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Abstract. Discovering visual representation in an image category is a
challenging issue, because the visual representation should not only be
discriminating but also frequently appears in these images. Previous stu-
dies have proposed many solutions, but they all separately optimized the
discrimination and frequency, which makes the solutions sub-optimal. To
address this issue, we propose a method to discover the jointly discrimi-
nating and frequent visual representation, named as JDFR. To ensure
discrimination, JDFR employs a classification task with cross-entropy
loss. To achieve frequency, JDFR uses triplet loss to optimize within-
class and between-class distance, then mines frequent visual represen-
tations in feature space. Moreover, we propose an attention module to
locate the representative region in the image. Extensive experiments on
four benchmark datasets (i.e. CIFAR10, CIFAR100-20, VOC2012-10 and
Travel) show that the discovered visual representations have better dis-
crimination and frequency than ones mined from five state-of-the-art
methods with average improvements of 7.51% on accuracy and 1.88% on
frequency.

1 Introduction

Visual patterns are basic visual elements that commonly appear in images and
tend to convey higher-level semantics than raw pixels. Thus, mining visual pat-
terns is a fundamental issue in computer vision, and have been applied to many
vision tasks, such as object recognition [1,2], object detection [3], and scene clas-
sification [1], to name a few. The visual representation of a category is a type
of visual pattern that represents the discernible regularity in the visual world
and captures the essential nature of visual objects or scenes. Unlike visual pat-
tern, visual representation does not have to appear in every image of a category.
Recently, it has been utilized in the tourism industry. By mining visual represen-
tations from travel photos, users can discover useful information about tourism
destinations for travel recommendation [4,5,6]. Visual representation has two
properties [1,7]: 1) discrimination, which means it represents only a particular
image category rather than the other categories; 2) frequency, which means it
frequently appears in images of the category.

To tackle this issue, handcrafted features, i.e. SIFT [8] and HOG [9], were
firstly used for visual pattern mining. Due to the scale invariability and tolerating
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a certain distortion in a local space, they are regarded as low-level visual patterns.
However, the local feature is limited in its capability of expressing the semantics
of images. Recently, convolutional neural network (CNN) has been often utilized
as a feature extractor [1,2,10,11], as it is able to learn the high-level semantic
representation of images. The CNN features were associated with association
rules [1], clustering algorithm [10], and unsupervised max-margin analysis [3] to
discover visual patterns. The discrimination or frequency of these patterns was
separately guaranteed through varied optimizations. In addition, other studies
[12,13] applied image co-saliency detection to find the visual patterns that appear
in all images.

Aforementioned methods still face two issues regarding visual representation
mining. Firstly, the separation of discrimination and frequency will make the
solution sub-optimal. Secondly, image co-saliency requires the representation to
appear in all images.

To address the above issues, we propose a jointly discriminating and frequent
visual representation mining method (JDFR) to discover the visual representa-
tions that are simultaneously discriminating and frequent. In JDFR, the end-
to-end network is jointly optimized by cross-entropy loss and triplet loss. The
cross-entropy loss ensures the discrimination of visual representation using a
classification task. The triplet loss ensures the frequency by exploring the highly
dense visual representations in the feature space, which have a close within-class
distance and a sufficient between-class distance. Since the visual representation
often is only a region in the image, we design an attention module to locate the
most discriminating regions in the images.

Therefore, our main contributions are as follows:

– We propose an end-to-end framework jointly optimized by cross-entropy loss
and triplet loss to discover the discriminating and frequent visual represen-
tations.

– We designed a channel and spatial attention module to locate the visual
representations in images.

– Experiments show that our JDFR outperforms five state-of-the-arts on four
benchmark datasets.

2 Related Work

2.1 Visual pattern mining

Since understanding visual pattern is a fundamental issue in visual cognition,
many studies have been conducted on this issue. Handcrafted features [8,9,14,15]
were first applied for visual pattern mining. Doersch C et al. [9] used the HOG
descriptor to represent visual patterns, which were iteratively optimized by SVM.
However, such local features can not well represent the semantic information of
images well, and thus are usually regarded as low-level visual patterns.

Recently, CNN demonstrated a remarkable performance on many vision tasks
[1,2,10,11], because its high-level features can represent better semantic informa-
tion. Li et al. [1] extracted features from image patches using a CNN model, and
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retrieved semantic patches from these features based on association rules. Since
the frequency and discrimination of these patches were optimized separately,
the method did not achieve a desirable performance on the classification task.
Zhang et al. [10] mined visual patterns using the mean shift in a binary feature
space, and thus was able to ensure the frequency. Moreover, they enhanced the
discrimination by leveraging contrast images. However, their outputs were ima-
ges instead of visual patterns, meanwhile, the frequency and the discrimination
were optimized independently as well. Yang et al. [3] exploited the hierarchical
abstraction of CNN and utilized unsupervised max-margin analysis to locate vi-
sual patterns in images. This method is effective for discrimination but cannot
guarantee the frequency. An emerging study [7] is able to mine visual patterns
simply by analyzing filter activations in CNN. Due to the empirical design of
the methodology, there is no solid theory that supports the two aforementio-
ned properties of visual representation, especially the frequency. Furthermore,
other studies [16,17,18] have shown that the frequently occurring images could
be found by clustering methods.

One can see that none of aforementioned methods is able to jointly optimize
the discrimination and the frequency. By contrast, we propose a new framework
(JDFR) that is able to mine the best discriminating and frequent representations
using the joint optimization.

2.2 Image co-saliency detection

Some studies [19,20,21,22] consider the visual pattern mining as an image co-
saliency problem, which refers to detecting the common salient objects or regions
in a set of relevant images. Image co-saliency detection methods can be grou-
ped into three categories: bottom-up, fusion-based and learning-based methods.
Bottom-up methods score image regions based on feature priors to simulate
visual attention. Fu et al. [23] proposed three visual attention cues including
contrast, spatial and corresponding ones. Later, they proposed a two-stage pro-
pagation framework using background and foreground cues [19]. Fusion-based
methods ensembled the detection results of existing saliency or co-saliency met-
hods. For example, Cao et al. [24] obtained the self-adaptive weight via a rank
constraint to combine the co-saliency maps. Huang et al. [25] used multiscale
superpixels to jointly detect salient object via low-rank analysis. Studies [26,27]
have discovered inter-image correspondence through the high-level semantic fea-
tures extracted from CNNs. Learning based methods have developed significantly
in recent years because in the breakthrough of deep learning models [20,21,28].
Wei et al. [29] proposed an end-to-end framework based on the Masked-guided
FCN to discover co-salient objects. Ge et al. [28] proposed an unsupervised CNN
to jointly optimize the co-saliency maps.

However, there is a significant difference between image co-saliency detection
and visual representation mining. Image co-saliency requires the same pattern
appearing in all images. Instead, visual representation is a pattern that represents
the major characteristic of the category, not necessarily to appear in each image.
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Fig. 1: The schematic diagram of our JDFR. Best viewed in color.

3 The Proposed Method

Since visual representations should be the most discriminating and frequent
image regions in an image category, we firstly employ a classification task to
discover the discriminating images. For frequency, we then apply the triplet
loss to make features of the visual representation of one category close, but
features belonging to different categories far in the feature space. Finally, we
utilize an attention module to locate the representative region in each image.
The schematic diagram of our method is illustrated in Fig.1.

3.1 The classification task for discriminating images

The images are discriminating for a category when they represent the charac-
teristics of the data in the category well. Therefore, discovering discriminating
images can be considered as a classification task. The more discriminating the
images are, the higher classification accuracy they achieve. We define a classifi-
cation network with parameters as f(·). Given an image x and its label y, the
network predicts its label ŷ = f(x) that indicates which category x belongs to.
Please refer to the yellow dashed box in Fig. 1. To optimize the network, we
employ the cross-entropy loss LCE(y, ŷ) that is

LCE =

m
∑

j=1

n
∑

i=1

−yjilog(ŷji) − (1 − yji)log(1 − ŷji), (1)

where m is the number of categories, n is the number of images in a category,
yji denotes the ground truth, and ŷji denotes the output of the network.

3.2 The triplet loss for frequent visual representation

The frequent visual representation of a category should represent the majority
of the data and its features should have a highly dense distribution. In other
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words, the features of frequent visual representation should have smaller dis-
tance between each other. The cosine similarity function is commonly used to
measure the similarity between features [30]. By setting an appropriate thres-
hold for cosine loss, the feature distance learned by the network can be less
than the threshold. However, cosine similarity only guarantees the within-class
distance, which is inappropriate for our task. Because the visual representation
may not always appear in every image of the category, the distances among the
discriminating features of the category should not be constrained by a fixed and
small threshold. Instead, mining visual representation requires not only a proper
within-class distance, but also a sufficient between-class distance, as shown in
the green dashed box in Fig. 1. To this end, we use triplet loss to ensure that
an image xa

i (anchor) in the i-th category is closer to other samples x
p
i (positive)

than the image xn
j (negative) in the j-th category [31], as shown in the blue

dashed box in Fig. 1. This can be formulated as:

‖g(xa
i ) − g(xp

i )‖22+α < ‖g(xa
i ) − g(xn

j )‖22 i 6= j, (2)

where g(x) denotes the feature vector of the sample x, and α is the margin
(between-class distance) between positive and negative pairs. In this work, g(x)
is the high-level feature in the network because it involves the semantic informa-
tion. We use Euclidean distance to measure the similarity between the features.
The network is optimized by

Ltriplet =

t
∑

i=1

[‖g(xa
i ) − g(xp

i )‖22−‖g(xa
i ) − g(xn

j )‖22+α]+, (3)

where, t denotes the number of triples. By using triplet loss, the mined visual
representations can be frequent.

3.3 Attention modules for locating visual representation

The visual representation, is often a region in the image rather than the whole
image, especially for the image that contains multiple objects. Meanwhile, it
is expected to be discriminating for the category. To locate the most discrimi-
nating region in an image, we must address two problems: 1) How to find the
discriminating object in each image? 2) How to locate the most discriminating
region?

For the first problem, since different channels in the feature map F focuses
on different objects in the image, we design a channel attention module that
explores the inter-channel relationship of features to find the most discriminating
object in each image. Average-pooling, AvgPools, is applied on the intermediate
feature map, F , to aggregate spatial information. Max-pooling, MaxPools, is
applied on F to aggregate distinctive object features. In order to obtain a finer
channel-wise attention, we put them into a multi-layer perceptron (MLP) with
one hidden layer to produce a channel attention map Mc ∈ R

(c×1×1), which
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shows the weight of each channel. It can be formulated as:

Mc(F ) = σ(MLP (AvgPools(F )) + MLP (MaxPools(F )))

= σ(W1(W0(F avg
c )) + W1(W0(Fmax

c ))),
(4)

F ′ = Mc(F ) ⊗ F, (5)

where σ is the sigmoid function, W0 ∈ R
(c/r×c) and W1 ∈ R

(c×c/r) are the MLP
weights, r is the reduction ratio, F avg

c ∈ R
(c×1×1) and Fmax

c ∈ R
(c×1×1) denote

the average-pooled features and the max-pooled features, respectively, ⊗ denotes
the element-wise multiplication, and F ′ is the channel feature map.

For the second problem, we design a spatial attention module that explores
the inter-spatial relationship of the features. Due to the effectiveness of pooling
operations along the channel axis in highlighting informative regions [32], we ap-
ply average pooling, AvgPoolc, and max-pooling, MaxPoolc, along the channel
axis to locate the most discriminating region on F ′. They are then concatenated
and convolved by a standard convolution filter. Please refer to the red dashed
box in Fig. 1. It can be formulated as:

Ms(F
′) = σ(f7×7([AvgPoolc(F

′);MaxPoolc(F
′)])), (6)

F ′′ = Ms(F
′) ⊗ F ′, (7)

where f7×7 is a convolution operation with the size of 7×7, and F ′′ is the feature
map with attention.

To form the attention module, the channel attention and spatial attention are
combined in a sequential manner with channel first order. We place it following
the last convolution layer in the network. After training, the optimized attention
module can locate the most discriminating region in each image, as shown in
Fig.2.

3.4 The unified model and optimization

To ensure both discrimination and frequency of visual representations, we jointly
optimize the network using the cross-entropy loss and triplet loss. The overall
objective function is

min
θ

 L = βLtriplet + γLCE , (8)

where β and γ are constants to balance the contributions of the two losses.

4 EXPERIMENTS

In this section, we firstly describe the experiment set-up, including datasets,
implementation details, and evaluation metrics. Then, we examine the effective-
ness of our method by comparing it with five state-of-the-arts on four benchmark
datasets. Finally, we conduct ablation studies by controlling major influence fac-
tors.
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4.1 Experiment Set-up

Datasets. Four datasets are selected in our experiment. First, we choose three
benchmark datasets that are commonly used for visual pattern mining evalua-
tion, there are CIFAR-10 [33], CIFAR-100-20 [33], and VOC2012-10 [34]. Since
many categories in CIFAR100 are very challenging for visual representation mi-
ning, we select 20 categories from it, named as CIFAR100-20. VOC2012 is ori-
ginally designed for object detection, so all images contain multiple objects.
In many cases, the shared objects are too small to be representative. There-
fore, we select 10 categories with representative objects from VOC2012, named
as VOC2012-10. The travel photo dataset is collected from the popular travel
website, TripAdvisor1. Photos from one travel destination belong to a category.
Details of datasets are shown in Table 1. The Test sets are used for discovering
the visual representation, and the Train and Validation sets with category labels
are used for training our model.

Table 1: Details of four datasets.
dataset CIFAR10 CIFAR100-20 VOC2012-10 Travel

Category 10 20 10 20
Train 40000 8000 4905 64904
Validation 10000 2000 786 16227
Test 10000 2000 948 20000

Implementation Details. In this work, all the experiments were implemented
by PyTorch on an NVIDIA 2080Ti with 11GB of on-board memory. We fine-
tuned the pre-trained VGG-19 on each training set. The VGG-19 was jointly
trained by cross-entropy loss and triplet loss, and was optimized using Stochas-
tic Gradient Descent (SGD) with an initial learning rate of 0.1. To balance the
two loss functions, the hyperparameters β and γ were set to 0.3 and 0.7 respecti-
vely. The training stopped when no significant reduction of the validation error
occurred, about 50 epochs. To find the most frequent representations, we applied
a density-based clustering algorithm for mining task, and the number of features
with the highest density was set as Nu = 20. Thus, 20 visual instances would be
discovered for the visual representation from each category.
Competing Methods. The recent study [1] reported that the CNN-based vi-
sual patterns mining methods had largely outperformed the traditional hand-
crafted based methods. Therefore, we compared JDFR with five state-of-the-arts
for performance evaluation, which are all CNN-based methods. They are (1)
Mid-level Deep Pattern Mining (MDPM) [1], (2)Contrastive Binary Mean Shift
(CBMS) [10], (3) Part-level Convolutional Neural Network model (P-CNN) [3],
(4) PatternNet [7] and (5) Masked-guided FCN (MFCN) [35]. Since only the code
of MDPM was available from authors, we strictly implemented other methods

1 https://www.tripadvisor.com
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according to their papers. The CNNs in P-CNN, PatternNet and MFCN were
fine-tuned on the training set as well. P-CNN was trained with cross-entropy loss
and SGD with momentum technique and the initial learning rate of 1e-3 that
was the best rate in our tests. Since the detailed setting of experimental para-
meters were not given in the PatternNet, we trained it with MSE loss and Adam
with the best initial learning rate of 1e-4, while the experimental parameters of
MFCN used were consistent with the original paper.

4.2 Evaluation Metrics

The following two metrics were employed to evaluate the effectiveness of our
model:
Discrimination Evaluation. Previous works for visual pattern mining used
the image classification task as a proxy to evaluate their performances. Thus, we
followed their protocol and trained a Resnet50 for classifying images to the corre-
sponding categories, which is for evaluating the discrimination of the discovered
visual representations. The results were an average accuracy and F1-score of
those 20 instances of visual representation retrieved by the clustering step. Since
MDPM divided the input image to a set of patches for subsequent processing,
it was evaluated on the retrieved visual patches.
Frequency Evaluation. Intuitively, the discrimination cannot evaluate the fre-
quency of discovered visual representation directly. Few previous studies expli-
citly measured it either. In this paper, we proposed a new metric (Frequency
rate, FR) to compute the percentage of the images that are similar to the dis-
covered visual representations in the high-level feature space. This is defined
as:

FR =
1

Nw ×Nu ×N

Nw
∑

w=1

Nu
∑

u=1

N
∑

v=1

∥

∥Sw
u,v ≥ Tf

∥

∥

0
, (9)

where, Sw
u,v = cos(pwu , p

w
v ) is a cosine similarity, pwu and pwv are the feature maps

coming from the last convolution layer of aforementioned ResNet50. pwu is the
feature map of one image from w-th category, and pwv is the feature map of an
instance of discovered visual representation from w-th category. Nw, Nu, and N

are the number of categories, the number of images in each category, and the
number of retrieved instances of visual representation(s), respectively. Tf denotes
the similarity threshold. In this work, it was set three levels: 0.866, 0.906, and
0.940, which are corresponding to 30➦, 25➦, and 20➦ between two feature vectors,
respectively.

4.3 Result and Analysis

Quantitative results and comparison For the discrimination of visual re-
presentation, classification accuracy and F1-score are used for evaluation. The
results of JDFR and five state-of-the-arts on four datasets are listed in Table
2. It shows that JDFR outperforms other five competing methods. MDPM per-
forms the worst because it divides the image into patches, which could lose some
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Table 2: Comparison among six approaches on discrimination of discovered visual
representations.

Method CIFAR10 CIRAR100-20 VOC2012-10 Travel

mAcc F1 mAcc F1 mAcc F1 mAcc F1
MDPM[1] 0.7820 0.7800 0.7800 0.7750 0.8000 0.8100 0.7800 0.8530
CBMS[10] 0.8800 0.8790 0.8630 0.8640 0.8650 0.8663 0.8630 0.9550
P-CNN[3] 0.8850 0.8880 0.8800 0.8750 0.8720 0.8715 0.8800 0.9725
PatternNet[7] 0.8300 0.8330 0.8200 0.8250 0.7950 0.7963 0.8200 0.9374
MFCN[35] 0.8450 0.8440 0.8434 0.8452 0.8312 0.8416 0.8434 0.9057
JDFR(Ours) 0.9650 0.9650 0.9450 0.9440 0.9100 0.9100 0.9975 0.9975

Table 3: Comparison of six approaches on frequency of discovered representations
at three thresholds Tf .
Datasets Tf MDPM[1] CBMS[10] P-CNN[3] PatternNet[7] MFCN[35] JDFR(Ours)

CIFAR10

0.940(20➦) 0.1025 0.1565 0.1533 0.1473 0.1516 0.1733

0.906(25➦) 0.3289 0.5169 0.5224 0.4856 0.5003 0.5429

0.866(30➦) 0.5673 0.8689 0.8792 0.8386 0.8515 0.9122

CIFAR100-20

0.940(20➦) 0.0322 0.0425 0.0489 0.0406 0.0372 0.0523

0.906(25➦) 0.1540 0.2039 0.2153 0.2002 0.2037 0.2346

0.866(30➦) 0.3370 0.5511 0.5314 0.5468 0.5531 0.5880

VOC2012-10

0.940(20➦) 0.0425 0.0665 0.0725 0.0627 0.0780 0.0923

0.906(25➦) 0.1489 0.2410 0.2312 0.2245 0.2468 0.2415
0.866(30➦) 0.3556 0.4789 0.4456 0.4289 0.4774 0.4876

Travel

0.940(20➦) 0.0752 0.1277 0.1000 0.1163 0.1325 0.1668

0.906(25➦) 0.1428 0.2603 0.3002 0.2375 0.2470 0.3348

0.866(30➦) 0.2555 0.4109 0.4355 0.3926 0.4058 0.5076

semantic information. Surprisingly, PatternNet concentrates on mining discrimi-
nating patterns, but achieves the second worse performance, the reason might
be that the discriminating information of their result is only provided by one
max-pooling layer (last convolution), which lacks of adequate high-level seman-
tic features. MFCN reaches the third worse since it is designed for co-saliency
detection, which requires the visual pattern must appear in all images. P-CNN
achieves the second best because P-CNN is more robust than other methods by
using multi-scale information of images. JDFR performs the best on all datasets
due to optimizing both discrimination and frequency of the visual representa-
tions. Compared with P-CNN, JDFR only improves 3.8% accuracy and 3.85%
F1-score on VOC2012-10, but improves 8.0% accuracy and 7.7% F1-score on CI-
FAR10. Moreover, one can see that most methods perform better on VOC2012-
10 and Travel than CIFAR10 and CIFAR100-20. The possible explanation is
that our network has a fixed architecture of Conv module, and the feature map
in the high-level layer becomes rather small when the input is small. Thus, the
resolution of images in CIFAR10 and CIFAR100-20 is much smaller than the
one in VOC2012-10 and Travel, which makes high-level features of images in
CIFAR contain less semantics. In addition, all methods perform better on CI-
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FAR10 than CIFAR100-20. We can observe that the number of training images
in CIFAR100-20 is smaller than CIFAR10, which can make the trained network
sub-optimal.

Fig. 2: Instances of discovered visual representations by JDFR from VOC2012-
10. The first row lists the original images, the second row shows the attention
maps after joint optimization, and the last row demonstrates the discovered
instances of visual representation. Best viewed in color.

Fig. 3: Instances of discovered visual representations by JDFR from Travel. Best
viewed in color.

Secondly, we compare the frequency of discovered visual representations at
a varied threshold Tf on four datasets. The result is similar to the classifcation
evaluation, as shown in Table 3. The visual representations discovered by JDFR
are more frequent than ones from other methods at almost all thresholds. CBMS
discovers the most frequent representation on VOC2012-10 when Tf = 30➦. But it
is just slightly higher than ours. Although MDPM uses a frequent pattern mining
algorithm, it still performs the worst. PatternNet and P-CNN focus on mining
the discriminating patterns, while their results also have high frequencies. All
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the above results demonstrate that our JDFR can discover better discriminating
and frequent visual representations.

Qualitative results and comparison To subjectively evaluate the perfor-
mance of our method, we illustrate the attention maps and discovered visual
representations of ten categories in VOC2012-10 in Fig.2 and ten tourism desti-
nations in Travel Fig.3, respectively. One can see that they contain the symbolic
content and represent these categories well.

Fig. 4: Instances of visual representation of aeroplane category in VOC2012-10
discovered by (a) MDPM [1], (b) CBMS [10], (c) P-CNN [3], (d) PatternNet [7],
(e) MFCN [35] and (f) JDFR (ours), respectively. Best viewed in color.

For the qualitative comparison, we list ten instances of visual representation
discovered by six approaches from aeroplane category in VOC2012-10, as shown
in Fig.4, and Manneken Pis in Travel, as shown in Fig.5, respectively. One can
observe that MDPM produces the worst result marked with the blue box, be-
cause it utilizes image patches that may merely have a part of the symbolic
object. CBMS finds the frequent images in the yellow box instead of the visual
representation in the images. P-CNN and PatternNet are able to discover the
visual representations but include a few off-target errors only marked with the
red boxes. MFCN is designed to mine the co-existing objects across all images.
Thus, it finds the same object in dataset highlighted in green box, but does not
work on images which include other objects only. By contrast, our method can
retrieve consistent instances of visual representations.
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Fig. 5: Instances of visual representation of Manneken Pis in Travel photo dataset
discovered by (a) MDPM [1], (b) CBMS [10], (c) P-CNN [3], (d) PatternNet [7],
(e) MFCN [35] and (f) JDFR (ours), respectively. Best viewed in color.

4.4 Ablative study

Variants of model To further verify our main contributions, we firstly compare
JDFR with the model only with cross-entropy loss and only with triplet loss,
respectively. Here, we set α = 1.5 and Tf = 20➦ because 20➦ is the strictest
threshold of similarity measure. Results are listed in Table 4.

Table 4: Ablation study of JDFR on four datasets.
mAcc F1 FR 0.940(20➦)

CE Triplet CE+Triplet CE Triplet CE+Triplet CE Triplet CE+Triplet
CIFAR10 0.9100 0.8850 0.9650 0.9100 0.8850 0.9650 0.1667 0.1731 0.1893

CIFAR100-20 0.9050 0.8500 0.9450 0.9050 0.8490 0.9440 0.0405 0.0365 0.0482

VOC2012-10 0.9100 0.8350 0.9100 0.9100 0.8270 0.9100 0.0650 0.0634 0.0715

Travel 0.9800 0.9650 0.9975 0.9800 0.9640 0.9975 0.1464 0.1569 0.1668

One can observe JDFR achieves the best frequent and discriminating per-
formance on four datasets. Specifically, JDFR improves 1.6% frequency on CI-
FAR10 compared with the Triplet model. The average improvement on all data-
sets is 1.15%. Analogously, JDFR improves 5.5% accuracy and 5.5% F1-score on
CIFAR10 compared with the CE model. On average, JDFR raise the accuracy
2.8% and F1-score 2.8%. These results demonstrate that joint optimization does
improve the both frequency and discrimination of visual representations.
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Fig. 6: Four images from VOC2012-10 with labels of car, bicycle, bus and dog,
respectively. The labels are indicated by yellow box. The shared object is shown
in red box.

Moreover, we find the frequency on VOC2012-10 increases the least among
four datasets, and the accuracy is not improved. This might be caused by the
characteristics of VOC2012-10. Each image in VOC2012-10 has multiple objects
which may be shared with images belonging to other categories. For instance,
Fig. 6(a) and Fig. 6(b) are labeled by car and bicycle, respectively. But they both
include car and bicycle. Figure 6(c) and Fig. 6(d) are other examples that contain
both bus and dog but have different labels. This suggests that many images,
which are in different categories, may have very similar semantic features. In
this case, triplet loss can not contribute much for the classification task. Thus,
the discrimination performance of JDFR on VOC2012-10 is identical to the one
of CE model. Since it does enlarge the between-class distance, the performance
of frequency is still improved.

Table 5: Comparison of JDFR performance with different α.
mAcc F1 FR 0.940(20➦)

α = 1 α = 1.5 α = 2 α = 1 α = 1.5 α = 2 α = 1 α = 1.5 α = 2
CIFAR10 0.9600 0.9650 0.9600 0.9600 0.9650 0.9590 0.1934 0.1899 0.2042

CIFAR100-20 0.9280 0.9450 0.9400 0.9270 0.9440 0.9380 0.0556 0.0482 0.0508
VOC2012-10 0.8950 0.9100 0.9200 0.8960 0.9100 0.9150 0.0691 0.0715 0.0742

Travel 0.9975 0.9975 0.9925 0.9975 0.9975 0.9925 0.1843 0.1668 0.1657

Varied margin α The margin α can adjust the between-class distance. We test
varied α and show the results in Table 5. Due to the characteristics of VOC2012-
10, the larger value of α can improve both frequency and discrimination of visual
representations. However, an overlarge α is not appropriate to other data. One
can observe that the best overall performance on all datasets can be reached
when α = 1.5. Therefore, We choose this setting for all experiments in this
paper.
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5 Conclusion

In this work, we propose a jointly discriminating and frequent visual representa-
tion mining method (JDFR) to address the problem of discovering visual repre-
sentations. Unlike previous studies focusing on either the discriminating patterns
or frequent patterns, JDFR can optimize both the discrimination and frequency
of discovered visual representations simultaneously. Moreover, our channel and
spatial attention modules help to locate the representations in images. To evalu-
ate the effectiveness of JDFR, we conduct experiments on four diverse datasets.
The results of classification accuracy and frequency demonstrate that JDFR is
able to discover the best visual representation in comparing with five state-of-
the-art methods.
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