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Abstract. For mass pedestrians re-identification (Re-ID), models must
be capable of representing extremely complex and diverse multi-scale fea-
tures. However, existing models only learn limited multi-scale features
in a multi-branches manner, and directly expanding the number of scale
branches for more scales will confuse the discrimination and affect perfor-
mance. Because for a specific input image, there are a few scale features
that are critical. In order to fulfill vast scale representation for person Re-
ID and solve the contradiction of excessive scale declining performance,
we proposed a novel Dense-Scale Feature Learning Network (DSLNet)
which consist of two core components: Dense Connection Group (DCG)
for providing abundant scale features, and Channel-Wise Scale Selection
(CSS) module for dynamic select the most discriminative scale features
to each input image. DCG is composed of a densely connected convo-
lutional stream. The receptive field gradually increases as the feature
flows along the convolution stream. Dense shortcut connections provide
much more fused multi-scale features than existing methods. CSS is a
novel attention module different from any existing model which calcu-
lates attention along the branch direction. By enhancing or suppressing
specific scale branches, truly channel-wised multi-scale selection is re-
alized. To the best of our knowledge, DSLNet is most lightweight and
achieves state-of-the-art performance among lightweight models on four
commonly used Re-ID datasets, surpassing most large-scale models.

1 Introduction

Person re-identification (Re-ID) intends to automatically identify an individual
across non-overlapping camera views deployed at different times and locations.
The pedestrian image varies dramatically between different cameras, due to the
complexity of the realistic environment, such as light modification, posture vari-
ability, variety of view, scale change, partial occlusion. So, how to obtain and
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select the most beneficial multi-scale features becomes critical to improve the
performance of person re-identification.

The pedestrian image contains a plethora of multi-scale information. For
example, for the pedestrian in Figure 1(a), their dressing is very similar (both
wear grey top and black shorts), but their somatotype is not identical. So, the
large-scale body features become a crucial discriminating factor in this case. For
the pedestrians in Figure 1(b), they are very similar in dress and bodily form,
but their shoes and shorts are varied. So, small-scale information has become a
vital identification factor.

(a) (b)

(c) (d)

Fig. 1: The pedestrian image contains a plethora of multi-scale information.
Larger-scale features and smaller-scale features can identify pedestrians in sub-
figure (a) and (b). However, only multiple-scales are not enough, and the fusion
of multi-scale information is more discriminative (T-shirt with logo features that
are more discriminative in subfigure (c)). Moreover, as multi-scale information
becomes more abundant, selecting the discriminative information becomes more
important(as shown in sub-figure (d), how key features can be filtered under
occluded conditions becomes critical).

Under many circumstances, only multiple-scales are not enough and the per-
son can only be successfully matched through fusion between multi-scale infor-
mation. For example, for the pedestrian in Figure 1(c), the impostor needs to be
distinguished through the logo on T-shirt, and without T-shirt as context, the
logo no longer has discriminating power. Therefore, only by combining a variety
of scale information can the most favourable pedestrian features be obtained.

Furthermore, besides the ability to obtain pedestrian features at multi-scale
scales, it is also needed to select more discriminative information from an enor-
mous number of scale features and remove redundant features. As shown in
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Fig. 2: The structure of dense-scale feature learning network.

Figure 1(d), the leftmost pedestrian image is not occluded and the pedestrian
image in the middle is partially occluded, so the backpacks and tops of pedes-
trians become crucial identification information. It is of critical importance to
filter features and remove redundant features for Re-ID tasks.

To solve the problem of multi-scale acquisition and effective scale selection,
many of scholars put forward various solutions. In terms of multi-scale learning,
[1, 2] that improve the multi-scale ability by using filters with different size, how-
ever the capacity will be significantly limited only by changing the convolution
kernels size. OSNet [3] has designed a multi-branch block to obtain features with
different scales. However, the multi-scale learning ability is greatly affected by
the number of branches. A few attempts at learning multi-scale features also
exist [4, 1]. Yet, none has proposed a good solution to fully learn effective scale
information.

In terms of scale selection, SENet [5] adopts the strategy of feature recalibra-
tion to suppress or enhance the corresponding channel in the feature map. OSNet
designed an attention structure (Aggregation Gate) as same as SENet, which
applies it to multiple independent branches. However, the Aggregation Gate is
actually trained to identify critical channels under the intra-scale features, and
inter-scale features selection among multi-branches is implicitly realised only by
sharing aggregation gate weights. However, for person re-identification, intra-
scale feature selection would not be enough, and inter-scale feature selection is
also critical because integrate multiple key scales features as contextual infor-
mation can enhance the discrimination.

To this end, we proposed the dense-scale feature learning network (DSLNet),
a simple yet efficient multi-scale representation network which can extract more
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luxurious scale features while obtaining the most favourable scale features, and
it is also extremely lightweight.

As shown in Figure 2, The core of the dense-scale feature learning network
is the DSL block which consists of two parts: Dense Connection group (DCG)
and the Channel-Wise Scale Selection module (CSS).

In DCG, multi-scale feature mining is realized through the stack of depth-
wise separable convolutions, and multi-scale feature fusion is realized through
dense connection. Additionally, DCG introduces multiple streams and outputs
the corresponding feature maps which provide an enormous number of scale
features.

The structure of DCG has the following three advantages: First, provide rich
multi-scale fusion features. The small scale feature information can flow to the
large scale feature in a dense style, and then fuse information through addition,
which provides multi-scale fusion information with the largest capacity. Secondly,
output fusion information in a more sophisticated way. Different convolution
layers contain various types of fusion features. DCG attaches multiple streams
and outputs feature maps in early layers which can provide more abundant
multi-scale fusion features in a more advanced way. Thirdly, being lightweight.
DCG uses deep separable convolution (DW conv) which reduces the parameters
under the premise of preserving the accuracy, and the dense connection style
also makes more effective use of the stacked convolution layers.

DCG provides rich multi-scale features also introduces a lot of noise informa-
tion. Too rich scale features without a selection will confuse the discrimination.
So we designed the channel-wise scale selection module (CSS) which dynamically
select the inter-scale features in multiple streams. As shown in Figure 2, CSS
learns the weighted attention with fused multi-scale features because the weights
of each scale should not be calculated independently. Second, establish indepen-
dent sub-network for each stream to learn the corresponding channel weights.
Third, the truly inter-scale channel selection mechanism. Different from [3, 5],
CSS changes sigmoid activation for each stream with a unified softmax activation
function and calculates the softmax attention among corresponding channels in
different streams. This change will lead to a realization of inter-scale feature se-
lection. The benefit of these changes will be further discussed in the experiment
section.

Additionally, we go one step further. We proposed an enhanced hard triplet
loss (E-TriHard), which reduces the distance gap between intra-class and inter-
class while reducing the absolute value of the inter-class. The experimental re-
sults (as shown in Table 3) verify that using E-TriHard loss during the fine-tuning
phase will further improve the performance of DSLNet.

2 RELATED WORK

2.1 Deep Person Re-ID

In recent years, the person re-identification algorithm based on deep learning has
achieved state-of-the-art performance and become a critical research direction.
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Person re-identification can be divided into two steps: representation learning
and metric learning. They are closely related and rely on each other.

In [6–9], feature learning methods based on body parts are proposed to learn
salient pedestrian features. However, this kind of approach is restricted due to
the limitation of variable body parts spatial distribution and features misalign-
ment problem. The global feature learning methods are developed by [10–12].
However, the global feature tends to overlook detailed information about the
image, which restricts the expression ability. In order to obtain more discrimina-
tive information, the multi-scale feature representation method is proposed. [13,
3] achieve multi-scale feature mining by designing multiple branching network
structures. However, only stacking branches or changing convolution kernels has
limited capacity.

For metric learning, the main research direction focuses on optimizing the loss
function, including Contrastive Loss [14], Triplet Loss [15], Quadruplet Loss [16],
lifted loss [17], and so on. The development of the hard sample mining methods,
including hard triplet mining [18], margin sample mining [19], has gained great
success in person Re-ID and attracted more attention.

In this paper, we proposed a dense-scale representation network. Compared
with the above representation learning methods, DSLNet can learn more rich
multi-scale features in a granular way through dense-scale feature fusion and
reuse. In addition, we proposed an enhanced hard triplet loss function, which
can enlarge the gap between the intra-class and inter-class while keeping the
absolute value of the intra-class distance low.

2.2 Attention Mechanisms

With the rise and development of deep learning, attention model is widely used in
various fields, such as natural language processing [20], action recognition [21].
The attention-driven approaches to power networks to acquire discriminative
human representation are thus received widespread attention.

In [22–25], spatial attention modules are proposed to learn attention regions
or to extract features at salient spatial locations. However, spatial attention
methods depend on the specific network model structure and have weak gen-
erality. Channel-wise attention modules are proposed to enhance the channel-
wise feature map representation. Squeeze-and-excitation network [5] compresses
feature maps according to the channel-wise dimension to learn the discrimina-
tive representation of channels. OSNet [3] takes a similar attention structure to
SENet and pushes it into multiple branches. In this paper, we propose a novel
channel-wise scale selection module that dynamically weights the discriminative
features in multiple streams from the fused dense-scale information.

3 Proposed Algorithm

In this section, we present DSLNet, a novel and efficient multi-scale learning
neural network for the person Re-ID task. Firstly, we elaborate on the important
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components of DSLNet basic block(DSL block). Then we present the detailed
architecture of DSLNet.

3.1 Dense Connection Group

In the person Re-ID task, only multiple scales are far from enough, and the fea-
ture can be more discriminative through fusion between multi-scale information.

To achieve multi-scale feature fusion, we extend the residual structure by
introducing a dense connection group (DCG), The structure of the DCG is shown
in Figure 2.

Given an input x0, DCG consists of L feature extractors, and each feature
extractor implements a nonlinear transformation Hi(·), the output of DCG can
be expressed as follows:

xi = Hi(x0 + x1 + · · · · ··, xi−1) i ∈ [1, L] (1)

where xi represents the output of DCG on various scales. Each filter will fuse
the output of the former, and the receptive field will increase while the multi-
scale features are merging. Due to the dense connection, each layer contains the
information of all previous layers, which implements feature fusion with rich
scales.

Moreover, to better balance the trade-off between scale mining capability
and calculation cost, we carefully select the number of filters. Meanwhile, DSL
block adopts the DW conv, further reducing the FLOPS and parameters while
maintaining the accuracy.

3.2 Channel-Wise Scale Selection module

The dense connection group provides extremely rich multi-scale fusion features
also introduces many redundant features. In fact, only a limited number of scales
may be needed for the final authentication. So, how to extract the most discrim-
inative features from the rich scale information is very critical. Therefore, we
introduce the attention mechanism to realize the discriminative multi-scale fea-
ture selection.

As shown in Figure 2, the dense-scale channel-wise selection module (CSS)
consists of three stages: dense-scale feature fusion, attention learning, channel-
wise feature selection.

In the first stage, CSS obtains dense-scale features from the dense connection
group (DCG) and then adopts element-wise addition to fuse the features. Next,
CSS use the global average pooling layer to compress each channel. The process
can be formulated as:

F =

N∑

i=1

si, F ∈ R
H×W×C (2)
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Vc=

W∑

w=1

H∑

h=1

Fc (i, j)/(H ×W ) (3)

where N represents the number of output streams in DCG, si represents the
feature map of the i − th stream in DCG. F stands for fused features. H and
W denotes the width and height of F , c represents the c − th channel of F . V
represents the channel weight statistics and V = [V1, · · ·, Vc, · · ·VC ].

For attention learning, CSS learns the channel weights for each DCG stream
from the vector V . First, the vector V is split into N groups, then the CSS
module establishes multiple sub-streams that contain two fully connected layers.
Λn will pass through the corresponding sub-stream to learn the channel weights
In.

In = ϕn(Λn) (4)

where ϕn(·) represents the mapping function formed by two fully connected
layers, and n represents the n− th stream in CSS. I represents the set of channel
weights for all DCG streams, I = [I1, · · ·In, · · ·, IN ].

For channel-wise feature selection, CSS recombinants and normalizes the
corresponding channel weights in I, so as to truly realize inter-scale feature se-
lection. Specifically, CSS traverses I to extract the corresponding elements in the
In and reconstructs a new vector υ (as shown in Figure 2), υ ∈ R

1×N , and uses
softmax layer to normalize υ. Finally, υ will replace the corresponding elements
in In and get the renewed channel weight vector ωn, ωn ∈ R

1×C . The process
of recombining elements and normalization enables inter-scale feature selection,
and all weight expressions are derived from the dense-scale fusion features.

Finally, the reconstruction weight ωn is multiplied from the features of the
corresponding CSS stream, the weighted features of all streams are finally fused,
the output of the CSS can be formulated below:

D =

N∑

n=1

ωn⊙Fn (5)

where⊙ denotes the Hadamard product andD denotes the final learned weighted
features.

3.3 Loss Function Design

In the process of training, loss function can supervise the learning of network,
thus affecting the recognition performance of the model. Therefore, the selection
and design of loss function plays an important role in image retrieval [26], face
recognition [27] and person re-identification [28, 29]. We use two training meth-
ods: trained from scratch and fine-tuning from the ImageNet pre-trained models
to evaluate the proposed algorithm. Different training processes use different loss
functions.
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For training from scratch, we use cross entropy loss to optimize the model. For
fine-tuning, firstly, we use the cross entropy loss to train the model. Secondly, we
optimize the hard triplet loss function and train the network with the improved
loss function.

The hard triplet loss function can be expressed as:

LTriHard =
1

Nt

Nt∑

a=1

[ max
yp=ya

d(fa, fp)− min
yn 6=ya

d(fa, fn) +m]+ (6)

where [·]+ represents max(·, 0), Nt represents the number of triples in each batch,
d(·, ·) stands for metric distance function and we adopt the Euclidean distance.
m represents the margin of the hard triplet loss. fp is positive sample features,
fn is negative sample features, fa represents anchor sample features, distaap =
max
yp=ya

d(fa, fp), distaap represents the maximum intra-class distance of anchor

samples. distaan = min
yn 6=ya

d(fa, fn), distaan represents the minimum inter-class

distance of anchor samples.
The hard triplet loss is widely used in person re-identification, however, it

only considers the distance gap between d(fa, fp) and d(fa, fn) and ignores their
absolute values [30]. To compensate for the drawbacks of the hard triplet loss,
we add a regularization term to reduce the distance gap between intra-class and
inter-class while reducing the absolute value of the inter-class. The enhanced
hard triplet loss function(E-TriHard) is formulated as follows:

LE TriHard = LTriHard + β
1

Nt

Nt∑

a=1

(
distaap
distaan

) (7)

The final loss function used in the training process is formulated as:

Lfinal = Lsoftmax + αLE TriHard (8)

where, α, β ∈ (0, 1], two hyper-parameters α and β are fixed in the experiments.

3.4 Network Architecture

Based on the DSLBlock, the structure of DSLNet is meticulously designed. As
shown in Table 1, the stem of DSLNet is composed of a 7 × 7 convolution
layer with a stride of 2 and a 3 × 3 maxpooling layer. Subsequently, we stack
the DSLBlock layer-by-layer to construct the DSLNet. DSLNet contains three
stages, with each stage including two DSL Blocks. The feature map can be down-
sampled with each stage. Additionally, during the training phase, we add an
auxiliary branch at the second stage of the network. Auxiliary branch facilitates
information flow to the early layers and relieves the gradient vanishing problem.
Finally, we add global average pooling and fully-connected layer for training.
The network structure and parameters of DSLNet are shown in Table 1.
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Table 1: Architecture of DSLNet with input image size 256×128. c: The number
of input channels. k: Operation type. s: Stride. n: Number of repetitions of this
layer operation

Output Layer c k s n

128× 64 conv2d 60 7× 7 2 1
64× 32 max pool 60 3× 3 2 1
64× 32 DSL block 252 DW conv 1 2
64× 32 conv2d 252 1× 1 1 1
32× 16 average pool 252 2× 2 2 1
32× 16 DSL block 384 DW conv 1 2
32× 16 conv2d 384 1× 1 1 1
16× 8 average pool 384 2× 2 2 1
16× 8 DSL block 516 DW conv 1 2
16× 8 conv2d 516 1× 1 1 1
1× 1 global average pool 516 16× 8 1 1
1× 1 fc 516 fc 1 1

Params 1.9M

Flops 825.0M

4 Experimental Results

4.1 Datasets and Evaluation Metrics

Four mainstream challenging Re-ID datasets are used to verify the proposed
model, including Market-1501 [Zheng et al., 2015], DukeMTMC-Re-ID [Ristani
et al., 2016], MSMT17 [Wei et al., 2018] and CUHK03 [Li et al., 2014]. Among
them, Market-1501 includes 32,668 images of 1501 pedestrians, of which, 12,396
images of 751 identities were used for training and the rest for testing. Duke
MTMC-Re-ID consists of 36,411 images of 1,812 identities, of them, 1,404 iden-
tities were captured by more than two cameras, and the rest only appeared in
only one camera. Compared to other datasets, MSMT17 is a larger and more
realistic Re-ID dataset which was published in 2018, it contains 126,411 pedes-
trian images of 4101 identities, 32621 of these images with 1041 identities were
selected as the training set, and the rest 93820 images with 3060 other identities
were used for testing. The CUHK03 dataset is composed of 14,097 pedestrian
images of 1,467 identities, with each person having 9.6 images on average, and
the CUHK03 dataset contains two subsets that provide hand-labeled and DPM
detected bounding boxes respectively. We evaluate our proposed model on DPM
detected subset.

4.2 Implementation Details

In our experiments, we employ two training methods: training from scratch and
fine-tuning from the ImageNet pre-trained model.
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For training from scratch, we use the stochastic gradient descent algorithm
to optimize the model and epoch is set to 350. The learning rate is decayed
using the cosine annealing strategy with the initialization value of 0.0015. In
the fine-tuning stage, the AMS-Grad optimizer is used. The pre-trained weight
is frozen at the first 10 epochs, and only the randomly initialized classifier can
be trained. The epoch is set to 250. The learning rate decay strategy adopts
the cosine annealing strategy, and the initial learning rate is 0.065. Two loss
functions, cross-entropy loss and E-TriHard loss, are used in the fine-tuning
stage. For E-TriHard loss, we set the hyperparameters α and β to 0.5 and 0.8,
respectively.

In all experiments, the batch size is set to 64, and the weight decay is set to
5e-4. Images are resized to 256× 128, and the corresponding data enhancement
methods are adopted. In the verification stage, we delete the auxiliary branch
and extract the 512-D features from the last fully-connected layer of the main
branch and use the cosine distance for measurement. For all experiments, we use
single query evaluation and simultaneously adopt both Rank-1 (R1) accuracy
and the mean average precision (mAP) to evaluate the performance of DSLNet.
All experiments are conducted based on the deep learning framework of PyTorch,
and we use NVIDIA V100 GPU to train the model.

4.3 Performance Evaluation

Trained from Scratch Based on DSL block, we build a lightweight DSLNet
which can obtain dense-scale information and realize channel-wise scale feature
selection. For each DSL block, we stack six depth-wise separable convolutions
in series to obtain various scale receptive fields and simultaneously add dense
connections in DSL block for the fuse of multi-scale features at a granular level.
We trained the proposed model from scratch and compared it with state-of-the-
art models using the same training strategy. The results are shown in Table
2.

From Table 2, we can see that DSLNet outperforms the other methods
in all datasets. More concretely, DSLNet achieves the best rank-1 value and
mAP accuracy of 94.0% and 83.9% in Market1501 datasets, and 86.9%/74.8%
on Duke. While OSNet, the second-best method, arrives at 93.6%/81.0% and
84.7%/68.6%, respectively. The gap is even more significant in the CUHK03 and
MSMT17 databases. For R1, DSLNet outperforms OSNet by more than 6% im-
provement of R1 rate on CUHK03. For mAP, DSLNet beats OSNet by 6.8% on
CUHK03 and 9.0% on MSMT17.

Furthermore, DSLNet is the most light-weighted model which only has 1.9M
parameters. OSNet has similar parameter amount to MobileNetV2, both of
which are 2.2M. DSLNet has created an elegant and effective backbone network,
which uses fewer parameters to achieve the best performance.

Fine-tuning from ImageNet In order to highlight the significance of the
proposed DSLNet for person Re-ID task, we compare it with some recent re-
markable works. We conduct pre-training of DSLNet on the ImageNet dataset
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Table 2: Trained from scratch.

Method Venue Params(M) GFLOPs
Duke Market1501

R1 mAP R1 mAP

MobileNetV2 [31] CVPR’18 2.2 0.2 75.2 55.8 87.0 69.5
BraidNet [32] CVPR’18 - - 76.4 59.5 83.7 69.5
HAN [28] CVPR’18 2.7 1.09 80.5 63.8 91.2 75.7
OSNet [33] ICCV’19 2.2 0.98 84.7 68.6 93.6 81.0
DSLNet ours 1.9 0.82 86.9 74.8 94.0 83.9

Method Venue Params(M) GFLOPs
CUHK03 MSMT17

R1 mAP R1 mAP

MobileNetV2 [31] CVPR’18 2.2 0.2 46.5 46.0 50.9 27.0
HAN [28] CVPR’18 2.7 1.09 41.7 38.6 - -
OSNet [33] ICCV’19 2.2 0.98 57.1 54.2 71.0 43.3
DSLNet ours 1.9 0.82 63.8 61.0 75.0 52.3

and then use the pre-trained weight to conduct fine-tuning on the Re-ID dataset.
All results are summarized in Table 3.

From Table 3, it can be seen that DSLNet achieves higher R1/mAP than
the other methods on four mainstream datasets. For R1, DSLNet achieves the
highest rate of 73.6% on CUHK03 and 89.5% on Duke, while OSNet arrives
at the rate of 69.1%/88.6% respectively. For mAP, DSLNet beats OSNet by
3.7% on CUHK03 and 3.6% on Duke. On MSMT17, which is the largest one
among the four commonly used Re-ID datasets, DSLNet outperforms OSNet by
a significant margin. Concretely, DSLNet achieves the R1/mAP of 80.2%/57.3%,
respectively, while OSNet just arrives at 78.7%/52.9%. Adding E-TriHard loss to
the training process will further improve the performance of DSLNet. On Mar-
ket1501 and Duke, DSLNet (E-TriHard) achieves the R1/mAP of 95.1%/87.3%
and 90.4%/78.5%. On CUHK03 and MSMT17, DSLNet (E-TriHard) arrives at
76.8%/72.4% and 82.1%/59.4%. The performance on Re-ID benchmarks, espe-
cially on Market1501 and Duke, has been saturated lately. Therefore, the im-
provements obtained are significant.

Furthermore, we can also see that DSLNet achieves the best results with the
smallest model. DGNet, IANet, CAMA, st-ReID adopted the backbone based on
ResNet50, which involved the parameters amount of more than 23.5M, VA-reID
[37] employed the SeResNeXt backbone network with the parameter amount of
more than 46M. In comparison, our model is dozens of times smaller than theirs.
These experimental results validate the efficiency and robustness of DSLNet,
which is due to the multi-scale feature extraction and fusion ability of DSLNet.

4.4 Ablation Study

In order to verify the influence of different components of DSLNet, we conduct
related ablation experiment on the CUHK03 dataset. We verify the influence of
DCG/CSS components on the performance, respectively.
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Table 3: Fine-tuning from ImageNet. †: reproduced by us.

Method Venue Backbone
Params
(M)

Duke Market1501

R1 mAP R1 mAP

IANet [34] CVPR’19 ResNet > 23.5 87.1 73.4 94.4 83.1
DGNet [35] CVPR’19 ResNet > 23.5 86.6 74.8 94.8 86.0
st-ReID [36] AAAI’19 ResNet > 23.5 94.4 83.9 98.1 87.6

VA-reID [37] AAAI’20 SeResNeXt > 46.9 91.6 84.5 96.2 91.7
LUO [30] TMM’19 ResNext 46.9 90.1 79.1 95.0 88.2
Auto-ReID [38] ICCV’19 ResNet 13.1 - - 94.5 85.1
OSNet [33] ICCV’19 OSNet 2.2 88.6 73.5 94.8 84.9
DSLNet ours DSLNet 1.9 89.5 77.1 94.5 85.1
DSLNet (E-TriHard) ours DSLNet 1.9 90.4 78.5 95.1 87.3

Method Venue Backbone Params(M)
CUHK03 MSMT17

R1 mAP R1 mAP

CAMA [39] CVPR’19 ResNet > 23.5 66.6 64.2 - -
IANet [34] CVPR’19 ResNet > 23.5 - - 75.5 46.8
DGNet [35] CVPR’19 ResNet > 23.5 65.6 61.1 77.2 52.3
Auto-ReID [38] ICCV’19 ResNet 13.1 73.3 69.3 78.2 52.5

OSNet [33] ICCV’19 OSNet 2.2 69.1† 65.7† 78.7 52.9
DSLNet ours DSLNet 1.9 73.6 69.4 80.2 57.3
DSLNet (E-TriHard) ours DSLNet 1.9 76.8 72.4 82.1 59.4

Validity of Dense Connection The dense connection group obtains differ-
ent scale receptive fields by convolution layer stacking and realizes contextal
information fusion by dense connection. To verify the effectiveness of the dense
connection in DCG, we remove all dense connections from DSL blocks in ab-
lation experiment and compare the impact on the final performance. Baseline
stands for delete all dense connections in DSLNet. Add DC means adding dense
connection to DSL blocks.

As shown in Table 4, by adding dense connections, the performance of the
model is improved significantly, which benefits from the reuse of multi-scale
features, and the fusion of context information. Add DC outperforms baseline
model by more than 2% improvement of R1 rate and 1.8% improvement on
mAP accuracy. It proves that the design of dense connection is reasonable and
effective.

Validity of CSS Too rich features without an effective selection mechanism
can undermine the classifier’s discriminatory ability. Attention mechanism-based
approaches can be effective in addressing the problem of feature selection. To
verify CSS’s validity, we introduce the attention model from [3, 5] into DSLNet
for comparison experiments. As shown in Table 5, Baseline stands for removing
CSS module from DSL blocks. SENet Attention represents adding the SENet
attention structure to the baseline model. OSNet Attention means adding inde-
pendent attention models to the baseline model for all streams, yet the weights
of all attention models are shared. CSS is our proposed approach.



DSLNet 13

Table 4: Validity of Dense Connec-
tion

Model Architecture
CUHK03

R1 mAP

1 Baseline 61.4 59.2
2 Add DC 63.8 61.0

Table 5: Validity of CSS

Model Architecture
CUHK03

R1 mAP

1 Baseline 56.2 54.2
2 SENet Attention 62.2 60
3 OSNet Attention 62.5 59.9
4 CSS 63.8 61.0

From the experimental results, we can find that: 1) Adding the attention
network will significantly improve the baseline model’s performance, validate
that the attention mechanism-based feature selection mode is essential for Re-
ID tasks. 2) CSS model outperforms all other attention benchmarks by a clear
margin. Compared with model 2 and model 3, with the introduction of CSS,
R1/mAP can be improved by 1.6%/1.0% and 1.3%/1.1%, respectively. CSS fuses
the features from multiple streams to dynamically adjust the weights of all chan-
nels in the DCG, truly realizing the role of channel-wise feature selection across
streams. The experimental results verify the superiority of the CSS method.

4.5 Visualizations

Visualization of Learned Features To validate the effectiveness of DSLNet
to represent and select multi-scale features, we extract the feature map of the
last convolutional layer for visualization and observe whether the DSLNet fo-
cuses more on the key regions. We use the visualization method of [40], which
summits the feature maps along the channel dimension and then performs a
spatial euclidean normalization for a bright feature display. As shown in Figure
3, the rightmost column represents the DSLNet activation map. The middle col-
umn represents the activation map with all dense connections removed from the
DSLNet. We can see that DSLNet mines more effective multi-scale information,
as shown in the second example on the first line, where the logo on the pedestrian
bag is activated, in the second example on the second line, where the pedestrian’s
shoes and handbag activate a larger and more pronounced area. Other exam-
ples in Figure 3 also show that DSLNet highlights more salient features of the
same target. DCG provides the abundant of multi-scale feature combinations,
and CSS modules enable efficient discriminating feature selection. These quali-
tative results confirm the ability of DSLNet for effective feature representation
and selection.

4.6 Visual Retrieval results

To further demonstrate the robustness and effectiveness of DSLNet, we acquire
the eight nearest retrieval results of query images for analysis.
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(1)

Input w/o DC DSLNet Input w/o DC DSLNet Input w/o DC DSLNet

(2) (3)

Fig. 3: Visualizations of the activation map. From left to right, each of the three
images constitutes a set of comparison experiments, the right column represents
the DSLNet activation map. The middle column represents the activation map
with all dense connections removed from the DSLNet. We can see that with the
addition of dense connections, DSLNet highlights more salient features.

We select the retrieval results of query samples under blur, occlusion, and
illumination change. One can see that DSLNet can still get correct retrieval
results in an unfavorable environment. The above experiments further prove
the robustness and effectiveness of DSLNet, which benefits from the dense-scale
feature representation and discriminative feature selection ability.

5 Conclusions

In this paper, we proposed DSLNet, an efficient multi-scale representation net-
work which can extract dense-scale features while selecting discriminative multi-
scale information. In the future, we will do further research to investigate the
potential of DSLNet in other visual recognition tasks.
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