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Abstract. In this paper, we present a novel approach that exploits the
information within the descriptor space to propose keypoint locations.
Detect then describe, or jointly detect and describe are two typical strate-
gies for extracting local features. In contrast, we propose an approach
that inverts this process by first describing and then detecting the key-
point locations. Describe-to-Detect (D2D) leverages successful descriptor
models without the need for any additional training. Our method selects
keypoints as salient locations with high information content which are
defined by the descriptors rather than some independent operators. We
perform experiments on multiple benchmarks including image matching,
camera localisation, and 3D reconstruction. The results indicate that our
method improves the matching performance of various descriptors and
that it generalises across methods and tasks.

1 Introduction

One of the main problems in computer vision is concerned with the extraction of
‘meaningful’ descriptions from images and sequences. These descriptions are then
used for the correspondence problem which is critical for applications such as
SLAM [1, 2], structure from motion [3], retrieval [4], camera localisation [5–10],
tracking [11], etc. The key issue is how to measure the ‘meaningfulness’ from
the data and which descriptors are the most suitable for matching. Extensive
survey of salient region detectors [12] attempts to identify the main properties
expected from ‘good’ features including repeatability, informativeness, locality,
quantity, accuracy, and efficiency. It has also been noted that the detector should
be adapted to the needs of the application, i.e., the data.

In contrast to the significant progress on local descriptors achieved with neu-
ral networks, keypoint detectors enjoyed little success from using learning meth-
ods, with few notable exceptions [13–15]. As a consequence, keypoint detectors
based on handcrafted filters such as Difference-of-Gaussians, Harris, Hessian [12],
which all originate from research in 1980-ties are still used in many applications.
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Fig. 1: Comparison of our proposed
Describe-to-Detect framework (right)
to the existing Detect-then-Describe
and Detect-and-Describe frameworks.

In the era of deep learning, there
are three main research directions
towards improving image matching,
namely descriptor-only learning [16–
20], detector-only learning [15, 21],
as well as jointly learnt detection-
description [14, 22–26]. What under-
lines the concept of disjoint frame-
works is their sub-optimal compatibil-
ity between the detection and descrip-
tion. In contrast to the CNN based
descriptors [16–18, 20, 27, 28], the per-
formance of jointly learnt detection-
description [14,22,23,25] does not seem
to generalise well across datasets and
tasks [29]. CNN descriptors perform
significantly better if trained and ap-
plied in the same data domain. Simi-
larly, different keypoint detectors are suitable for different tasks. With all avail-
able options, finding optimal pair of detector-descriptor for a dataset or a task
requires extensive experiments. Therefore, an approach that adapts keypoint
detector to a descriptor without training and evaluation is highly valuable for
various applications.

Our approach is inspired by detectors based on saliency measures [30, 31],
where the saliency was defined in terms of local signal complexity or unpre-
dictability; more specifically the Shannon entropy of local descriptor was sug-
gested. Despite the appealing idea, such methods failed to be widely adopted due
to the complexity of the required dense local measurements. However, currently
available CNN dense descriptors allow revisiting the idea of using saliency mea-
sured on descriptor maps to define keypoint locations. Top performing learnt
descriptors [16–18, 20] all share the same fully convolutional network (FCN)
that adapts to varying image resolution and output dense descriptors. Further-
more, joint methods like SuperPoint [13], D2-Net [14] and R2D2 [25] also pro-
vide dense features. The proposed approach can be seen as a combination of the
classical saliency-based methods [30,31] and the modern deep attention mecha-
nisms [4, 14, 32].

In summary, our main contributions are:

– We propose a novel Describe-to-Detect (D2D) framework for keypoint de-
tection that requires no training and adapts to any existing CNN based
descriptor.

– We propose a relative and an absolute saliency measure of local deep feature
maps along the spatial and depth dimensions to define keypoints.

– We demonstrate on several benchmarks and different tasks that matching
performance of various descriptors can be consistently improved by our ap-
proach.
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Fig. 2: The Describe-to-Detect pipeline. Locations with high variation across
channels (high absolute saliency) as well as high saliency w.r.t spatial neighbours
(relative saliency) are detected as keypoints.

2 Related Works

In this section, we briefly introduce some of the most recent learning-based
methods for local feature detection and description. There are several survey
articles that provide comprehensive reviews of this field [12,33–35].

Local Feature Detection. Most of the existing learned [15,21,36–40] or hand-
crafted [41–44] detectors are not descriptor-specific. The main property required
from keypoints is their repeatability such that their descriptors can be correctly
matched. TILDE [21] trains a piece-wise linear regression model as the detector
that is robust to weather and illumination changes. CNN models are trained
with feature covariant constraints in [36,37]. Unsupervised trained QuadNet [38]
assumes that the ranking of the keypoint scores should be invariant to image
transformations. A similar idea is also explored in [39] to detect keypoint in
textured images. AffNet [40] learns to predict the affine parameters of a local
feature via the hard negative-constant loss based on the descriptors. Key.Net [15]
combines hand-crafted filters with learnt ones to extract keypoints at different
scale levels. Recently, it has been shown that pre-trained CNNs on standard
tasks such as classification can be adapted to keypoint detection [45]. However,
the local feature matching pipeline is by nature different from classification.
In contrast, our method directly leverage CNNs pre-trained for description to
achieve detection.

Local Feature Description. The emergence of several large scale local patch
datasets [46–48] stimulated the development of deep local descriptors [16–18,20,
49–51] that are independent of the detectors. However, this paper is concerned
with keypoint detection. Therefore, we refer the reader to [47] for a detailed
review and evaluation of recent descriptors. In our experiments, we include sev-
eral recent descriptors such as HardNet [17] and SOSNet [20]. SIFT [41] is the
most widely used handcrafted descriptor still considered as a well-performing
baseline. HardNet [17] combines triplet loss with in-batch hard-negatives mining
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that has proven to be remarkably effective, and SOSNet [20] extends HardNet
with a second-order similarity loss.
Joint Detection and Description. Joint training of detection-description has
received more attention recently [13,14,22,23,25,28,52,53]. SuperPoint [13], D2-
Net [14], and R2D2 [25] are the three representatives of recent research direction,
where patch cropping is replaced by fully convolutional dense descriptors. Su-
perPoint [13] leverages two separate decoders for detection and description on
a shared encoder. Synthetic shapes and image pairs generated from random ho-
mographies are used to train the two parts. In D2-Net [14], local-maxima within
and across channels of deep feature maps are defined as keypoints, with the
same maps used for descriptors. R2D2 [25] aims at learning keypoints that are
not only repeatable but also reliable together with robust descriptors. However,
the computational cost for current joint frameworks is still high. Besides, the
generation of training data is typically laborious and method-specific.

Therefore, a keypoint detection method that is based on a trained descriptor
model, thus adapted to the data without requiring any training, can be consid-
ered a novel and significant contribution.

3 Describe-to-Detect

In this section, we first define keypoints in terms of the descriptor saliency, then
we present our approach to integrate D2D with existing state-of-the-art methods.

3.1 What is a keypoint?

Despite the absence of a unified definition, it is widely accepted that keypoints
should be image points that have the potential of being repeatably detected un-
der different imaging conditions. As mentioned, according to [12], such points
should satisfy several requirements such as repeatability, informativeness, local-
ity, quantity, accuracy and efficiency.

In this work, we argue that the informativeness, which we refer to as saliency,
is the property that can lead to satisfying most of the other requirements. We
define the saliency in relative terms w.r.t the other descriptors in the neighbour-
hood, as well as in absolute terms as the information content of the descriptor.
Our argument stems from the following assumptions:

Assumption 1 A point in an image has a high absolute saliency if its corre-

sponding descriptor is highly informative.

The idea of exploiting salient regions in an image has been adopted by many
classical [30, 31] methods as well as recent attention-based models [4, 14, 32].
In tasks such as image retrieval, saliency/attention is defined on image regions
with rich semantic information [4,32]. In feature matching, local image structures
that exhibit significant variations in shape and texture can be considered salient.
However, absolute saliency alone is not sufficient for identifying keypoints. For
instance, highly informative but spatially non-discriminative structures should
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be avoided as they cannot be uniquely and accurately localised. Therefore a
relative saliency should also be considered.

Assumption 2 A point in an image has a high relative saliency if its corre-

sponding descriptor is highly discriminative in its spatial neighbourhood.

The success of handcrafted detectors that define keypoints according to this
criteria [15,41–44,54] validates this assumption. Descriptors on repeated textures
can lead to geometrically noisy correspondences, therefore their spatial unique-
ness is essential. Similarly to the absolute saliency, the relative saliency alone is
not sufficient for detection. For example, corner points of uniform regions can
exhibit high relative saliency, whereas their descriptors information content is
not high.

Based on Assumptions 1 and 2, our definition for keypoints based on their
corresponding descriptors is:

Definition 1. A point in an image is a keypoint, if its corresponding descrip-

tor’s absolute and relative saliencies are both high.

Definition 1 is a generalization of the keypoints defined for low-level pixel
intensities, either by simple operators such as autocorrelation [54] or by early
saliency based methods [30,31], to high-level descriptors. In contrast to existing
Detect-then/and-Describe frameworks, in Definition 1, we define the detector by
the properties of the descriptor. Thus, the key idea of Describe-to-Detect (D2D)
is a description-guided detection. Moreover, we claim that descriptors that are
specifically trained to be robust to the changes of imaging conditions can provide
data driven discriminativeness and thus, more reliable detections. It is worth
noting that our D2D differs from other works that utilize the deep feature map
response, but do not exploit the full representation potential of a descriptor.
For example, the detection step of D2-Net [14] is performed by considering each
feature activation separately, as a score map for keypoint detection, whereas
D2D detects keypoints via descriptor similarity in the metric space and therefore
makes use of the rich information content across entire depth.

In summary, to identify the keypoints, Definition 1 is concerned with two
properties: Firstly, when evaluating itself, the descriptor should be informative.
Secondly, when comparing to others, the descriptor should be discriminative.

3.2 How to detect a keypoint?

Measuring the absolute saliency of a point can be achieved by computing
the entropy of a descriptor. It has been shown in the design of binary descrip-
tors [55,56], that selecting binary tests with high entropy will encourage compact
and robust representation. Therefore, we propose to measure the informativeness
of a descriptor by its entropy, interpreted as a N-dimensional random variable.
Unlike in binary descriptors where discrete entropy can be computed directly,
for real-valued descriptors differential entropy is needed. However, computing
an accurate differential entropy requires probability density estimation, which is
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computationally expensive. Thus, similarly to the binary case [55,56], we employ
the standard deviation as a proxy for the entropy:

SAS(x, y) =
√

E[F 2(x, y)]− F̄ (x, y)2, (1)

where F̄ (x, y) is the mean value of descriptor F (x, y) across its dimensions.
Measuring the relative saliency of a point is based on Assumption 2. A
function that measures the relationship between a variable’s current value and its
neighbouring values is the autocorrelation. It has been successfully used by the
classic Moravec corner detector [54] as well as the well known Harris detector [57].
However, their simple operators rely directly on pixel intensities which suffer
from poor robustness to varying imaging conditions. The autocorrelation was
implemented as a sum of squared differences (SSD) between the corresponding
pixels of two overlapping patches:

SSSD(x, y) =
∑

u

∑

v

W (u, v)(I(x, y)− I(x+ u, y + v))2, (2)

where I(x, y) indicate pixel intensity at (x, y), (u, v) are window indexes cen-
tered at (x, y), and W (u, v) are weights. A high value of SSSD(x, y) means low
similarity. As a natural generalization of SSD for measuring the relative saliency,
we replace pixel intensities with dense descriptors :

SRS(x, y) =
∑

u

∑

v

W (u, v)||F (x, y)− F (x+ u, y + v)||2, (3)

where F (x, y) indicates the descriptor centered at location (x, y), and ||·||2 is the
L2 distance. A high value of SRS(x, y) defines points with high relative saliency,
i.e., this point stands out from its neighbours according to the description pro-
vided by the pre-trained descriptor model. Also note that even though relative
saliency can be measured by different similarity metrics, we pick L2 distance as
it is used in the matching stage.

Using Equations (1) and (3), we assign a score to each point by:

SD2D(x, y) = SAS(x, y)SRS(x, y). (4)

3.3 Dense Descriptors

All existing description methods can extract dense descriptors for a given image.
For example, patch-based methods can be used to generate dense descriptors by
extracting patches with a sliding window. However, such strategy is infeasible in
large scale tasks such as 3D reconstruction, due to its computational cost. For-
tunately, most recent state-of-the-art methods adopt the fully convolutional net-
work architecture without fully-connected layers [13, 14, 16–18, 20]. Thus, dense
descriptor maps can be extracted with a single forward pass for images with var-
ious resolutions. To guarantee the efficiency, we apply the proposed D2D to fully
convolutional network descriptors only. Specifically, in Section 4, we evaluate
D2D with two state-of-the-art descriptors, i.e., HardNet [17] and SOSNet [20].
We further validate D2D on joint detection-description methods SuperPoint [13]
and D2-Net [14].
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3.4 Implementation Details

Computation of SAS(x, y) is done on descriptors before L2 normalization,
since it has an effect of reducing the standard deviation magnitude across the
dimensions. It has been shown that the descriptor norm, that also reflects the
magnitude of variance, is not helpful in the matching stage [47], however, we use
the variance during the detection to identify informative points.
Computation of SRS(x, y). We define the size of the window W (u, v) in Equa-
tion (3) as rRS. Considering that the receptive fields of neighbouring descriptors
overlap and that the descriptor map resolution is typically lower than the input
image, we sample the neighbouring descriptors with a step size of 2 and calcu-
late the relative saliency with respect to the center descriptor. Please refer to
the supplementary material for the detailed defination of W (u, v). Note that
the operation in Equation (3) can be implemented efficiently with a convolution,
therefore, when the window size rRS is small and the sampling step is 2, the
computational cost is negligible.
Combining D2D with descriptors. To evaluate D2D we employ two current
state-of-the-art patch-based descriptors, namely HardNet [17] and SOSNet [20].
Given the network architecture [16] and an input image of size H × W (H ≥
32,W ≥ 32), the output feature map size is (⌊H/4⌋ − 7) × (⌊W/4⌋ − 7). The
receptive field’s size is 51 × 51. Therefore, each descriptor F (x, y) describes a 51
× 51 region centered at (4x+ 14, 4y + 14). There are two stride-2 convolutional
layers in the network, meaning that F describes each 51 × 51 patch with stride
of 4. In other words, keypoints are at least 4 pixels away from each other. Such
sparse sampling has also been validated in other works [25, 58]. Finally, given
SD2D we directly take the top K ranked points as keypoints.

In D2-Net [14], the effect of downsampling layers is mitigated by upsampling
the dense descriptors. However, with a large receptive overlap, dense F is re-
dundant. For example, F (x, y) and F (x+1, y) describe two 51 × 51 patch with
a 47 × 51 overlap. For networks such as HardNet [17] and SOSNet [20] that
are trained to be insensitive to such small changes, additional interpolation of
feature maps is unnecessary.

Also, note that the amount of content the network can see in a 51 × 51 region
is defined by the resolution of the image. High resolution and dense sampling can
make the neighbouring descriptors indistinguishable. An interesting question is
whether a multi-scale strategy to tackle the scale changes is needed. We show in
Section 4 that single scale HardNet [17] and SOSNet [20] perform well in different
tasks, which is in accordance with the observations from joint methods [14,25,59].
We claim that there are two reasons for this: First, dramatic scale changes are
rare in typical images of the same scenes. Second, scale changes are often global
and the ranking of the detected keypoints is not affected by such changes [38].

Furthermore, we visualise some examples in Figure 3 to show different com-
ponents of the final keypoint score map and how SAS and SRS contribute to
SD2D. As shown, SAS highlights all regions that have high intensity variations,
while SRS has high scores in structured areas. Finally, SD2D combines the two
parts, resulting in a low score for repetitive/non-textured areas and edges. Points
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SAS SRS SAS>SRS SRS>SASSD2D

Fig. 3: Visualization of the heat maps generated by D2D applied to HardNet [17].
From left to right the columns show images, heat maps of SAS, SRS, SD2D,
max(0,SAS − SRS) and max(0,SRS − SAS), respectively. SAS and SRS are nor-
malized so that their values are in [0, 1].

with SRS greater than SAS are informative but not locally discriminative. This
includes repetitive textures like tree leaves and tiles on building roof, as well as
intensity noise in visually homogeneous regions. On the contrary, line structures
are less informative but can be discriminative from the adjacent regions, which
results in SAS greater than SRS.

4 Experiments

In this section, we present the results for various tasks on different datasets, and
next, we conduct ablation studies and discussions.

4.1 Comparison with the state-of-the-art

We evaluate D2D on three different tasks, i.e., image matching, visual localisa-
tion, and 3D reconstruction on three standard benchmarks, i.e., Hpatches [47],
Aachen Day-Night [60, 61], and ETH SfM [62], respectively. Each of the tasks
tests the compatibility of the detector and the descriptor from a different perspec-
tive. We employ HardNet and SOSNet trained on Liberty from UBC dataset [46].
For all experiments in this section, we set the window size rRS to be 5.

Image Matching. Hpatches [47] dataset contains 116 image sequences with
ground truth homographies under different viewpoint or illumination changes.
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Fig. 4: Experimental results for the HPatches [47] dataset. The results are re-
ported with Mean Matching Accuracy. We observe that the proposed D2D
method significantly outperforms other approaches, especially in the crucial high-
accuracy area of < 5px.

Following the evaluation protocol of [14, 33], we report the mean matching ac-
curacy (MMA). In Figure 4, we plot the MMA curve for thresholds 1 to 10
pixels averaged over all image pairs. Also, we give the mean number of key-
points, mean number of mutual nearest neighbour matches per image pair, and
the ratio between the two numbers.

As shown, combining D2D approach with HardNet and SOSNet can achieve
superior or comparable results to other state-of-the-art methods. By compar-
ing the curves of HardNet/SOSNet+D2D with SIFT+HardNet/SOSNet, we can
observe that D2D finds more compatible keypoints for HardNet/SOSNet than
SIFT. Also note that when using the SIFT detector, the MMA curves of Hard-
Net and SOSNet almost overlap, however, D2D helps to further reveal their
performance difference. This also demonstrates that the detector is a very cru-
cial component of matching, and that optimising descriptor independently from
the detector is insufficient. Moreover, we also see that D2D can detect more key-
points thus leading to a higher number of mutual nearest neighbour matches,
which beneficial for various applications. Besides, HardNet+D2D also surpass
AffNet+HardNet++, where AffNet is specifically trained with a descriptor loss.
This shows that leveraging the absolute and relative saliency of descriptors is an
effective approach to detect keypoints. Plead refer to the supplementary mate-
rials for more comparisons against different detection methods.

Day-Night Visual Localisation. In this section, we further evaluate our
method on the task of long-term visual localization using the Aachen Day-Night
dataset [60,61]. This task evaluates the performance of local features under chal-
lenging conditions including day-night and viewpoint changes. Our evaluation
is performed via a localisation pipeline3 based on COLMAP [3] and The Visual
Localization Benchmark4.

3 https://github.com/tsattler/visuallocalizationbenchmark/tree/master/

local_feature_evaluation
4 https://www.visuallocalization.net/

https://github.com/tsattler/visuallocalizationbenchmark/tree/master/local_feature_evaluation
https://github.com/tsattler/visuallocalizationbenchmark/tree/master/local_feature_evaluation
https://www.visuallocalization.net/
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Table 1: Comparison to the state of the art on the Aachen Day-Night dataset. We
report the percentages of successfully localized images within 3 error thresholds
as in [14, 25].

Method #Dim #Kp 0.5m, 2◦ 1m, 5◦ 5m, 10◦

SIFT 128 11K 33.7 52.0 65.3
DELF(New) 1024 11K 39.8 61.2 85.7
HAN+HN++ 128 11K 39.8 61.2 77.6
SuperPoint 128 3.7K 42.8 57.1 75.5
D2-Net SS 512 12K 44.9 66.3 88.8
D2-Net MS 512 12K 44.9 64.3 88.8
R2D2 (N=8) 128 10K 45.9 66.3 88.8

SIFT+HardNet 128 11K 34.7 52.0 69.4
HardNet+D2D 128 16K 41.8 61.2 84.7
SIFT+SOSNet 128 11ßK 36.7 53.1 70.4
SOSNet+D2D 128 16K 42.9 64.3 85.7

SuperPoint+D2D 256 3.7K 41.8 59.2 78.6
D2-Net SS+D2D 512 8.3K 44.9 66.3 88.8

In Table 1, we report the percentages of successfully localized images within
three error thresholds. As can be seen, D2D significantly boost the performance
of HardNet and SOSNet. Even though D2-Net and R2D2 are still the best per-
formers on this dataset, their advantage may come from the training data or
network architecture, i.e., D2-Net uses VGG16 network [63] pre-trained on Ima-
geNet and then trained on MegaDepth [64] while R2D2 is also trained on Aachen
Day-Night dataset. However, HardNet and SOSNet are only trained on 450K
32 × 32 patches from Liberty dataset [46]. We leave the training of D2D on
larger datesets for better visual localisation performance as a further work. We
will show in the next experiments that, these two models trained on patches
labeled by an SfM pipeline are especially effective for 3D reconstruction tasks.
3D Reconstruction. We test our method on the ETH SfM benchmark [62] in
the task of 3D reconstruction. We compare the reconstruction quality by com-
paring the number of registered images, reconstructed sparse and dense points,
mean track length, and the reprojection error. Following [62], no nearest neigh-
bour ratio test is conducted to better expose the matching performance of the
descriptors.

The reconstruction results are listed in Table 2. With D2D, HardNet and
SOSNet show consistent performance increase in terms of the number of reg-
istered images, the number of sparse points, and the track length, which are
important indicators of the reconstruction quality. This observation is expected
as in this experiment, both HardNet and SOSNet are trained on local patches
that are extracted and labeled via the SfM pipeline, and therefore are more
suitable for this task.

Moreover, an interesting observation which has also been observed by pre-
vious works [20, 27], is that when the number of spare points increases, track
length drops and reprojection error increases, especially with large scenes. A
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Table 2: Evaluation results on ETH dataset [62] for SfM. We can observe that
with our proposed D2D, the shallow networks trained on local patches can sig-
nificantly surpass deeper ones trained on larger datasets with full resolution
images.

#Reg. #Sparse #Dense Track Reproj.
Images Points Points Length Error

Fountain SIFT 11 14K 292K 4.79 0.39px
11 images SuperPoint 11 7K 304K 4.93 0.81px

D2-Net 11 19K 301K 3.03 1.40px
SIFT+HardNet 11 16K 303K 4.91 0.47px
SIFT+SOSNet 11 16K 306K 4.92 0.46px
HardNet+D2D 11 20K 304K 6.27 1.34px
SOSNet+D2D 11 20K 305K 6.41 1.36px

Herzjesu SIFT 8 7.5K 241K 4.22 0.43px
8 images SuperPoint 8 5K 244K 4.47 0.79px

D2-Net 8 13K 221K 2.87 1.37px
SIFT+HardNet 8 8K 239K 4.30 0.50px
SIFT+SOSNet 8 8K 239K 4.31 0.50px
HardNet+D2D 8 13K 242K 5.73 1.29px
SOSNet+D2D 8 13K 237K 6.06 1.34px

South SIFT 128 108K 2.14M 6.04 0.54px
Building SuperPoint 128 125k 2.13M 7.10 0.83px

128 images D2-Net 128 178K 2.06M 3.11 1.36px
SIFT+HardNet 128 159K 2.12M 5.18 0.62px
SIFT+SOSNet 128 160K 2.12M 5.17 0.63px
HardNet+D2D 128 193K 2.02M 8.71 1.33px
SOSNet+D2D 128 184K 1.94M 8.99 1.36px

Madrid SIFT 500 116K 1.82M 6.32 0.60px
Metropolis SuperPoint 702 125K 1.14M 4.43 1.05px
1344 images D2-Net 787 229K 0.96M 5.50 1.27px

SIFT+HardNet 793 306K 1.23M 3.84 0.93px
SIFT+SOSNet 675 240K 1.27M 4.40 0.94px
HardNet+D2D 899 710K 1.13M 5.31 1.08px
SOSNet+D2D 865 626K 1.15M 6.00 1.14px

Gendar- SIFT 1035 338K 4.22M 5.52 0.69px
menmarkt SuperPoint 1112 236K 2.49M 4.74 1.10px
1463 images D2-Net 1225 541K 2.60M 5.21 1.30px

SIFT+HardNet 1018 827K 2.06M 2.56 1.09px
SIFT+SOSNet 1129 729K 3.05M 3.85 0.95px
HardNet+D2D 1250 1716K 2.64M 5.32 1.16px
SOSNet+D2D 1255 1562K 2.71M 5.95 1.20px

possible explanation for this phenomenon is that more robust descriptors man-
age to match harder keypoint pairs, which are characteristic for showing lower
repeatability and localisation accuracy. The lack of repeatability and accuracy,
in turn, aggravates the reprojection error on the detections. However, we ob-
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Fig. 5: Comparison of efficiency.

server this phenomenon can be alleviated by D2D which provides more accurate
and repeatable keypoints that are compatible with the descriptors.
Efficiency. In this experiment, we compare the feature extraction speed of sev-
eral methods. Specifically, we record the extraction time over 108 image se-
quences in Hpatches [47], where there are 648 images with various resolutions
(the average resolution is 775 × 978). All methods are tested on a RTX 2080
GPU, and the results are shown in Figure 5. SuperPoint and D2-Net has 1.3M
and 15M parameters, respectively, whereas HardNet/SOSNet+D2D only relies
0.3M. HardNet/SOSNet+D2D is slightly slower than SuperPoint, due to the ex-
tra time that is mostly spend on ranking the SD2D score of keypoints, whereas
SuperPoint takes a thresholding operation.

In summary, from the results on three different tasks with three different
datasets we observe that with D2D, patch-based descriptors HardNet and SOS-
Net can achieve competitive performance compared to joint detection-description
methods such as D2-Net and SuperPoint. With significantly less parameters
and faster speed, HardNet and SOSNet can achieve comparable/superior results
to/than the state-of-the-art methods. These results validate our hypothesis that
the networks trained for descriptors can be also used for detection.

4.2 Ablation Study

Combining D2D with joint methods. In order to further validate the effec-
tiveness of the proposed D2D, we test it in combination with detect-and-describe
methods namely D2-Net [14] and SuperPoint [13]. Each of the two methods has
its unique detection strategy: SuperPoint detects via thresholding of deep score
maps while D2-Net selects local maxima. We adapt D2D in the following way:
For SuperPoint, we generate a new threshhold α∗ by:

α∗ =
E[SD2DSO]

E[SO]
α, (5)

where α and SO are the original threshold and score map, respectively. For D2-
Net, we choose local maxima that also have high SD2D. Specifically, if (x, y) is a
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keypoint than it should be detected by the non-maxima-suppression as well as
have:

SD2D(x, y) > E[SD2D] (6)

Table 3: Ablative study in terms of Absolute Saliency(AS) and Relative
Saliency(RS). Numbers are in terms of the average MMA on Hpatches [47] across
pixel error threshold 1 to 10.

AS RS SuperPoint D2-Net HardNet SOSNet√
67.51 61.20 71.38 72.66√
67.58 60.07 69.32 72.77√ √
67.64 61.42 72.40 75.40

In Figure 6(a), D2D helps to eliminate a large number of unmatchable key-
points, i.e., improves the ratio of mutual nearest neighbour matches, while guar-
anteeing on par or superior performance. We suspect the slight performance
drop of SuperPoint+D2D at lower thresholds is the side effect of reducing key-
points density, whereas D2Net with better keypoints localisation accuracy does
not suffer from this problem. Moreover, in Table 1, SuperPoint+D2D achieves
remarkably better localisation accuracy. D2-Net+D2D can maintain the same
accuracy with much fewer detections indicating that keypoints not contributing
to the localisation are filtered out by D2D. These results demonstrate that D2D
can also improve the jointly trained detection-description methods.
Impact of absolute and relative descriptor saliency. In Table 3, we show
how SAS and SRS impact the matching performance. We observe that each of the
two terms enables the detection, and the performance is further boosted when
they are combined. This indicates that the absolute and relative saliency, i.e., in-
formativeness and distinctiveness of a point are two effective and complementary
factors.
Impact of rRS. Matching performance in terms of different window size rRS

for computing relative saliency is shown in Figure 6(b), where the experiment
is done using only SRS as the keypoint score. For HardNet and SOSNet, the
best rRS is 5, which means that it is better to compare patches that are 20
pixels (stride 4 times 5) away from the center, which is approximately half of
the receptive field size. Descriptors that are too close are indistinguishable.
Keypoint complementarity. Table 4 shows the results of a repeatability test
across different descriptors combined with D2D. This is to demonstrate the
complementarity of keypoints detected with different methods. The off diagonal
scores are normalised with the diagonal scores for example, keypoints from Hard-
Net+D2D are compared to those detected by SOSNet+D2D. Low normalised re-
peatability score indicates that the keypoints are mostly different, i.e., different
locations, thus the methods are complementary. Similarly HardNet and SOSNet
give high score. This may be expected as both share the same architecture and
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Fig. 6: (a) Performance of combining D2D with SuperPoint [13] and D2-Net [14]
on Hpatches [47]. (b) Performance in terms of MMA with different choice of rRS.

Table 4: Keypoint repeatbality on Hpatches [47] with different detectors. Col-
umn: detector used on source image. Row: detector used on destination image.
Numbers are the percentage of repeatbality change in terms of the original re-
peatbality (diagonal).

SuperPoint D2-Net HardNet SOSNet

SuperPoint 1 1.0154 0.745 0.765

D2-Net 1.136 1 0.675 0.690

HardNet 0.849 0.729 1 0.952

SOSNet 0.868 0.738 0.950 1

similar training process. However, high score between SuperPoint and D2-Net
which indicates that the two descriptors are not complementary, measure the
same type of information that D2D uses for detecting keypoints.

5 Conclusion

We proposed a new Describe-to-Detect (D2D) framework for the task of key-
point detection given dense descriptors. We have demonstrated that CNN mod-
els trained to describe can also be used to detect. D2D is simple, does not
require training, is efficient, and can be combined with any existing descriptor.
We defined the descriptor saliency as the most important property and pro-
posed an absolute and relative saliency measure to select keypoints that are
highly informative in descriptor space and discriminative in their local spacial
neighbourhood.

Our experimental evaluation on three different tasks and different datastes
show that D2D offers a significant boost to the matching performance of various
descriptors. It also improves results for camera localisation and 3D reconstruc-
tion.
Acknowledgements. This research was supported by UKEPSRC IPALM project
EP/S032398/1.
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