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Abstract. Fueled by the power of deep learning, stereo vision has made
unprecedented advances in recent years. Existing deep stereo models,
however, can be hardly deployed to real-world scenarios where the data
comes on-the-fly without any ground-truth information, and the data
distribution continuously changes over time. Recently, Tonioni et al. pro-
posed the first real-time self-adaptive deep stereo system (MADNet) to
address this problem, which, however, still runs at a relatively low speed
with not so satisfactory performance. In this paper, we significantly up-
grade their work in both speed and accuracy by incorporating two key
components. First, instead of adopting only the image reconstruction
loss as the proxy supervision, a second more powerful supervision is pro-
posed, termed Knowledge Reverse Distillation (KRD), to guide the learn-
ing of deep stereo models. Second, we introduce a straightforward yet
surprisingly effective Adapt-or-Hold (AoH) mechanism to automatically
determine whether or not to fine-tune the stereo model in the online
environment. Both components are lightweight and can be integrated
into MADNet with only a few lines of code. Experiments demonstrate
that the two proposed components improve the system by a large mar-
gin in both speed and accuracy. Our final system is twice as fast as
MADNet, meanwhile attains considerable superior performance on the
popular benchmark datasets KITTI.
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1 Introduction

Environment depth information is key to many applications such as autonomous
driving and mobile robotics. Compared with technologies such as LIDAR, Struc-
tured Light and Time-of-Flight, stereo is competitive in practical application
scenarios due to its lower cost, higher resolution and better universality for al-
most any environment. Many traditional stereo algorithms have been proposed
in recent decades. However, most of these algorithms are limited to specific condi-
tions (e.g., occlusions, texture-less areas, photometric distortions). Since Mayer
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Fig. 1. Disparity maps predicted by AoHNet on KITTI sequence [9]. Given the source
images (a), AoHNet exploits the traditional stereo method [10] as a second supervision
(b) to quickly adapt to the new real scenario (c).

et al. [1] proposed the first end-to-end stereo network DispNet, using convo-
lutional neural networks (CNNs) to regress depth maps from images directly
has become a dominant paradigm for stereo matching and is followed by many
state-of-the-art stereo methods [2–5].

However, existing deep learning-based stereo methods always suffer from the
domain shift problem where accuracy drops dramatically when the domain of
testing data is different from that of training data [6]. Fine-tuning on the tar-
get domain can solve the above problem, but obtaining aligned label data often
requires a large cost. [6, 7] propose to generalize deep stereo to novel domains
without the need of labels. However, they assume that the data of the target
domain is available in advance while in the real world the data domain usu-
ally changes over time. Recently, Tonioni et al. [8] proposed the first real-time
self-adaptive deep stereo system (MADNet) towards addressing the above prob-
lem. They cast the adaption as a continuous learning process and proposed a
lightweight, fast and modular architecture (MADNet) together with a tailored
training algorithm, termed Modular ADaptation (MAD) to improve the running
speed. To bypass the unsupervised problem, they adopt image reconstruction loss
as the proxy objective to train the model.

In this work, we significantly upgrade their method in both accuracy and
speed based on two key insights. Firstly, MADNet only adopts image recon-
struction loss as the proxy supervision. Albeit effective to some degree, this
proxy objective requires a relatively long time (about 900 frames) to adapt the
deep stereo model to a new scenario. To address this problem, a second super-
vision objective is proposed, termed Knowledge Reverse Distillation (KRD), to
enhance the adaption process of the deep stereo model. In KRD, our goal is
somewhat opposite to traditional KD: we leverage the noisy predictions from
lightweight traditional models (teachers) as supervision to guide the learning of
the deep stereo model (student), and make the student surpass the teacher. As
the KRD loss is more calibrated to the goal than image reconstruction loss, the
adaption process with the KRD loss takes less time (about 400 frames in our
experiments) than with solely the image reconstruction loss. Fig. 1 shows that
with the supervision of KRD, AoHNet can quickly adapt to the new real scenario
from a synthetic scenario and solve most of the mistakes within 50 frames.
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Secondly, it can be found that the ceaseless fine-tuning of the deep stereo
model in the online environment has two huge weaknesses. One is dropping the
network running speed to a third, which is unbearable for real-world applications.
The other is hurt the accuracy of the system, as the model will become over-fitted
if it continues to train in the adapted environment. Thus we devise an extremely
lightweight yet surprisingly effective Adapt-or-Hold (AoH) mechanism. The AoH
mechanism is implemented by a Deep Q-Network (DQN) based on reinforcement
learning. In every frame, the DQN directly decide whether to adapt or hold
according to the input state. As it is really micro so incurs nearly no additional
overhead into the system. Experiments conducted on KITTI [9] demonstrate that
with AoH mechanism, our method achieves superior accuracy than MADNet.
Even the deep stereo model adapts itself on only 10% of the frames, which
meanwhile speeds up our system to about 29 FPS, one time faster than MADNet.

In summary, we make the following contributions:

– We introduce the Knowledge Reverse Distillation, a more powerful supervi-
sion than image reconstruction loss, to transfer deep stereo models to new
scenarios without any ground-truth information.

– We propose an Adapt-or-Hold mechanism that allows the deep stereo model
to hold or adapt itself automatically in the online environment. This mech-
anism improves not only the speed but also the accuracy of the system.

– Experimental results demonstrate that the proposed online system works
about one time faster than its predecessor MADNet, meanwhile attains sig-
nificantly superior accuracy on the popular benchmark KITTI.

2 Related Work

Here we briefly review some of the most related topics, including traditional
stereo algorithms, supervised stereo algorithms, self-supervised depth estimation
and deep reinforcement learning.

Traditional stereo algorithms. Researches have recently proposed many
methods for the stereo matching, which finds its application in a wide do-
main of computer vision tasks [11–14]. Such algorithms usually involve four
steps: i) matching cost computation, ii) cost aggregation, iii) disparity optimiza-
tion/computation, and iv) disparity refinement. Scharstein et al. [15] divided
these algorithms into two parts: local algorithms and global algorithms. Local
algorithms firstly define a support window and an evaluation function, and then
aggregate matching costs over the window. Global algorithms usually establish
a loss function that combines matching cost terms and smoothness terms on the
whole image, and then solves it using graph-based methods [16–18]. Thus, they
often perform better than the local algorithm in quality and stability. However,
global algorithms often rely on multiple iterations, which are challenging to be
done in real-time. An excellent trade-off between accuracy and execution time is
represented by ELAS [10] which is a Bayesian approach proposing a generative
probabilistic model for stereo matching. It can compute accurate disparity of
images at frame rates close to real-time.
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Supervised stereo methods. Zbontar and LeCun [19] firstly applied deep
learning in stereo vision by replacing the matching cost computation with a
Siamese CNN learning similarity on small image patches. However, it still needs
a series of post-processes. DispNet [1] was the first end-to-end stereo network that
broke the pipeline in [15] by regressing the depth map from two images directly.
GCNet [20] leverages the knowledge of the problem’s geometry to form a cost
volume and learns to incorporate contextual information using 3-D convolutions
over this volume. Other works [2–5] following end-to-end stereo architectures
outperform previous methods by building more complex architectures. However,
the methods above all focus on accuracy with little consideration of speed and
require a lot of training data with ground truth, which is not suitable in practical
application scenarios [21–26].

Self-supervised depth estimation. Depth estimation in a self-supervised
way is popular recently as it overcomes the shortcoming of requiring a large
number of annotations. Some methods [27–29] make use of image reconstruc-
tion loss to drive the network in an unsupervised way. This loss is calculated
from warping different views, coming from stereo pairs or image sequences. [6]
proposed to adopt the off-the-shelf stereo algorithms together with a confidence
estimator network CCNN [30] to fine-tune the network offline. A Deep Recur-
rent Neural Network with LSTM blocks [31] was proposed, which was able to
adapt between different scenarios seamlessly, but it doesn’t take speed into ac-
count for requiring 0.8-1.6 seconds for inference. Tonioni et al. [8] proposed the
first real-time self-adaptive deep stereo system which only used image recon-
struction loss. However, as shown in [32], the photometric loss is not a good
choice for stereo problems. Different from [8], we propose an additional super-
vision obtained by the traditional algorithm to enhance the adaption process.
What’s more, a straightforward and efficient way is proposed to extract the high
confidence pixels of the traditional algorithm without the need for additional
networks.

Deep reinforcement learning. Since the first deep reinforcement learning
model [33], termed Deep Q-Network (DQN), successfully learn control policies
in Atari game, deep reinforcement learning has attracted the attention of many
researchers. [34] adds a Target Q network to compute the target values, which
reduces the correlations between the action-values and the target values. Other
methods such as prioritized experience replay [35], double DQN [36], dueling
DQN [37] are proposed to improve the performance of deep reinforcement learn-
ing. Because of the excellent performance of deep reinforcement learning in con-
trol policy problems, we make use of it to decide whether the stereo model needs
to be fine-tuned or not in the online environment.

3 Methodology

Starting with a pre-trained deep stereo model (e.g., pre-trained on the synthetic
data [1]), our goal is to deploy this stereo model to real-world applications where
1) no ground-truth information is available along with the raw data; 2) the
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Fig. 2. An illustration of the self-supervised adaption framework. The white rectangles
represent image data, the orange rectangle represents the network to be trained, the
blue rectangles represent the traditional algorithm and the green rectangles represent
the loss functions.

data distribution in the current scenario is different from that of the training
data used for pre-training the deep stereo model; 3) the scenarios may change
continuously over the time. Thus, a real-time, self-supervised and self-adaptive

system is needed to tackle all the aforementioned problems.

3.1 The Overall Framework

The overall framework of the proposed system is illustrated in Fig. 2. In order
to avoid the loss of speed and accuracy caused by adapting the network all the
time, we devised the AoH mechanism to enable the system to work in two modes:
the ADAPT mode and the HOLD mode.

When the deep stereo model has been fully adapted to the current scenario,
our system works in the HOLD mode. In this mode, the deep stereo model
conducts only the inference process: fed with paired frames, outputting the stereo
predictions. As no back-propagation is involved, the system works especially fast
in this mode. If the scenario changes, the system will switch to the ADAPT
mode. In this mode, the system will not only infer the stereo information of the
current frames but also adapt itself to the new scenario by computing the loss
and perform back-propagation. To speed up the adaption process of the deep
stereo model for being rapidly switched to the more efficient HOLD mode, we
propose the KRD objective to facilitate the adaption of the deep stereo model.

Now, the detailed description of the proposed KRD objective and the AoH
mechanism is provided.

3.2 Knowledge Reverse Distillation

KRD is devised to remedy the incapability of the image reconstruction loss for
adapting the deep stereo model to new scenarios. The goal of KRD is that by
learning from the noisy predictions of the lightweight teacher, the student can
overcome the shortcomings of the teacher so thus surpass the teacher after learn-
ing. We adopt the ELAS algorithm [10] as the teacher. ELAS is a lightweight,
fast and general-purpose stereo algorithm that does not require any adaptation
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Fig. 3. Examples of proxy labels computed by ELAS, left image (a), disparity map
processed only by left-right consistency detection (b), and the sparse disparity map
after low-texture areas removal (c).

to be deployed in different scenarios. Though ELAS generates accurate disparity
at most pixels, there are still many unreliable predictions. A network trained
on the raw output of the traditional algorithm would learn the inherent short-
comings of it. Therefore, two remedies are proposed to help the student stereo
model overcome the weakness of ELAS and finally surpass it in performance.
Firstly, a lightweight confidence measure is proposed to quantify the reliability
of predictions of every pixel efficiently. With this confidence measure, predictions
with low confidence will be masked so that they will not contribute to the total
loss. Secondly, we don’t abandon the image reconstruction loss as well. The deep
stereo model is supervised by both the KRD loss and image reconstruction loss.
The synergy between these two losses pulls the model out of their weaknesses.
Now, a more detailed description of these two remedies will be given.

Confidence Measure Specifically, we mask two types of predictions (shown
in Fig. 3): 1) those do not pass the left-right consistency detection, like the
pixels removed in (b); and 2) those of pixels which lie in low-texture regions,
e.g., the sky in (c). The texture is calculated as the sum of the Sobel filter
values of the pixels within the defined window, which is defined in [10]. The
predictions of low-texture regions are masked for two considerations. On the
one hand, Elas has the same disadvantages as traditional algorithms, that is,
poor performance in the low-texture areas. For example, the area near the street
lamp on the left and the sky area connected to the tree on the right in Fig. 3,
which can not be detected in left-right consistency detection. On the other hand,
from the perspective of model learning, pixels in low-texture regions are usually
large in amount and their stereo predictions provide redundant supervision. A
large amount of redundant supervision will overwhelm the objective, making the
student learning bias to low-texture regions.

Given an input stereo pair Il and Ir, we obtain the left and right disparity
maps Dl and Dr. For all pixels p in the original disparity map Dl, if the texture
of the pixel texture(p) is lower than the threshold β or the left-right consistency
detection |Dl(p) − Dr(p − Dl(p))| is larger than the threshold δ, the disparity
values are masked:

M(p) =











0, texture(p) ≤ β

0, |Dl(p)−Dr(p−Dl(p))| ≥ δ.

1, otherwise

(1)
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Synergy between KRD and Image Reconstruction Loss We adopt both
the KRD loss and the image reconstruction loss to adapt our stereo model to
new scenarios. The overall objective is:

L = LR + λLKRD, (2)

where LKRD represents the KRD loss and LR represents the image reconstruc-
tion loss. λ is the hyper-parameter trading off these two loss. The KRD loss is
defined to be the average ℓ1 distance between disparity maps from our model D
and ELAS algorithm DELAS :

LKRD =
1

|M |
|M ⊙ (D −DELAS)|. (3)

M is the binary matrix introduced in Equation 1, and |M | denotes the number of
all valid pixels inDELAS . Image reconstruction loss is obtained by computing the
discrepancy between the left image Il and the reconstructed left image I ′l from
the right image and the left disparity map. Following [28], we use a combination
of ℓ1 and single scale SSIM [38] as our image reconstruction loss LR.

LR =
1

N

∑

p

α
1− SSIM(Il(p), I

′

l(p))

2
+ (1− α) · |Il(p)− I ′l(p)|. (4)

N denotes the number of all pixels in the image and p represents each pixel.

3.3 The Adapt-or-Hold Mechanism

Keeping the model always adapting in the online environment heavily reduces
the real-time responsiveness of our system. Worse, it also decreases the accuracy
of the system. Here we introduce the proposed AoH mechanism which enables
our system to automatically switch between the ADAPT mode and the HOLD
model, which significantly improves the system in both speed and accuracy.

Markov Decision Process We define AoH mechanism as a Markov Decision
Process that contains state, action, and reward. According to the input state,
the agent chooses one action from action space and gets the corresponding re-
ward. Here are the definitions. The state should contain enough information to
enable the agent to select a good action. Image reconstruction loss can reflect
whether the model parameters are suitable in the online environment, and the
computation is small compared with KRD. Therefore, we define the state as
the image reconstruction loss of the last ten frames. The action space is clearly
defined as two discrete options, ADAPT or HOLD. Reward is used to evaluate
the results of the action taken by the agent. Here, image reconstruction loss LR

and time consumption T are both considered. If the agent chooses the action of
ADAPT, T is set to −1, otherwise it is 1. By adjusting the weight κ between
image reconstruction loss and time consumption, the percentage of adaption can
be controlled. Here. The reward equation is as follows:

R =
1

eLR

+ κT . (5)
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Deep Q-Network We use the DQN proposed in [34] to train the agent and
improve the performance by referring to [36]. The DQN is a combination of deep
learning and Q-learning, using DNN to predict the Q value Q(s, a) of each action
a for the input state s. There are two networks in DQN, one called target net, to
get the value of qtarget, and the other, called eval net, to get the value of qeval.
The target net parameters θ− are only updated with the eval net parameters
θ every few steps and are keep fixed between individual updates. This reduces
the correlations between the qeval and the qtarget and significantly improved the
stability of learning. The qtarget is defined as:

qtarget = r + γQ(s′, argmaxa(s
′

, a; θ); θ−), (6)

where r is the reward, γ is the discount factor, s
′

represents the state of next
step. The loss function is defined as the difference between qtarget and qeval:

Loss(θ) = E[(r + γQ(s
′

, argmaxa(s
′

, a; θ); θ−)−Q(s, a; θ))2]. (7)

The training data is randomly extracted from the memory buffer, where each
record (s, a, r, s

′

) includes the current state, action, corresponding reward, and
next state. The size of memory buffer is limited, so the records will be over-
written as the network updates. By randomly extracting records from memory
for learning, the correlation between experiences is disrupted, making the neural
network updating more efficient.

4 Experiment

In this section, we first describe the implementation details and then conduct
benchmark comparisons with our teacher algorithm ELAS, a supervised algo-
rithm DispNet and a online self-adaptive algorithm MADNet. After that, we
performed some ablation experiments to prove the effectiveness of KRD and
AOH. For the KRD, we compare the performance of different loss functions.
These experiments are made on two different kinds of datasets, one is KITTI
2012 and KITTI 2015 which provides discrete images, but the label has a higher
density. The other is a continuous video of [9], which is more suitable for on-
line learning. In the meantime, we make an experiment to analyze the sparsity
and accuracy of the preserved predicted labels under different texture threshold.
As for AOH, we designed a detailed comparison experiment, including not only
fine-tuning in advance and adapting all the time, but also three other typical
strategies are designed. The details will be shown below.

4.1 Implementation Details

We adopt MADNet [8] as the backbone of the proposed AoHNet. In order to
achieve the real-time performance of the ELAS algorithm, we reduce the input
image to a quarter, calculate the disparity map, and finally linear interpolation
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to the original resolution. In our experiments, the texture threshold β is set to
50, left-right consistency threshold δ is 2 and the hyper-parameter λ trading off
two loss objectives is 0.1. Following [28], α in LR is 0.85.

The micro DQN only contains two hidden layers with 20 and 10 units re-
spectively, followed by ReLU activation. The output layer has 2 nodes with no
activation. The action chosen is determined according to the Q-function, which
has the maximum value. The DQN is trained on the KITTI raw [9] in advance.
The weight coefficient κ between image reconstruction loss and time consump-
tion is set to 0.02. As for training, We set 5,000 as memory buffer size and 32
as batch size. 1000 pre-training steps are preceded to gather experience replay
buffer. ǫ-greedy and the discount factor γ are set to 0.9. ǫ-greedy means the
action is selected according to the learned network by the probability of ǫ and
is randomly selected by the probability of 1 − ǫ. The target net updates every
1000 steps. An RMSProp optimizer was used with a learning rate of 0.001.

Unless otherwise specified, for all experiments involved in this paper, the
weights pre-trained on synthetic data [1] are used as a common initialization
and evaluate the proposed method on real datasets KITTI [9, 39, 40]. As there
is the same number of labeled images and unlabeled images in the training set
of KITTI 2012 and KITTI 2015. We use unlabeled images to train and labeled
images to test. For all experiments, both average End Point Error (EPE) and
the percentage of pixels with disparity error larger than 3 (D1-all) are analyzed.
Since the image format of each sequence is different, a central crop with a size
of 320 × 1216 is extracted from each frame as proposed in [8]. Finally, we use
Adam as the optimizer with a constant learning rate equal to 0.0001.

4.2 Benchmark Comparison

In this section, we conduct benchmark comparisons to demonstrate the superior-
ity of AoHNet. We compare AoHNet with the following competitors: (1) ELAS
[10], our teacher, a fast and relatively accurate traditional method; (2) DispNet
[1], a supervised algorithm that uses ground-truth labels for training directly;
(3) MADNet [8], the first online stereo method. (4) Recent self-supervised stereo
methods. The network parameters of DispNet is obtained from [8] which have
been fine-tuned on KITTI. For both MADnet and AoHNet, the networks are
pre-trained on the synthetic data [1] and then fine-tuned on the unlabeled data
of KITTI in a self-supervised way. Finally, we evaluate the performance of all
algorithms on the labeled data of KITTI 2012 and KITTI 2015.

Experimental results are provided in Table 4.2. It can be seen that: (1) Com-
pared with deep stereo models, the traditional algorithm ELAS [10] produces a
much larger error in both KITTI 2012 and KITTI 2015; (2) The proposed model,
albeit trained online in a self-supervised way, outperforms DispNet trained with
ground-truth information, which means that our self-supervised method can even
be comparable to some supervised methods; (3) Compared with MADNet, our
approach exhibits significantly superior performance in both precision and speed
thanks to the KRD loss and the AoH mechanism. (4) The SOTA [43] achieves
the smallest D1-all error. Despite the higher accuracy, it runs 20 times slower
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Fig. 4. Quantitative comparison of different methods on KITTI 2015.

Table 1. Comparison of different algorithms in KITTI 2012 and KITTI 2015.

KITTI ELAS
[10]

DispNet
[1]

MADNet
[8]

Zhou
[41]

Li [42] Aleotti
[43]

AoHNet

2012 D1-all 17.12 9.53 9.25 9.91 8.60 - 8.64
2015 D1-all 14.78 7.87 8.53 - 8.98 4.06 7.76

FPS 3.34 16.67 14.26 2.56 1.37 2.44 28.95

than AoHNet. Besides, as it requires a monocular completion network to provide
proxy labels in addition to the conventional algorithm, making it cumbersome
to deploy in a real-time changing environment.

Fig. 4 visualizes some examples produced by the above algorithms in three
different scenarios on the KITTI 2015 dataset, from left to right are “City”,
“Resident” and “Road”. The D1-all error is shown in the right corner of the
disparity maps. As is shown in Fig. 4, the disparity maps generated by DispNet
has a precise shape and smooth edges, but the overall error is somewhat signifi-
cant. AoHNet yields lower total error and preserves better results in detail. For
example, the isolation barrier in the middle of the road on the right image.

4.3 Ablation Study

In this section, we conduct ablation studies to validate the effectiveness of the
KRD loss and AoH mechanism proposed in the paper.
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Table 2. Comparison of different loss objectives on KITTI.

Model Color KITTI 2012 KITTI 2015
Frames D1-all(%) EPE Frames D1-all(%) EPE

MADNet Color 330 9.47 1.51 250 9.63 1.71
+KRD Color 290 9.19 1.37 210 9.41 1.75

AoHNet− Color 240 8.94 1.41 200 9.25 1.65

MADNet Gray 150 7.49 1.31 190 7.98 1.39
+KRD Gray 110 7.11 1.25 160 7.60 1.36

AoHNet− Gray 90 7.05 1.19 70 7.58 1.32

With versus without KRD In our method, we propose to adopt the KRD
loss, together with the image reconstruction loss, to guide the learning of the deep
stereo model. Table 2 reports the comparison of different loss objectives. MAD-
Net [8] only uses image reconstruction loss as the self-supervised loss. “+KRD”
means only using KRD loss and AoHNet− means to adopt KRD loss together
with image reconstruction loss, but AoH mechanism is removed. Here “Frames”
means the number of frames required by the network to be adapted to KITTI
from synthetic data [1] (If the accuracy is not improved after ten consecutive
evaluations, the network is considered to have been adapted to the new scenario).

In [8], all experiments were performed on color images. However, we find that
the network performs better on gray images than color images. Gray images
means three channels are the same. We provide experimental results on both
color images and gray images. On KITTI 2012, MADNet requires 330 frames
to be fully adapted to the new scenario on the color images. However, less than
half of the frames (150 frames) are needed on the gray images, and the D1-all
error is lower.

To find out whether image reconstruction loss is still needed as supervi-
sion, we also do experiments that only used KRD loss. Table 2 shows that the
performance of only using KRD loss is better than that of only using image
reconstruction loss but slightly worse than that of the combination of the two
losses. It may be because KRD loss only provides sparse supervision, and image
reconstruction loss can help to learn the missing part of them.

Due to the use of a more powerful supervision KRD, no matter in color
images or gray images, AoHNet− is superior to MADNet in both the adaption
speed and the accuracy. Finally, we only need less than 100 frames (90 frames
in KITTI 2012 and 70 frames in KITTI 2015) to adjust the network from one
domain to another. This implies that KRD loss not only improves the accuracy
of the network but also makes the network adapting to new scenarios faster.

We also make experiments on a continuous video to analyze the effectiveness
of KRD. Fig. 5 plots the D1-all error across frame for MADNet and AoHNet−

on the 2011 09 30 drive 0028 sync sequence which is a 2500 frames residential
video of KITTI [9]. The three color lines represent the three patterns. The red
line presents the performance of MADNet fine-turned offline on KITTI, which is
used as a benchmark for comparison. The green and blue lines represent MADnet
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Fig. 5. D1-all error across frames on the 2011 09 30 drive 0028 sync sequence.

Table 3. The performance of different texture thresholds on KITTI 2015.

Sparsity NO LR S20 S50 S80 S100

Density(%) 77.56 71.71 61.33 43.64 32.54 27.20
D1-all(%) 4.43 4.79 4.23 3.42 3.43 3.48

Deep-D1-all(%) 7.72 7.72 8.28 7.68 7.80 8.05

and AoHNet− respectively. The parameters of them are initialized on synthetic
data [1]. Both lines improve their performances by back-propagation. After a
period of adaption, they achieve comparable performance to the offline fine-
tuned model (red). It shows that MADNet (green) needs about 900 frames to
reach the similar performance to fine-tuning, while AoHNet− (blue) only needs
less than 400 frames with the help of KRD loss.

Influence of Different Sparsity We make use of left-right consistency de-
tection and low-texture area removal to filter the noisy pixels. Different texture
thresholds are set to analyze the sparsity and accuracy of the preserved labels
on 200 images from KITTI 2015 [39]. As shown in the Table 3, “Density” rep-
resents the percentage of valid pixels in disparity maps. “No” represents the
original outputs of ELAS, which the density of valid pixel is 77.56%. “LR” in-
dicates that only left-right consistency detection is performed, and the D1-all
error is largest. This means that only by left-right consistency detection, there
are still many outliers that can’t be detected. “S” plus number represents differ-
ent texture threshold. For example, “S20” represents that the texture threshold
is 20. As the texture threshold increases, from 20 to 100, the density of the valid
pixels decreases. However, even when the texture threshold is set to 100, the
density is still higher than 19.73% of the ground truth provided by KITTI 2015.

As the texture threshold increases, the D1-all error of the sparse disparity
maps first decreases and then increases. When the texture threshold is 50, the
D1-all error is minimized. This is because traditional methods tend to perform
poorly in low-texture areas, so at low texture thresholds, more percentage of
the low-confidence pixels are removed, causing D1-all error to decrease. As the
texture threshold increases, the percentage of high-confidence pixels is increasing,
more pixels of high-confidence are removed, so the D1-all error increases.
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Table 4. Performance of AoH and other comparisons on the KITTI2015 sequence.

Model MADNet AoHNet
NO FT GT FULL FULL R-10 F250 E1-10 HAND AoH

D1-all(%) 47.82 4.65 4.90 4.70 4.83 5.94 4.70 4.64 4.51

EPE 12.46 1.22 1.23 1.24 1.24 1.29 1.23 1.23 1.19

FPS 39.48 39.48 14.26 13.93 29.85 31.34 29.90 24.19 28.95

We further experimented with the above data for network training. The net-
works are fine-tuned in the same way on the different sparsity disparity maps
and then use the ground-truth labels of KITTI 2015 for evaluation. The results
are shown in the “Deep-D1-all” row. Finally, the texture threshold is set to 50.
Under this threshold, the valid pixel density of the disparity map is 43.64%, and
the accuracy is 96.58%.

With versus without AoH We have demonstrated the effectiveness of KRD,
which adapts the network to a new scenario in less than 100 frames. However,
fine-tuning the network all the time in the online environment comes with the
side effect that back-propagation slows the network speed down to a third, which
is unbearable for real application scenarios. What’s more, it leads to another
shortcoming that the model may become over-fitted if it continues training when
it has already been adapted to the environment. To overcome the above prob-
lems, we propose an Adopt-or-Hold Mechanism that can automatically decide
when the network needs adaption and when to stop adaption.

Table 4 shows performance of MADNet and AoHNet on a 2500 frames res-
idential video of KITTI [9]. “NO FT” means that the network parameters are
trained from synthetic data and have not been fine-tuned on KITTI. The error
is large, which indicates that deep learning-based methods produce poor per-
formance when the domain of data changes. “GT” means the results attained
by the model that is fine-tuned offline on the target domain. “FULL” means
that the network is fine-tuned all the time during the video. When AoHNet
and MADNet work in the mode of “FULL”, their speeds both drop to nearly
one-third of the inference speeds. The error of AoHNet is smaller than MADNet
due to the help of KRD loss. The AoH Mechanism performs excellent. Since the
adaption is only made on 10% of the video frames in AoH Mechanism, the speed
is one time faster compared to the “FULL” adaption. What’s more, the D1-all
error is even smaller than that of fine-tuning the network all the time.

According to the analysis, the AoH Mechanism updates about 250 frames
across the entire video, so we designed three other methods for comparison. “R-
10” means randomly choose 10 percent of frames for adaption. “F250” means
only updating the network on the first 250 frames, and the rest frames only make
an inference. “E1-10” means updating the network 1 frames every 10 frames, a
total of 250 frames are updated on the whole video. “HAND” is the method
designed manually with image reconstruction loss. The error of “F250” is the
largest, which is probably because of the environmental changes during the video.
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Fig. 6. The relationship between the percentage of adaption frames and the average
D1-all error on the 2011 09 30 drive 0028 sync sequence.

“HAND” is a little better than “R-10” and “E1-10”. AoH produces superior
results to all other methods, verifying the effectiveness of the AoH mechanism.

Furthermore, we did an experiment to analyze the relationship between the
percentage of frames for adaption and the D1-all error on the whole video. The
results are shown in the Fig. 6. As the percentage of the adaption frames in-
creases, D1-all error decreases first and then increases. When the percentage of
the adaption frames is about 11%, the error becomes the smallest. It implies
that once the network has been adapted to the new environment, the adaption
process should stop in time to avoid the model becoming over-fitted.

5 Conclusion and Future Work

In this paper, we proposed AoHNet, a real-time, self-supervised and self-adaptive
online framework that can automatically adapt to new environments without
the need for ground-truth labels. Two key components are introduced to im-
prove the precision and the speed of deep stereo models: the Knowledge Reverse
Distillation and the Adapt-or-Hold mechanism. Knowledge Reverse Distillation
leverages the noisy predictions from lightweight traditional models (teachers)
as supervision to guide the learning of the deep stereo model (student) and
makes the student surpass the teacher. Adapt-or-Hold (AoH) mechanism based
on Deep Q-Netwok can automatically determines when the deep stereo model
adapts or holds in online environment. Experiments demonstrate that the pro-
posed approach outperforms existing methods significantly in both speed and
precision.

We believe that the direction of deep stereo matching in the future is that
without the need for aligned labels, the network can adjust itself online accord-
ing to the changing environment, rather than training a specific model for a
particular scene. Besides, more attention will be paid on the embedded side, to
bring the newest technology to the real practical applications.
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