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Abstract. Deep learning methods, especially multi-task learning with
CNNs, have achieved good results in many fields of computer vision. Se-
mantic segmentation and shape detection of lumbar vertebrae, sacrum,
and femoral heads from clinical X-ray images are important and challeng-
ing tasks. In this paper, we propose a multi-task deep neural network,
MBNet. It is developed based on our new multi-path convolutional neu-
ral network, BiLuNet, for semantic segmentation on X-ray images. Our
MBNet has two branches, one is for semantic segmentation of lumbar
vertebrae, sacrum, and femoral heads. It shares the main features with
the second branch to learn and classify by supervised learning. The out-
put of the second branch is to predict the inspected values for lumbar
vertebra inspection. These networks are capable of performing the two
tasks with very limited training data. We collected our dataset and an-
notated it by doctors for model training and performance evaluation.
Compared to the state-of-the-art methods, our BiLuNet model provides
better mIoUs with the same training data. The experimental results have
demonstrated the feasibility of our MBNet for semantic segmentation of
lumbar vertebrae, as well as the parameter prediction for the doctors
to perform clinical diagnosis of low back pains. Code is available at:
https://github.com/LuanTran07/BiLUnet-Lumbar-Spine.

1 Introduction

Semantic segmentation and shape detection are fundamental to the object iden-
tification and location computation in medical images [1, 2]. While the X-ray
inspection is of great clinical necessity, the automatic understanding of X-ray
images is still a very challenging task. It is primarily due to the projective nature
of X-ray imaging, which causes large overlaps among the object shapes, blurred
boundaries, and complicated composition patterns [3]. For specific medical ap-
plications such as the treatment for low back pain, the images of spine bones are
acquired by X-ray [4], computed tomography [5], or magnetic resonance imag-
ing [6, 7], to facilitate the assessment of the causes by doctors. Consequently,
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Fig. 1. An overview of the lumbar vertebra inspection on X-ray images by our multi-
task deep neural network for semantic segmentation and inspection. (a) the input X-ray
image. (b) our MBNet generates the semantic segmentation result and inspected values.
The vertebrae, sacrum, and femoral heads are segmented with red, green, blue, and
cyan color respectively. (c) annotation reference is provided by doctors. (d) defined for
the parameters used for lumbar vertebra inspection, S1 is defined by the line segment
ab constructed between the posterior superior corner of the sacrum and the anterior
tip of the S1 endplate. The hip axis (o) is the midpoint of the line segment connecting
the centers of femoral heads. The pelvic radius is drawn from the hip axis to the center
of S1.

the automatic detection and segmentation of vertebrae in medical images is an
important step for the analysis of the disease severity and recovery from the
treatment.

The recent state-of-the-art techniques for vertebra detection, segmentation,
and localization from images usually adopt two main strategies: the approaches
using traditional computer vision and image processing algorithms and the meth-
ods based on deep neural networks. The former utilizes image enhancement, fea-
ture extraction, clustering, and classification for local region segmentation [8–10],
and the latter adopts convolutional neural networks with the models trained us-
ing the datasets labeled by the experts in the field [11, 12]. Due to the overlapping
shadows of chest organs, including lungs, bowels, and other bony structures such
as ribs, the automatic detection, and segmentation of vertebrae using traditional
methods are more difficult for X-ray images than for CT or MRI images [3, 13,
14]. Nevertheless, the use of X-ray imaging techniques is popular because of the
least amount of radiation.

With the traditional approach, Ebrahimi et al. proposed a technique for
posterior corner detection in X-ray images of the lumbar spine [9]. They first
enhanced the image region of the lumbar area and performed Canny edge de-
tection. The corner points were then selected via Haar-filtering to automatically
extract the positions of lumbar (L) vertebrae posterior corners for L1 to L5.
The results provided a localization accuracy at about 0.6 ∼ 1.4 mm, which was
comparable to the manual expert variability. In [15], Larhmam et al. presented
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a method for vertebra detection on X-ray images using the generalized Hough
transform (GHT). They adopted contrast-limited adaptive histogram equaliza-
tion (CLAHE) to enhance the image for edge detection. A GHT accumulator
construction was then used to determine the position of the center points of
vertebrae in the X-ray image with the information stored in the table created
based on the vertebra model. Their detection results demonstrated an 89% global
accuracy from 200 investigated vertebrae.

In the past few years, the progress of deep learning with convolutional neu-
ral networks (CNNs) has shown a remarkable performance on biomedical image
segmentation. However, the existing literature for CNN based lumbar vertebra
segmentation is mostly related to the techniques which take MRI images as in-
puts and is very limited for the processing of X-ray images [16]. Fully automatic
segmentation on X-ray images for the lumbar vertebrae still has many chal-
lenges. In [12], Arif et al. proposed a novel shape predictor network for vertebra
segmentation with X-ray images. They modified the U-Net [17] architecture to
generate a signed distance function (SDF) from the input image. The predicted
SDF was then converted to the parameters represented in a shape space for loss
computation. After the shape was transferred to the corresponding symbolic dis-
tance function, a principal component analysis (PCA) was performed. However,
their results were still very limited since it was not easy to derive the shape
information for complicated cases.

As machine learning techniques become more powerful, multi-task deep neu-
ral networks also gain considerable attention [10, 18–21]. Multi-task learning
(MTL) performs model training for several tasks simultaneously to share in-
formation in the network and solve multiple tasks at the same time. In [22],
Liu et al. proposed a multi-task deep learning model for automated lung nodule
analysis. They built a bi-branch model used for the classification and attribute
score regression tasks. This method makes the neural network more reliable in
detecting marginal lung nodules. In [23], Xiao et al. proposed a new regularized
multi-task learning model to jointly select a small set of standard features across
multiple tasks. The experimental results demonstrated that the model achieved
high performance compared with other methods.

In this paper, we present a multi-task network for the semantic segmen-
tation of lumbar vertebrae as well as the parameter prediction for inspection
and diagnosis. It is designed based on our effective semantic segmentation net-
work, BiLuNet, for the robust detection of unclear overlapping shadow regions
in the images. For comparison, BiLuNet is trained independently to determine
the location of five lumbar (L1 to L5), S1 on the sacrum and the hip axis. The
parameters for the diagnosis of lumbar vertebrae are then derived. In the experi-
ments, the training data are labeled at the pixel level manually and annotated by
doctors. The datasets are used to train our MBNet and BiLuNet, as well as other
networks for performance comparison. Experimental results have demonstrated
the effectiveness and feasibility of our proposed MBNet for both the semantic
segmentation and lumbar vertebra inspection on X-ray images with very high
accuracy.
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1.1 Background

The inspection of the lumbar vertebrae includes object segmentation, target
localization, and analysis of several inclination angles in the X-ray images. Figure
1(d) depicts the surgical measurements of interest in this work for identification
and future examination. Pelvic incidence (PI) is defined as the angle between the
line perpendicular to the sacral plate at its midpoint (c) and the line connecting
this point to the axis of femoral heads [24]. PI is an important pelvic anatomic
parameter which determines the pelvic orientation. It is a specific constant for
each individual and remains relatively stable during childhood. Afterward, it
increases significantly during youth until reaching its maximum, and does not
change after adolescence [25].

Pelvic tilt (PT) is defined as the angle between the anterior pelvic plane
(APP) and a vertical line in the standing position. To be more specific, it is the
angle given by the line passing through the hip axis o and the line segment oc in
the X-ray image (see Fig. 1(d)). Sacral slope (SS) is defined as the angle between
the sacral endplate S1 and the horizontal axis passing through its endpoint (b).
PT and SS are position-dependent angles in the spatial orientation of the pelvis
[26]. PI, SS, and PT are particularly useful since it can be shown that PI is the
arithmetic sum of SS and PT, and these two position-dependent variables can
determine the pelvic orientation in the sagittal plane [27].

Lumbar lordosis (LL) is the inward curve of the lumbar spine, and defined
as the angle between the lines drawn along the superior endplate of L1 and the
superior endplate of S1 [28]. The angle L4S1 is measured by the intersection of
the lines drawn along the superior endplate of L4 and the superior endplate of
S1. Most bodyweight and movement are carried by the two lowest segments in
the lumbar spine, L5/S1, and L4/L5, which makes the area prone to injury. In
95% of disc herniated cases, L4/L5 or L5/S1 levels are involved. Low back pain
with degenerative disc disease is when normal changes take place in the discs of
the spine, mostly at the sites L4/L5 lumbar vertebrae and S1 sacrum [29, 30].
The surgery for patients with unbalanced lumbar spondylolisthesis is helpful to
correct the spine-pelvic sagittal parameters (PI, PT, SS, L4S1, and LL) closer
to the normal range [31].

PI-LL is the value of PI minus LL. Given a PI value, it offers an estimate
of the lordosis and quantifies the mismatch between pelvic morphology and the
lumbar curve. Lordosis distribution index (LDI) defines the magnitude of the arc
lordosis (L4S1) in proportion to the arc of the lumbar lordosis (LL). Relative
lumbar lordosis (RLL) quantifies the magnitude of lumbar lordosis relative to
the ideal lordosis as defined by the magnitude of PI. RLL and LDI are used
to describe the state where the lumbar lordosis is rehabilitated to the ideal
magnitude and distribution. The evaluation of RLL and PI-LL provides the
prediction of postoperative complications and the correlation with health-related
quality of life (HRQOL) scores [32].
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2 Multi-Task Deep Neural Network (MBNet)

In this section, we describe our MBNet architecture, where M represents the
multi-task network structure and B denotes the BiLuNet backbone model. Our
MBNet automatically learns appropriate representation sharing through end-to-
end training, and makes full use of the correlations among different tasks. The
MBNet with supervised learning is applied for two tasks, semantic segmentation
and parameter inspection for the diagnosis of lumbar vertebrae as presented in
Figure 3.

2.1 Semantic Segmentation Branch

For semantic segmentation, this work is specifically concerned with an accurate
segmentation method to extract the object mask. It is used to detect the loca-
tions of lumbar vertebrae, sacrum, and femoral heads. In this regard, U-Net is
one of the well-known fully convolutional networks (FCNs) utilized in medical
image understanding [17]. It has many variants in the literature, and most of
them consist of an encoder-decoder structure. However, U-Net can hardly seg-
ment well for challenging cases or the image with a complex background. To
deal with these issues, we propose a new multi-path convolutional neural net-
work, BiLuNet, where Lu represents the shape of the network structure and Bi
denotes the bilateral segmentation network. As shown in Figure 2, our network
has two main paths, a spatial path to recover the spatial information and a
downsampling path to extract the features.

In BiLuNet, Spatial Path is to preserve the spatial information and generate
high-resolution features [33]. It contains three layers, and each convolutional
layer has stride = 2, followed by batch normalization and Rectified Linear Unit
(ReLU). Thus, this path extracts the output feature maps at 1/8 of the original
image size. It encodes the rich spatial information from the large spatial size of
the feature maps. The spatial path and downsampling path are crucial to the
prediction of the detailed output to cover large objects, which leads to a rich
discriminative ability.

The spatial information acquired by Spatial Path encodes most rich and
detailed messages in the low levels, while the robust features extracted from the
downsampling path are in the high levels. These two feature paths with different
levels are fused by a Feature Fusion Module (FFM) [33]. Given the features
from different levels, we first concatenate the outputs of the spatial path and
the downsampling path. The batch normalization is then utilized to balance the
scales of the features. Next, a global pool is used for the concatenated features
to form a feature tensor, and the weight is computed by a sigmoid function.
This weight tensor can re-weight the features by multiplying the concatenated
features and adding to the feature selection. The details of this FFM function is
shown in Figure 2. The dimension of the output space is 5, which corresponds
to the 5 classes of the segmentation requirement (background, vertebra, sacrum,
femoral head1, and femoral head2).
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Fig. 2. The end-to-end BiLuNet architecture for object semantic segmentation. White
boxes present the concatenation results of a copied feature map and an up conv, an up-
sampled and convolutional layer. Purple boxes indicate the results of the node dropped
out between two convolutional layers. BiLuNet takes a three-channel input image at
the resolution of 512 × 512, and the output contains five channels, the classes with
background, vertebra, sacrum, femoral head1, and femoral head2.

Similar to U-Net, the proposed BiLuNet operates with both the downsam-
pling and upsampling paths and adds a spatial path to recover the spatial in-
formation lost in the pooling layers of the contracting path. The downsampling
path decreases the feature size while increasing the number of feature maps,
whereas the upsampling path increases the feature size while decreasing the
number of feature maps. The latter eventually leads to a pixel-wise mask. For
the upsampling operation, we modify the existing architecture to reconstruct
high-resolution feature maps. The detailed network structure with the parame-
ter settings is illustrated in Figure 2.

To maintain the same number of channels in the encoder and decoder, skip
connections are added between the corresponding blocks in the downsampling
and upsampling paths. The skip connections are also used to explicitly copy
features from the earlier layers to the subsequent layers. This prevents the neural
network from having to learn the identity functions. Further functions are solely
tasked with building on the representation. Through the skip connections, the
nodes from a shallow layer are concatenated to the nodes in a deeper layer. The
deeper layer is then treated as a wider layer and connected to the next layer. We
use a dropout layer between these two convolutional layers to prevent overfitting
and co-adaptation of the features. In the implementation, 50% of the nodes are
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dropped out during the forward and backward passes. The network totally has
29 convolutional layers. In the final layer, a 1 × 1 convolution, 5 dimensional
space, and a sigmoid activation function are used to output the probability map
of the semantic segmentation, which has the same size as the original 512× 512
input.3

2.2 Inspected Values Branch

Conv2D(3x3)_32

Flatten

Max poling(4x4), strides= 4

Conv2D(3x3)_128

Max poling(4x4), strides= 4

Dense(1024) 

Dense(1024) 

Dense(18) 

Inspected Values Branch

Semantic Segmentation Branch

(BiLuNet) 

PI, LL, 

PImLL, 

L4S1, LDI, 

RLL, SS, 

PT, L1, L2, 

L3, L4, L5, 

L1L2, L2L3, 

L4L5, L5S1

Inspected Values Branch 

Lse

Lva

∑ Ltotal

Segmentation Loss 

Inspected Values Loss 

α

1 - α 

X-ray Image

Ground Truth of 

18-inspected Values  

Ground Truth

Fig. 3. MBNet architecture. It consists of two branches. The semantic segmentation
branch is trained to produce a semantic segmentation of the lumbar vertebrae, sacrum,
and femoral heads. The inspected values branch generates the inspected values for the
related parameters for the diagnosis of the lumbar vertebrae.

Besides generating the sematic segmentation map, our network also has other
functions, which can estimate the physical quantities. It is automatically esti-
mated to provide accurate parameters for the doctors to perform clinical diag-
nosis of low back pains. Here, the classification task is considered as an auxiliary
task. While the semantic segmentation task provides the local supervision for
the segmentation of lumbar vertebrae, sacrum, and femoral heads from clini-
cal X-ray images. The regression values level classification task provides global
supervision about how inspected values. The integrated classification part can
drive our model more robust to the inspected values variation and boost perfor-
mance. Via the dataset, the segmentation mask, and the inspected values ground
truth, we train our network to predict the parameters used for lumbar vertebra
inspection.

As presented in Figure 3, the input of the inspected values branch is shared
from the final layer of the semantic segmentation branch. The inspected values

3 The full training and testing code is open source at https://github.com/LuanTran07/
BiLUnet-Lumbar-Spine.
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branch designed to extracted from the shared feature maps. This network branch
consisting of two 3x3 convolutional layers, two 4x4 max-pooling layers, and three
fully connected (FC) layers were constructed as an inspected values classifier.
The first and second FC layer consists of 1024 neurons with the rectified linear
unit activation function. The output FC layer consists of 18 neurons followed
by a linear activation function, indicating the probabilities of the 18-inspected
values. To train the inspected values classifier supervised learning, the mean
squared error regression loss is used, which can be calculated by equation 3.

2.3 Multiple Loss Function

Our loss function is a weighted sum of a semantic segmentation loss (Lse) and
a inspected values loss (Lva):

Ltotal = α · Lse + (1− α) · Lva (1)

where α ∈ [0, 1] is loss weights. It adjusts the relative importance of Lse and
Lva. The loss weights (α) is set to 0.9 in our method.

We use categorical cross-entropy loss function for the semantic segmentation
loss. The categorical cross-entropy is given by

Lse = −
1

N

N∑

i=1

C∑

c=1

yc · log(ŷc) + (1− yc) · log(1− ŷc) (2)

where yj and ŷj denote the predicted and ground-truth values of the object in
the image, respectively. C is the number of categories, and N is the number
of training samples. The categorical cross-entropy cost function works in tan-
dem with a softmax activation function. It computes the loss between network
predictions and target values for multi-class classification.

The inspected values loss is defined by mean squared error regression loss.
It is the most commonly used regression loss function. The mean squared error
(MSE) is the sum of squared distances between our target variable and predicted
values. The inspected values loss is given by

Lva =

n∑
i=1

(yi − ŷi)
2

n
(3)

where yi and ŷi denote the predicted and ground-truth values of the inspected
values in the X-ray image, respectively. n is the number of training samples.

3 Experiments

In this work, we collect our own image data for the experiments. The dataset
consists of 650 images (with a half before surgery and half after surgery) for
network training, and additional 100 images for testing (also with a half before
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surgery and half after surgery). The training images are labeled with four cat-
egories (vertebra, sacrum, femoral head1, and femoral head2), ground-truth of
18-inspected values are annotated by doctors. For the CPU configuration, the
computer is with an Intel i7-7700 CPU at 3.6 GHz and 32GB RAM. The GPU is
an NVIDIA TITAN RTX with 24GB RAM. For training parameters, the num-
ber of epochs is set to 200, and the batch size is set to 4. Our initial learning
rate is set to 3e− 4 for Adam.

3.1 Semantic Segmentation Evaluation

(a) Original (b) U-Net (c) PSPNet (d) UNet++ (e) BiLuNet (f) GT

Fig. 4. An example of lumbar vertebra segmentation output on a challenging X-ray
image. Our result shows a significant improvement compared to those derived from
U-Net, UNet++, and PSPNet.

The testing dataset is also used to evaluate other methods for performance
comparison with the same training parameters and data. Figure 5 illustrates
the mIoU (mean intersection over union) of U-Net, UNet++, PSPNet, and
our BiLuNet. In 100 testing images, the proposed network has 84.10%, 83.67%,
80.35%, 78.67% and 98.48% mIoUs for vertebrae, sacrum, femoral head1, femoral
head2 and background, respectively. The proposed BiLuNet outperforms state-
of-the-art methods in all categories. Figure 4 also shows the higher accuracy
semantic segmentation results compared to others. Our model can cover the
most region of input X-ray images by the feature fusion between the spatial
path and the downsampling path. The spatial path designed in our network pre-
serves the spatial information from the original X-ray image. As shown in the
figure, very precise results of lumbar vertebrae, sacrum, and femoral heads are
obtained. More specifically, we are able to derive the accurate shapes of femoral
head1 and femoral head2, which are failed by all other methods.

We conduct several experiments to demonstrate the effectiveness of different
modules in our framework. The ablation study is carried out with three cases.
In the first case, the network is implemented without Spatial Path and Feature
Fusion Module. The network in the second case does not include FFM, but
use a concatenation function to combine Spatial Path and the downsampling
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Fig. 5. The performance comparison on our dataset for different algorithms, U-Net
[17], UNet++ [34], and PSPNet [35], and our BiLuNet. It shows the IoU (intersection
over union) and mean IoU for the evaluation between the semantic segmentation testing
results and ground-truth labels.

Table 1. Ablation study on different cases

Methods Vertebrae Sacrum Femoral head1 Femoral head2 Background Average mIoU

Case 1 82.98% 81.95% 72.89% 60.91% 95.90% 78.93%
Case 2 83.15% 82.71% 77.26% 69.42% 97.96% 80.64%
BiLuNet 84.10% 83.67% 80.35% 78.67% 98.48% 85.05%

path. The third case denotes the full BiLuNet. Table 1 reports the mIoUs (mean
intersection over union) of the three cases using 100 images for evaluation. The
average mIoUs are 78.93%, 82.10% and 85.05%, respectively. It demonstrates
that the spatial path designed in our network does improve the segmentation
results by preserving the spatial information from the X-ray image input. The
ablation analysis also shows that our network can effectively combine two feature
paths fused by Feature Fusion Module.

3.2 Lumbar Vertebra Inspection Results

The results of our MBNet tested on the images acquired before and after the
operations are shown in Figures 6(a) – 6(c) and Figures 6(e) – 6(g), respectively.
Two sample test X-ray images with the resolution of 2035×3408 captured before
and after surgery are shown in Figures 6(a) and 6(e), respectively. The semantic
segmentation is carried out with four target classes (vertebra, sacrum, femoral
head1, and femoral head2) represented by red, green, blue and cyan, respectively
(see Figs. 6(b) and 6(f)). As shown in Figures 6(b) and 6(f), the inspection
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. The lumbar vertebra inspection with our MBNet and BiLuNet on X-ray images.
(a), (e) the input X-ray images before and after surgery, respectively, (b), (f) Our
MBNet results with the inspection results and the semantic segmentation of vertebrae,
sacrum, left and right hip joints, in red, green, blue, and cyan, respectively, (c), (g)
the reference annotation by a doctor, (d), (h) Our BiLuNet results with deriving the
parameters from the segmentation and the identified shape and location of these objects
(L1, L2, L3, L4, L5, S1, hip axis).

results of our MBNet are very close to the annotation provided by doctors (Figs.
6(c) and 6(g)). To the best of our knowledge, no related studies are published
for comparison. Thus, BiLuNet is trained with the same parameters and data
for semantic segmentation of vertebrae, sacrum, and femoral heads. The post-
processing is then carried out to identify the shape and location of the objects
(L1, L2, L3, L4, L5, S1, hip axis). The locations of five vertebrae (L1 to L5),
sacrum (S1) and hip axis (o) are used to derive the parameters for lumbar
vertebra inspection as shown in Figures 6(d) and 6(h).

Table 2 shows the standard ranges of common interests, PI, LL, PImLL, LDI,
RLL, SS and PT [36] . The angles PI and PT are determined by the center of S1
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and the hip axis, so they are affected by the locations of femoral heads and S1.
More specifically, the derivation of most parameters depends on the accuracy
of S1. PImLL (PI – LL) presents an appreciation of the lordosis required for a
given PI value and quantifies the mismatch between pelvic morphology and the
lumbar curve [32]. The value LDI and the angle RLL are defined by

LDI = (L4S1/LL) (4)

RLL = LL− (0.62 · PI + 29) (5)

In the experiments, the inspection result is marked as OK if the value is in the
standard range.

To evaluate our parameter estimation with respect to the annotated values
(ground-truth), we define the accuracy as

Acc = 1−
|ve − va|

rs
(6)

where ve and va are the parameter estimates of our inspection and the value
annotated by doctors, respectively, and rs is the standard range shown in Table
2. The accuracy evaluation of lumbar vertebra inspection is shown in Table 3
and 4. Comparative accuracy levels are obtained for both the preoperative and
postoperative images.

Table 2. The standard range for our lumbar vertebra inspection.

Parameter PI LL PImLL LDI RLL SS PT

Standard range 34°∼84° 31°∼79° -10°∼10° 50%∼80% -14°∼11° -20°∼65° 5°∼30°

Table 3. The accuracy evaluation for the testing image shown in Figure 6 (before
surgery) for our MBNet and BiLuNet. Acc is the accuracy of our inspection results
with respect to the annotation by doctors (GT).

Names MBNet BiLuNet Ground-truth Acc MBNet (%) Acc BiLuNet (%)

PI° 50.38 50.73 52.84 95.08 95.78

LL° 57.30 53.31 58.16 98.21 89.90

PImLL° -4.67 -2.58 -5.32 96.75 86.30

LDI% 68.60 63.38 63.85 84.17 98.43

RLL° -3.62 -7.14 -3.60 99.92 85.84

SS° 56.19 53.70 57.82 98.08 95.15

PT° 4.82 -2.96 4.98 99.36 68.24

This testing set consists of 100 X-ray images, with a half before and a half
after surgeries. The testing images are selected randomly based on the femoral
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Table 4. The accuracy evaluation for the testing image shown in Figure 6 (after
surgery) for our MBNet and BiLuNet. Acc is the accuracy of our inspection results
with respect to the annotation by doctors (GT).

Names MBNet BiLuNet Ground-truth Acc MBNet(%) Acc BiLuNet (%)

PI° 50.36 46.64 49.29 97.86 95.08

LL° 35.16 30.39 33.79 97.15 98.21

PImLL° 16.53 16.25 15.50 94.85 96.75

LDI% 75.68 71.09 73.15 91.57 84.17

RLL° -24.71 -27.53 -25.77 95.76 99.92

SS° 38.57 35.93 38.45 99.86 98.08

PT° 11.79 10.71 10.84 96.2 99.36

� �� ���� �� ��� �� ��

�

��

��

��

	�

���



��
��
��
��
��

�

���������
�����������

Fig. 7. The accuracy evaluation for Our MBNet and BiLuNet using 100 X-ray images
(with a half before surgery and half after surgery). They are calculated based on the
comparison with the inspection result annotated by doctors.

head locations. Figure 7 shows the evaluation results of 100 images with our
MBNet and BiLuNet. MBNet is able to achieve the high average accuracy of
PI, LL, PImLL, LDI, RLL, SS, and PT with 94.48%, 92.10%, 81.09%, 78.55%,
86.63%, 91.29%, and 91.15%, respectively. The mean accuracy of LDI is lower
than other cases due to the limited training data for a large variation range.
BiLuNet is able to achieve the average accuracy of PI, LL, PImLL, LDI, RLL,
SS, and PT with 88.30%, 89.24%, 78.14%, 83.90%, 81.36%, 90.10%, and 83.77%,
respectively. The parameter inspection of PT, PI, PImLL, and RLL is affected
by the femoral head locations and less accurate as expected. The X-ray images
with femoral heads unclear or missing are considered as challenging cases. One
typical example is shown in Figure 8, where the second femoral head is not
available for segmentation.
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(a) (b) (c) (d)

Fig. 8. Our MBNet and BiLuNet results with the challenging case of the second femoral
head. (a) the input X-ray images before surgery, (b) Our MBNet results with the
inspection results and the semantic segmentation of vertebrae, sacrum, left and right
hip joints, in red, green, blue and cyan, respectively, (c) is the reference annotation by
a doctor, (d) Our BiLuNet results with deriving the parameters from the segmentation
and the identified shape and location of these objects (L1, L2, L3, L4, L5, S1, hip axis).

4 Conclusion

In this paper, we propose a multi-task deep neural network for the semantic seg-
mentation of lumbar vertebrae as well as the parameter prediction for inspection
and diagnosis. A multi-path convolutional neural network, BiLuNet, is presented
for semantic segmentation on X-ray images. It is able to achieve high accuracy
for the automated segmentation of lumbar vertebrae, sacrum, and femoral heads.
In performance evaluation, our BiLuNet model with global pooling and spatial
path outperforms other state-of-the-art semantic segmentation methods. Our
MBNet is able to provide accurate parameters to the doctors for clinical diag-
nosis of low back pains. The experimental results have demonstrated that our
approach is able to achieve high accuracy on lumbar vertebra inspection.
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