interactions among different branches with various attribute groups
specifically. Our IBAM is more general than PS-MCNN.

4 Experiments

We conduct experiments on three Re-ID datasets: DukeMTMC-reID [20], Market-
1501 [21] and CUHK03 [22]. First, we compare the retrieval accuracy of BIN with
state-of-the-art methods on these three datasets. Then, we carry out ablation
studies on DukeMTMC-reID dataset to verify the effectiveness of each compo-
nent.

4.1 Datasets and Evaluation Protocol

DukeMTMC-reID This dataset is a subset of the DukeMTMC for Re-ID.
It contains 36,411 images of 1,812 persons from 8 cameras. There are 1,404
identities appear in more than two cameras, and the other 408 identities appear
in only one camera, which are regarded as distractors. There are 16,522 images
of 702 persons in the training set, and the rest 702 persons are included in the
testing set, which consists of 2,228 query images and 17,661 gallery images.

Market-1501 This dataset includes 32,668 images of 1,501 identities de-
tected by the Deformable Part Model (DPM) detector from 6 cameras. Specifi-
cally, the training set contains 12,936 images of 751 persons, and the testing set
includes 3,368 query images and 19,732 gallery images of 750 persons.
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CUHK03 This dataset consists of 14,097 images of 1,467 identifies captured
by 6 cameras. It provides two types of annotations, which are manually labeled
pedestrian bounding boxes and DPM-detected bounding boxes. We perform ex-
periments on both of them.

Evaluation Protocol In our experiments, we adopt standard Re-ID met-
rics: Cumulative Matching Characteristic (CMC) at rank-1, and the mean Av-
erage Precision (mAP) on all candidate datasets. All the experiments are con-
ducted under the single query model.

4.2 Implementation Details

The implementation of our proposed BIN is based on the Pytorch framework. We
initialize parameters of the BIN with the weights of ResNet-50 [12] pretrained
on ImageNet.

During training, the input images are resized to 384× 128 to keep more de-
tailed information. We deploy random horizontal flip, normalization and random
erasing [23] for data augmentation. A mini-batch is randomly sampled with 4
identities, and each identity contains 4 images. The margin in the triplet loss is
1.2 in all our experiments. The model is trained for 500 epochs. Adam optimizer
is utilized to update the weight parameters with weight decay 5−4. The initial
learning rate is 2−4, then decayed to 2−5, 2−6 after 320, 380 epochs.

During testing, images are resized to 384 × 128 and normalized before fed
into the network. Global features from all branches and local features from hor-
izontally sliced parts are concatenated as the final pedestrian representation.

4.3 Comparison with State-of-the-art Methods

BIN is compared with 14 existing state-of-the-art methods on three datasets:
DukeMTMC-reID, Market-1501 and CUHK03 in Tab. 1. The compared methods
are categorized into single branch methods (S), multi-branch methods (M) and
attention-based methods regardless of the number of branches (A). Results in
detail are discussed as follows.

DukeMTMC-reID The proposed BIN achieves 89.36% Rank-1 accuracy
and 79.60% mAP, which outperforms all published methods by a large mar-
gin. Note that : (1) The gaps between our method and single branch methods
indicate that multi-branch structure is necessary: about 0.76% and 6.10% im-
provement in Rank-1 accuracy and mAP respectively. These methods focus on
global information, local details or both of them in the single branch, which
is insufficient for Re-ID. In contrast with single branch methods, our method
can capture robust features in multiple granularities from various branches. (2)
Although multi-branch methods integrate complementary information into final
pedestrian representations, e.g., AANet [10] integrates key attribute informa-
tion in a unified framework. BIN surpasses them, exceeding the MGN [2], which
achieves the best results in this category, by 0.66% in Rank-1 accuracy and 1.20%
in mAP. We argue that these methods neglect the interaction among branches.
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Table 1. Comparison with state-of-the-art methods on three mainstream datasets.
Red and Blue indicate our results and the best results of previous methods respectively.
Best results of all methods are marked in bold. “-” denotes not available, “RK” denotes
re-ranking operation.

Methods
DukeMTMC-reID Market-1501

CUHK03
Labeled Detected

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

S

MLFN [24] (CVPR2018) 81.00 62.80 90.00 74.30 54.70 49.20 52.80 47.80
PCB+RPP [1] (ECCV2018) 83.30 69.20 93.80 81.60 - - 63.70 57.50
HPM [4] (AAAI2019) 86.60 74.30 94.20 82.70 - - 63.90 57.50
OSNet [5] (ICCV2019) 88.60 73.50 94.80 84.90 - - 72.30 67.80

M

PSE [25] (CVPR2018) 79.80 62.00 87.70 69.00 - - - -
HA-CNN [9] (CVPR2018) 80.50 63.80 91.20 75.70 44.40 41.00 41.70 38.60
CA

3Net [6] (ACM MM2018) 84.60 70.20 93.20 80.00 - - - -
CAMA [26] (CVPR2019) 85.80 72.90 94.70 84.50 70.10 66.50 66.60 64.20
MGN [2] (ACM MM2018) 88.70 78.40 95.70 86.90 68.00 67.40 66.80 66.00

A

MGCAM [27] (CVPR2018) - - 83.79 74.33 50.14 50.21 46.71 46.87
DuATM [18] (CVPR2018) 81.82 64.58 91.42 76.62 - - - -
Mancs [8] (ECCV2018) 84.90 71.80 93.10 82.30 69.00 63.90 65.50 60.50
AANet-50 [10] (CVPR2019) 86.42 72.56 93.89 82.45 - - - -
CASN [28] (CVPR2019) 87.70 73.70 94.40 82.80 73.70 68.00 71.50 64.40

BIN 89.36 79.60 94.80 87.27 74.29 72.43 72.57 69.83

BIN (RK) 92.06 90.50 95.69 94.07 83.66 81.71 79.43 81.66

On the contrary, our method remains the strong relations between different
branches, which is proved efficient. (3) Compared to attention-based methods,
our methods boost CASN [28] by 1.66% in Rank-1 accuracy and 5.90% in mAP.
Most attention-based methods build intra-branch contextual dependencies in the
spatial or channel dimension. However, we model inter-branch non-local depen-
dencies, which is more competent. With the help of re-ranking [29], we achieve a
top result of 92.06% rank-1 accuracy and 90.50% mAP, which is a giant break-
through.

Some visual examples of BIN on DukeMTMC-reID dataset are illustrated in
Fig. 5. Given a query pedestrian image, BIN can retrieve the same person images
in low-resolution, view angle variation and occlusion, which shows its robustness
for most exiting challenges.

Market-1501 We report the 94.80% Rank-1 accuracy and 87.27% mAP,
which significantly surpass most of the recent start-of-the-art methods. Although
the Rank-1 accuracy of BIN is slightly lower than MGN(95.7%), BIN achieves
the top mAP, outperforms the MGN by a large margin of 0.37%.

CUHK03 As is illustrated in Table 1, we compare the BIN against other
methods on the CUHK03 dataset in two types of annotation settings, i.e., labeled
and detected. BIN still achieves the best result of Rank-1 accuracy 74.29%, mAP
72.43% on the labeled setting, and Rank-1 accuracy 72.57%, mAP 69.83% on
the detected setting, which surpasses the 1st best-compared method by Rank-
1/mAP=0.59%/4.43% and 1.07%/5.43% respectively.
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Fig. 5. Top-6 ranking list for given query images on DukeMTMC-reID dataset from
BIN. Correct and false matches are highlighted by green and red borders respectively.

4.4 Ablation Study

To investigate the effectiveness of each component in our proposed BIN, we
conduct a series of ablation experiments on DukeMTMC-reID dataset.

Multi-branch Structure Tab. 2 compares single branch and multi-branch
models. For single branch models, with the increase of horizontal stripes, we
extract more detail-rich representations, and the accuracy is increased as well.
S1B+S2B(l=0) means multi-branch network architecture with two branches of
S1B and S2B, and so as S1B+S3B(l=0), S1B+S2B(l=0)+S3B(l=0). The multi-
branch structure is superior to each composed single branch and gains fur-
ther improvements, e.g., S1B+S2B outperform S1B and S2B in Rank-1/mAP
by 8.39%/12.90% and 1.89%/2.66%. However, with the increase of k in single
branch, the improvement seems to be marginal but enlarge the model parame-
ters, e.g., S2B(l=0) outperforms S1B in mAP by 10.24% but S3B(l=0) outper-
forms S2B(l=0) in mAP by 0.9%. With the increase of the number of branches,
the performance shows the same trend, e.g., S1B+S3B(l=0) outperforms S1B in
mAP by 13.20% but S1B+S2B(l=0)+S3B(l=0) outperforms S1B+S2B(l=0) in
mAP by 2.61%. As a result, we adopt S1B+S2B(l=0)+S3B(l=0) as the multi-
branch model for the following experiments.

Effectiveness of Triplet Loss Our proposed BIN is trained with triplet
loss and classification loss. Triplet loss plays a vital role for surpervising the
whole network. Tab. 3 shows the effectiveness of triplet loss.

Effectiveness of HOP We define l of HOP in S2B as l2 and l of HOP in
S3B as l3. Fig. 6 compares the HOP operations with different l. As is shown
in Fig. 6a, when l3 is set to 0, there is an improvement in accuracy when l2 is
increased, indicating the effectiveness of HOP. However, the retrieval accuracy
drop dramatically when l2 is further increased. We also increase l3 when l2 is set
to 0 in Fig. 6b. They keep the same trend in performance, i.e., rise first, then
decrease. With the increase of l in single branch, HOP helps to cover meaningful
regions between adjacent parts, but will damage representational capability in
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Table 2. Comparison of single branch
and multi-branch models. l means the
parameter l of HOP in corresponding
branch.

Model Rank-1 mAP

S1B 78.64 61.62
S2B(l=0) 85.14 71.86
S3B(l=0) 86.09 72.76
S1B+S2B(l=0) 87.03 74.52
S1B+S3B(l=0) 87.15 74.82
S1B+S2B(l=0)+S3B(l=0) 88.15 77.13

Table 3. Evaluation of the effective-
ness of triplet loss. “Triplet” refers to
the triplet loss.

Model Rank-1 mAP

S1B+S2B(l=0)+S3B(l=0) 88.15 77.13

S1B+S2B(l=0)+S3B(l=0)
w/o Triplet

85.01 71.45

Table 4. Comparison of different l in
different branches.

Model Rank-1 mAP

S1B+S2B(l=0)+S3B(l=0) 88.15 77.13
S1B+S2B(l=2)+S3B(l=2) 88.87 77.77

S1B+S2B(l=2)+S3B(l=4) 88.69 77.28
S1B+S2B(l=4)+S3B(l=2) 88.73 77.57
S1B+S2B(l=4)+S3B(l=4) 88.46 77.19

Table 5. Comparison on adding IBAM
in different positions.

Model Rank-1 mAP

S1B+S2B(l=2)+S3B(l=2) 88.87 77.77
S1B+S2B(l=2)+S3B(l=2))+IBAM(conv4)
(Our proposed BIN)

89.36 79.60

S1B+S2B(l=2)+S3B(l=2)+IBAM(conv5) 89.09 79.20

local information slightly. As a result, a proper l is needed. We find that l2 and
l3 both equal 2 can achieve the best results, as shown in Tab. 4.

Effectiveness of IBAM Tab. 5 reports the effectiveness of IBAM. We add
the IBAM on the output of conv4 and conv5 to compare the performance. Specif-
ically, since the inputs of IBAM need to have the same size, we remove the last
spatial down-sample operation in the conv5 layer of S1B when adding the IBAM
following ResNet conv5. Multi-branch models with IBAM in various positions
lead a significant performance improvement. The growth of the IBAM after conv4
is greater than after conv5. Although PCB finds that removing the last spatial
down-sample operation in ResNet increases person retrieval accuracy, we argue
that the remaining down-sample operation in S1B will produce complementary
features. To better understand the IBAM used in our BIN, we visualize the ac-
tivation maps extracted from the output of each branch in Fig. 7. First, BIN
w/o IBAM is not sufficient to capture robust information about input image,
e.g., shins in the first input image are ignored. Comparing the activation maps,
we see that BIN can extract more discriminative features in each branch with
the help of IBAM. Second, the activation maps from S1B in BIN w/o IBAM
mainly cover the main body of pedestrians but ignore some detailed regions,
e.g., arms in the second image. With the help of IBAM, S1B from BIN focus on
the main body and local parts because S1B interacts with S2B and S3B. Third,
the distribution of the activation maps from S2B and S3B in BIN w/o IBAM is
too scattered, which means BIN w/o IBAM fails in modeling consecutive local
areas in S2B and S3B. With the help of IBAM, S2B and S3B can concentrate
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(a) (b)

Fig. 6. Parameter analysis for l in S2B and S3B. (a) Rank-1 and mAP changes with
l2 while l3 is set to 0. (b) Rank-1 and mAP changes with l3 while l2 is set to 0.

Fig. 7. Visualizaion of activation maps extracted from each branch. For each spatial
position, the maximum of all channels is assigned for this part in activation maps. For
each input image, the activation maps in first row are generated from our proposed
BIN while the activation maps in second row are produced from BIN w/o IBAM.

more on meaningful local regions because of complementary information from
S1B.

5 Conclusions

This paper proposes the BIN, a multi-branch network for Re-ID. The multi-
branch structure is necessary to capture coarse-to-fine information. HOP is an
improvement on the traditional uniform partition and GMP, while IBAM is an
extension of attention mechanism. Each component is verified in boosting the ro-
bustness of BIN. Extensive experiments on three datasets demonstrate that BIN
achieves the state-of-the-art performance. In the future, we will explore the cor-
relation between inter-branch attention mechanism and intra-branch attention
mechanism.
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