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Abstract. Remote photoplethysmography (rPPG) is a contactless method
for estimating physiological signals from facial videos. Without large su-
pervised datasets, learning a robust rPPG estimation model is extremely
challenging. Instead of merely focusing on model learning, we believe
data augmentation may be of greater importance for this task. In this pa-
per, we propose a novel multi-task learning framework to simultaneously
augment training data while learning the rPPG estimation model. We de-
sign three networks: rPPG estimation network, Image-to-Video network,
and Video-to-Video network, to estimate rPPG signals from face videos,
to generate synthetic videos from a source image and a specified rPPG
signal, and to generate synthetic videos from a source video and a speci-
fied rPPG signal, respectively. Experimental results on three benchmark
datasets, COHFACE, UBFC, and PURE, show that our method suc-
cessfully generates photo-realistic videos and significantly outperforms
existing methods with a large margin. 1 2

1 Introduction

Heart rate (HR) is a major health indicator of human body and has been widely
used to aid diagnosis of heart diseases, such as detection of atrial fibrillation
[1, 2]. Existing methods usually rely on specific contact devices to detect Elec-
trocardiography (ECG) or Photoplethysmography (PPG) signals for monitoring
the heart rate. Although these contact devices provide accurate readings, they
require professional attention to collect the signals and can hardly be used to
monitor a large group of subjects at the same time.

A number of contactless video-based methods have been developed [3–5] to
support remote estimation of physiological signals. Especially, remote photo-
plethysmography (rPPG), which aims to analyze the blood volume changes in
optical information, has been shown to be able to capture heart rate information
[6, 3], to aid detection of atrial fibrillation [1, 2], and can even be extended to ap-
plications such as face anti-spoofing [7–10]. However, because visual appearance

1 The code is publicly available at https://github.com/YiAnLee/Multi-Task-Learning-
for-Simultaneous-VideoGeneration-and-Remote-Photoplethysmography-Estimation

2 The first two authors contributed equally.
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is more vulnerable to environmental interference (e.g., illumination) and sub-
jects’ motion (e.g, body and muscular movement during the recording stage),
many efforts have been devoted to robust estimation of rPPG signals through
learning-based methods [3, 4, 11, 2].

Nevertheless, success of learning-based methods heavily relies on large and
good supervised datasets; there are unfortunately few datasets available for
training robust rPPG or HR estimation. Unlike other video analysis tasks, col-
lection of face videos and their ground truth for rPPG estimation is extremely
complex. Voluntary subjects are required to wear specific devices to obtain the
ground truth PPG labels. Moreover, if the subjects are hospital patients, not only
the data collection takes enormous time, but also the usage of their face videos is
highly restricted. Therefore, only a few datasets of face videos with ground-truth
PPG signals are publicly available, and these datasets are small-scaled with very
limited number of subjects. For example, UBFC-RPPG [12] dataset contains 42
videos from 42 subjects, and PURE dataset [13] contains 60 videos from only
10 subjects. Although in [1] a larger dataset OBF was collected with 200 videos
from 100 healthy adults, this dataset cannot be publicly released because of
privacy concern. Consequently, performance of existing methods remains unsat-
isfactory. To tackle the problem of insufficient data, in [14], the authors proposed
to pre-train their model on large-scaled data of synthetic rhythm signals. Be-
cause these synthetic rhythm signals need to be converted to a spatial-temporal
representation before estimating heart rates, its practicability in real-world sce-
narios is doubtful. Moreover, any pre-processing step may diminish the subtle
chrominance changes in face videos and yield inaccurate estimates. For exam-
ple, previous multi-stage methods usually involve spatial/temporal sampling,
and/or conversion from video frames to spatial-temporal maps. The conversion
step heavily relies on an accurate and stable ROI selection algorithm (so as to
align the same location into the spatial dimension of the map) and also incurs
information loss while collapsing the two spatial dimensions into one dimension
in the map. There is indeed a dearth of research on resolving this dilemma.

To resolve the aforementioned problems, in this paper, we propose to generate
augmented data by synthesizing videos containing specific rPPG signals and to
learn the rPPG estimator from both the source videos and the synthetic videos.
We formulate two tasks, that is, data augmentation and rPPG estimation, in a
multi-task learning framework. Figure 1 illustrates the proposed idea of generat-
ing synthetic videos by embedding a target rPPG signal into either a still image
or a video sequence. A more detailed framework is given in Figure 2, where the
three networks: rPPG network, Image-to-Video network, and Video-to-Video
network, are successively trained. We first pre-train the rPPG network using
source videos of the benchmark dataset. Next, we train the two video generation
networks (i.e., Image-to-Video and Video-to-Video networks) by concatenating
them with the pre-trained rPPG network but without updating the parameters
of rPPG network. Finally, we fine-tune the pre-trained rPPG network using syn-
thetic videos obtained from the two video generation networks. As mentioned
before, the performance of rPPG network highly depends on the quantity and
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Fig. 1. Illustration of the proposed idea. (a) Generation of a synthetic video from a
given source image and a target rPPG signal, (b) generation of a synthetic video from
a given source video and a target rPPG signal, and (c) learning the robust rPPG
estimator from both the source videos and the synthetic videos.

quality of the training data. In this paper, we aim to create a win-win situa-
tion and to reinforce these tasks to mutually support each other. Specifically,
because the data augmentation task (i.e., Image-to-Video network and Video-
to-Video network) needs to refer to the rPPG network to verify whether the
synthesized videos capture the target rPPG signals or not, a robust estimation
naturally leads to a better generation performance. On the other hand, with the
increased number of synthetics videos, the estimation task is able to learn from
various combinations of face videos (e.g., different skin colors, environmental il-
luminations, and motions) and rPPG signals (e.g., healthy subjects or patients
with heart disease) to increase its robustness. Our experimental results on three
benchmark datasets: COHFACE [15], PURE [13] and UBFC-RPPG [12], show
that we successfully generate photo-realistic videos with different rPPG signals
and that the learned rPPG estimator achieves state-of-the-art performance.

Our contributions are summarized below:

– To the best of our knowledge, this is the first work focusing on generating
synthetic videos with specific rPPG signals. The augmented dataset will
benefit the future study on remote monitoring of human physiological signals.

– We propose a multi-task learning framework to simultaneously learn the
data augmentation and the rPPG estimation tasks. These tasks, modeled
with three networks, are thus enforced to improve each other to boost the
overall performance.

– The proposed method successfully learns rich augmented data and yields ro-
bust rPPG estimation. Experimental results show that our method achieves
state-of-the-art results.
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2 Related Work

Remote Photoplethysmography Estimation has attracted enormous re-
search interests for heart rate estimation [16, 12, 6, 17–21]. Earlier methods focus
on designing either feature descriptors or color filters to capture the strongest
PPG information from facial videos. For example, in [6], the authors proposed
a chrominance-based approach to project RGB channels into a subspace for ex-
tracting the rPPG signals. In [21], the authors estimated a spatial subspace of
skin-pixels and measured its temporal rotation for rPPG estimation. However,
because these methods are developed based on assumed domain knowledge, they
may not generalize well to other data not complying with the assumption.

Many learning-based methods [3, 4, 22, 11, 5, 2, 23] have been recently intro-
duced for rPPG or HR estimation. In [2], a 3D CNN-based spatio-temporal
network was proposed to measure rPPG signal. In [23], the authors focused on
compression artifacts and proposed a two-stage method to recover rPPG signals
from highly compressed videos. The other methods [3, 4, 22, 11, 5] mostly focused
on improving the estimation accuracy but hardly address the lack of large-scale
data issue. Although a larger OBF dataset was introduced in [1], it was not pub-
licly available for experimental comparison. The problem of insufficient training
data is still far from being resolved.

Data Augmentation has been widely utilized to overcome the burden of
collecting large supervised datasets for training deep neural networks. In ad-
dition to traditional augmentation strategies (e.g. horizontal flipping, rotating,
cropping), learning to automate the data generation process has been shown
to significantly improve object detection and image classification tasks. In [24],
the authors proposed a context-based data augmentation for object detection
by automatically placing new objects in suitable locations of images. In [25], a
data augmentation method was proposed to generates synthetic medical images
using Generative Adversarial Networks (GANs) for liver lesion classification.

Fig. 2. The proposed multi-task learning framework, which contains three networks:
rPPG network, Image-to-Video network, and Video-to-Video network.
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3 Proposed method

3.1 Overview

The goal of this paper is two-fold: to augment the training data by synthesiz-
ing photo-realistic face videos containing specific rPPG signals, and to leverage
the rPPG estimation accuracy by learning from the augmented data. As shown
in Figure 2, we propose a multi-task learning framework containing three net-
works: rPPG network, Image-to-Video network, and Video-to-Video network, to
simultaneously fulfill the two tasks.

1. rPPG network aims to estimate rPPG signals directly from input face
videos.

2. Image-to-Video network aims to generate a face video vimage ∈ R
H×W×C×T

from a single face image xsource ∈ R
H×W×C and a target rPPG signal

ytarget ∈ R
T , where H, W , C denote the height, width, and the number

of channels of the source image, and T is the length of the target rPPG
signal.

3. Video-to-Video network aims to replace the original rPPG signal of a
source video vsource ∈ R

H×W×C×T with a target rPPG signal ytarget. The
synthesized video vvideo ∈ R

H×W×C×T is expected to look similar to the
source video vsource but should capture the target rPPG signal ytarget.

Note that, although it is possible to design and train the three networks inde-
pendently, their capability will be severely limited by the scale and quality of
their individual training data. Below we will detail each network and describe
how we formulate these highly correlated problems in a multi-tasking learning
framework to strongly reinforce the capability of each network.

3.2 RPPG Network

To estimate rPPG signals from face videos, previous methods [3, 26, 14] usu-
ally require image pre-processing steps, such as detection of regions-of-interest
(RoIs), conversion of video frames to spatial-temporal maps, etc. However, be-
cause any pre-processing step will unavoidably diminish the subtle chrominance
changes in face videos, we propose to directly estimate the rPPG signals from
face videos in an end-to-end manner without any pre-processing. We develop the
rPPG network P in terms of 3D CNN and summarize its network architecture
in the supplementary file.

Given a ground truth PPG signal y′ ∈ R
T , our goal is to train the rPPG

network P to estimate the signal y ∈ R
T to have the same periodic pattern

of wave crests and troughs as y′. An eligible criterion is to measure the linear
correlation through Pearson correlation:

ρ(y, y′) =
(y − y)t(y′ − y′)

√

(y − y)t(y − y)
√

(y′ − y′)t(y′ − y′)
, (1)
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where y and y′ are the means of the predicted rPPG signal y and the ground
truth PPG signal y′, respectively. Hence, we define the loss function of P in
terms of Negative Pearson by

LS
p (θP ) = 1− ρ(ysource, y

′

source), (2)

where
ysource = P (vsource; θP ). (3)

Fig. 3. Image-to-Video Network

3.3 Image-to-Video network

Figure 3 illustrates the proposed Image-to-Video network. Given a source image
xsource, we first introduce an encoder E to obtain the feature representation of
the source image by:

zimage = E(xsource; θE), (4)

where zimage ∈ R
HI×WI×CI ; HI , WI , and CI denote the height, width and the

number of channels of the image feature, respectively.
Next, we design a fusion method to incorporate the target rPPG signal

ytarget ∈ R
T into the feature map zimage. Because the dimensions of zimage and

ytarget are inconsistent, we cannot directly combine the two signals. We thus pix-
elwisely duplicate the rPPG signal ytarget into y

d
target ∈ R

HI×WI×CI×T , and tem-

porally duplicate the feature map zimage into z
d
image ∈ R

HI×WI×CI×T . The resul-

tant ydtarget and zdimage are of the same dimension and are then fused through the

element-wise addition to obtain the fused feature map z
f
image ∈ R

HI×WI×CI×T

by:
z
f
image = zdimage + ydtarget. (5)

With this fusion step, we guarantee that all the spatial elements in z
f
image

reflect the same rPPG characteristics. Then, we design a reconstruction network
G to generate synthetic face video vimage ∈ R

H×W×C×T :

vimage = G(zfimage; θG). (6)
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To ensure the synthetic video vimage carries the target rPPG signal, we in-
clude the learning of rPPG network P together with the learning of Image-to-
Video Network to formulate the loss term. We impose two constraints to define
the loss function for Image-to-Video Network. First, we let the rPPG network
P guide the encoder E and the reconstruction network G to generate a video
vimage containing the rPPG signal which is highly correlated with ytarget:

LI
p(θP , θG, θE) = 1− ρ(P (G((E(xsource; θE)

d + ydtarget); θG); θP ), ytarget). (7)

Second, as the synthetic video vimage should also capture the visual appearance
of the input image xsource, we define a reconstruction loss in terms of absolute
difference by:

LI
r(θG, θE) =

1

T

T
∑

t=1

|G((E(xsource; θE)
d + ydtarget); θG)(t)− xsource|. (8)

Finally, we define the total loss of Image-to-Video Network as follows,

Limage(θP , θG, θE) = LI
p(θP , θG, θE) + λ1L

I
r(θG, θE), (9)

where λ1 is a hyper-parameter and is empirically set as 0.01 in all our experi-
ments.

Fig. 4. Video-to-Video network

3.4 Video-to-Video network

Given a source video vsource and a target rPPG signal ytarget, the Video-to-
Video network aims to synthesize a target video vvideo which should be visually
similar to the source video but capture the target rPPG signal. Unlike the case in
Section 3.3, the source video itself inherently captures its own rPPG signal; thus,
we need to erase this rPPG signal before embedding the target signal ytarget.
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As shown in Figure 4, we replace the encoder E in the Image-to-Video network
with an rPPG removal network F :

zo = F (vsource; θF ), (10)

where zo ∈ R
HV ×WV ×CV ×T is the video feature representation that should con-

tain no rPPG signal; HV , WV , and CV are the height, width and the number of
channels, respectively.

Next, we use the same reconstruction network G to generate synthetic video
but with additional constraints. Firstly, the reconstructed appearance vo ∈
R

H×W×C×T from zo:
vo = G(zo; θG), (11)

is expected to be visually indistinguishable from the source video vsource but
should contain no rPPG periodic characteristics. We therefore formulate a re-
construction loss term and a No-rPPG loss term by:

LO
r (θG, θF ) =

1

T

T
∑

t=1

|G(F (vsource; θF ); θG)(t)− vsource(t)|, (12)

and
LO(θP , θG, θF ) = V ar(P (G(F (vsource; θF ); θG); θP )), (13)

where V ar(·) measures the signal variance. Note that, a constant (or zero fre-
quency) signal will have zero variance. Thus, we use V ar(·) to quantify the
periodicity of the estimated rPPG signal.

Secondly, to embed the target signal ytarget, we adopt the same duplication
and fusing steps of Image-to-Video network by:

vvideo = G(zfvideo; θG), (14)

where
z
f
video = zo + ydtarget. (15)

Then, we again impose two constraints on the synthetic video vvideo to ensure
that it carries the target rPPG signal ytarget and also preserves its original visual
appearance by:

LV
p (θP , θG, θF ) = 1− ρ(P (G((F (vsource; θF ) + ydtarget); θG); θP ), ytarget), (16)

and

LV
r (θG, θF ) =

1

T

T
∑

t=1

|G((F (vsource; θF ) + ydtarget); θG)(t)− vsource(t)|. (17)

Finally, we define the total loss of Video-to-Video Network by:

Lvideo(θP , θG, θF ) = LO(θP , θG, θF ) + LV
p (θP , θG, θF )

+λ2L
O
r (θG, θF ) + λ3L

V
r (θG, θF ),

(18)

where λ2 and λ3 are hyper-parameters and both are empirically set as 0.01 in
our experiments.
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3.5 Overall Framework

To sum up, the three networks are designed to mutually support each other.
With the rPPG network P , the Image-to-Video network and Video-to-Video
network are able to generate synthetic videos containing the target rPPG signals.
The reconstruction network G, which is included in both the Image-to-Video
and Video-to-Video networks, is constrained to generate photo-realistic synthetic
videos. In addition, because the synthetic videos are considered as augmented
data, the rPPG network is able to learn from videos with more diversity and with
different rPPG characteristics. Our total loss term for the multi-task learning
framework is defined by:

Loss(θP , θG, θE , θF ) = LS
p (θP ) + αLimage(θP , θG, θE) + βLvideo(θP , θG, θF ),

(19)
where α and β are coefficients to balance different loss terms and both are set
as 0.5 in the experiments.

4 Experiments

4.1 Datasets

We conduct a series of experiments on three benchmark datasets.

COHFACE dataset [15] comprises 160 one-minute-long RGB video se-
quences of 40 subjects. Each subject contributes four videos: two of them are
filmed in well-lighted environment and the other two are filmed under natural
light. All the videos are filmed by Logitech HD C525 webcam; the resolution is
set to 640× 480 and the frame rate is 20 fps. A contact PPG sensor is attached
to the subjects to obtain the blood volume pulse signal. The dataset is split into
a training set of 24 subjects and a testing set of 16 subjects.

UBFC-RPPG dataset [12] comprises 42 face videos, each belongs to dif-
ferent individuals. The training set consists of 28 subjects and the testing set
consists of 14 subjects. All the videos are recorded by Logitech C920 HD Pro,
with resolution of 640× 480 pixels in uncompressed 8-bit format, and the frame
rate is set to 30 fps. CMS50E transmissive pulse oximeter was used to monitor
the PPG data and PPG heart rates.

PURE dataset [13] consists of 60 one-minute-long videos from 10 subjects,
and each subject was asked to performs six different movements during record-
ing. The six setups are: (1) sitting still and looking directly at the camera, (2)
talking but avoiding head movements, (3) slowly moving the head parallel to
the camera, (4) moving the head quickly, (5) rotating the head with 20◦ angle,
and (6) rotating the head with 35◦ angle. The training set contains 7 subjects
and the testing set contains the rest 3 subjects. The videos are recorded using
eco274CVGE camera with resolution of 640 × 480 pixels, and the frame rate is
set to 30 fps. Pulox CMS50E finger clip pulse oximeter is adopted to capture
PPG data with sampling rate of 60 Hz.



10 Y. Tsou et al.

4.2 Implementation Setting

The architectures of the rPPG network P , the encoder E, the reconstruction
network G, and the rPPG removal network F in the Video-to-Video Networks
are given in the supplementary file. We train the network with Nvidia GTX 2080
for 280 epochs with batch size 4, using Adam optimizer and set the learning rate
0.001. For comparison, experiments using traditional visual data augmentations
are also conducted in UBFC and PURE dataset.

Table 1. Ablation study on COHFACE
dataset.

Method MAE RMSE

Source-150 1.86 3.77
Image-150 1.51 3.29
Video-150 1.54 3.32
All-150 1.33 2.71

Source-200 1.10 2.22
Image-200 1.02 2.12
Video-200 0.98 2.02
All-200 0.93 2.01

Source-256 0.91 2.16
Image-256 0.82 1.81
w/o LO

r , L
O-256 0.85 1.93

Video-256 0.84 1.76

All-256 0.68 1.65

Table 2. Comparison on COHFACE
dataset.

Method R MAE RMSE

2SR [21] -0.32 20.98 25.84
CHROME [6] 0.26 7.80 12.45
LiCVPR [18] -0.44 19.98 25.59
HR-CNN [11] 0.29 8.10 10.78
Two stream [5] 0.40 8.09 9.96

Ours-Source 0.68 0.91 2.16
Ours-Image 0.64 0.82 1.81
Ours-Video 0.66 0.84 1.76

Ours-All 0.72 0.68 1.65

4.3 Evaluation Metrics

Because existing methods evaluate the performance on the estimated heart rate
instead of on the rPPG signals, to have a fair comparison, we follow [22] to
derive the heart rate from the estimated rPPG signals and evaluate the results
in terms of the following metrics: (1) Pearson correlation coefficient (R), (2) Mean
absolute error (MAE), (3) Root mean square error (RMSE), and (4) Precision
at 2.5 and 5 bpm (beats per minute), (5) Peak signal-to-noise ratio (PSNR) and
(6) Structural similarity (SSIM).

4.4 Ablation Study

To show the effectiveness of our proposed method, we design several ablative set-
tings on the COHFACE dataset and summarize the results in Table 1. “Source-”,
“Image-”, “Video-”, “w/o LO

r , L
O-”, “All-” refer to different combinations of the
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tasks described in Figure 2, that is, (1) the single task P trained from the source
data, (2) training of Image-to-Video network and P , (3) training of Video-to-
Video network and P , (4) the proposed multi-tasking framework but without
loss terms LO

r , L
O, (5) the proposed multi-task framework, respectively. “-150”,

“-200” and “-256” refer to different lengths of T in terms of frame numbers.

Fig. 5. A visualized example of Image-to-Video network. (a) A source image from
the UBFC-RPPG dataset; (b) The synthetic video with target rPPG; (c) The source
rPPG label (blue) and the predicted rPPG (orange); (d) The target rPPG (blue) and
the predicted rPPG (orange).

As shown in Table 1, all the settings yield better performance with increased
T . These results suggest that observing a longer duration of video frames is
essential to derive stable rPPG periodicity and robust HR estimation. In ad-
dition, for each setting of T , “Image-”, “Video-” and “All-” all have improved
performance over “Source-”. These results verify that the data augmentation
and rPPG estimation tasks indeed promote each other and substantially boost
the overall performance.

Figures 5 and 6 give two examples synthesized by Image-to-Video network
and Video-to-Video network, respectively. In both cases, the generated videos
in Figs. 5(b) and 6(b) are visually indistinguishable from the source data, and
the estimated rPPG signals in Figs. 5(c) and 6(d) are very accurately aligned
with the ground truth. In addition, Fig. 6(e), where the estimated rPPG signal
from the rPPG-removed video becomes a flat signal (with the average variance
of 3.6× 10−4), demonstrates that the proposed removal network F successfully
erases the rPPG information from the source video. The target rPPG signals and
their estimated results in Figs. 5(d) and 6(f) also demonstrate that the proposed
framework successfully embeds the target signals into the synthesized videos.

We also evaluate the visual quality of synthetic videos in terms of PSNR
and SSIM on COHFACE dataset. As shown in Table 3, both the Image-to-
Video network and the Video-to-Video network generate synthetic videos with
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Fig. 6. A visualized example of Video-to-Video network. (a) Source video from the
UBFC-RPPG dataset; (b) rPPG removed video after F ; (c) The synthesized videos;
(d) The source PPG label (blue) and the predicted rPPG (orange); (e) The source
PPG label (blue) and the estimated rPPG from rPPG-removed video (orange); (f)
The target rPPG (blue) and the predicted rPPG (orange).

high PSNR and SSIM and show that our method successfully generates photo-
realistic videos visually indistinguishable from source data.

4.5 Results and Comparison

Table 2 shows the comparison with existing methods on the COHFACE dataset.
The first three methods, i.e., 2SR [21], CHROME [6], and LiCVPR [18] are
not learning-based methods; thus, there is a performance gap between them
and the other two learning-based methods HR-CNN [11] and Two stream [5].
As to the proposed method “Ours-”, we use the same settings “-source”, “-
image”, “-video” and “-all” as mentioned in Table 1 with T = 256. The result of
“Ours-Source” shows that, even without data augmentation, the proposed rPPG
network P alone has already outperformed all these existing methods with a
large margin. We believe there are two main reasons. First, P is an end-to-end
network which directly processes the input video without any pre-processing
step; hence, there involves no information loss in comparison with other multi-
stage methods. Second, the 3D CNN architecture in P effectively captures the
temporally periodic characteristics of rPPG signals in face video. Once we further
include the data augmentation task, the proposed method “Ours-all” achieves
the best performance with correlation coefficient (R) 0.72.

Table 4 shows the results on the original PURE dataset containing lossless
PNG files. Because the uncompressed PNG files have better visual quality, most
of the methods achieve a high correlation coefficient (R) larger than 0.9. Once we
follow the settings in [11] to compress the PURE dataset into MPEG-4 and ex-
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Table 3. Quality evaluation of synthetic videos on COHFACE dataset.

PSNR SSIM

Image-to-Video 33.38 0.993

Video-to-Video 34.07 0.994

rPPG removed video 37.71 0.996

periment on the compressed videos, the results in Table 5 show that our method
is least sensitive to compression artifacts and significantly outperforms previous
methods.

Moreover, in order to show that the proposed video generation largely en-
riches the training data than the simple data augmentation, we also conduct the
experiments “Ours-Trad.Aug” using traditional augmentation, including ran-
dom rotation, brightness, and saturation, for comparison. In Table 4 and Table
5, “Ours-Trad.Aug” shows no improvement over “Ours-Source” in both cases.
Note that, because the training and testing videos are recorded in similar light-
ing environments with the same device, traditional data augmentation provides
little information than the original training set. Instead, the proposed video
generation method is able to generate videos with a variety of rPPG signals
and is particularly advantageous for creating new benchmark datasets for rPPG
estimation task.

Table 6 shows the results and comparison on the UBFC-RPPG dataset. The
setting “Ours-Source” again outperforms the other methods. The precision 1.0 at
2.5 bpm indicates that there is no subjects’ MAE larger than 2.5 bpm and verifies
the robustness of the proposed method. As to the traditional augmentation,
although “Ours-Trad.Aug.” shows little improvement by decreasing the MAE
and RMSE to 0.63 and 2.08, the proposed method “Ours-All” further decreases
MAE and RMSE to 0.47 and 2.09, respectively. These results again show that
our augmentation method effectively enriches the variety of dataset and largely
improves the robustness of model training.

In addition, we conduct cross-dataset experiments to evaluate the general-
ization of the proposed method. As shown in Table 7, we show the results when
training the network on PURE dataset but directly testing the model on UBFC-
RPPG dataset and vice versa. Note that, this cross-dataset HR estimation in-
evitably leads to degraded performance, especially when the training dataset is
of smaller-scale and less diversity than the testing dataset. Therefore, we have
increased MAE from 0.40 to 4.24 and RMSE from 1.07 to 6.44 when testing on
PURE dataset but training on UBFC-RPPG dataset. The main cause of this
performance degradation comes from that PURE dataset contains different head
movements whereas UBFC-RPPG dataset has none; therefore, the model trained
on UBFC-RPPG is unable to adapt to different poses and head movements of
PURE testing data. On the other hand, when testing on UBFC-RPPG dataset,
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Table 4. Comparison on PURE dataset.

Method R MAERMSE

2SR [21] 0.98 2.44 3.06
CHROME [6] 0.99 2.07 2.50
LiCVPR [18] -0.38 28.22 30.96
HR-CNN [11] 0.98 1.84 2.37

Ours-Source 0.88 0.44 1.16
Ours-Trad.Aug. 0.79 1.06 2.12
Ours-All 0.92 0.40 1.07

Table 5. Comparison on PURE dataset
(MPEG-4 visual).

Method R MAERMSE

2SR [21] 0.43 5.78 12.81
CHROME [6] 0.55 6.29 11.36
LiCVPR [18] -0.42 28.39 31.10
HR-CNN [11] 0.7 8.72 11.00
Two stream [5] 0.42 9.81 11.81

Ours-Source 0.86 0.79 1.76
Ours-Trad.Aug. 0.70 1.19 2.61
Ours-All 0.87 0.75 1.69

we only have a slight increase in MAE and RMSE, and our result (i.e., MAE
1.06) still outperforms existing methods and shows good generalization of the
proposed model.

Table 6. Comparison on UBFC-RPPG
dataset.

Method MAE RMSE 2.5 bpm 5 bpm

PVM [20] 4.47 - 0.71 0.81
MODEL [17] 3.99 5.55 0.75 0.87
SKIN-TISSUE [12] - 2.39 0.89 0.83
MAICA [19] 3.34 - 0.72 0.88
BIC [16] 1.21 2.41 0.951 0.975

Ours-Source 0.73 2.38 1.0 1.0
Ours-Trad.Aug. 0.63 2.08 1.0 1.0
Ours-All 0.47 2.09 1.0 1.0

Table 7. Comparison of cross-dataset es-
timation.

Training-Testing MAE RMSE

PURE-PURE 0.40 1.07
UBFC-PURE 4.24 6.44

UBFC-UBFC 0.47 2.09
PURE-UBFC 1.06 2.70

5 Conclusions

To the best of our knowledge, this is the first work targeting generating syn-
thetic face videos with specific rPPG signals. We study the impact of data aug-
mentation and propose a novel multi-task learning method to simultaneously
accomplish the data augmentation and the rPPG estimation tasks. By gener-
ating photo-realistic videos, we successfully augment the existing small-scale
datasets with enriched characteristics and yield robust rPPG estimation. Our
experimental results verify the effectiveness of the proposed method and show
its great potential for promoting contactless estimation of human physiological
signals.
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