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Abstract. The lack of annotated public radar datasets causes difficul-
ties for research in environmental perception from radar observations. In
this paper, we propose a novel neural network based framework which
we call L2R GAN to generate the radar spectrum of natural scenes from
a given LiDAR point cloud.
We adapt ideas from existing image-to-image translation GAN frame-
works, which we investigate as a baseline for translating radar spectra
image from a given LiDAR bird’s eye view (BEV). However, for our ap-
plication, we identify several shortcomings of existing approaches. As a
remedy, we learn radar data generation with an occupancy-grid-mask
as a guidance, and further design a set of local region generators and
discriminator networks. This allows our L2R GAN to combine the ad-
vantages of global image features and local region detail, and not only
learn the cross-modal relations between LiDAR and radar in large scale,
but also refine details in small scale.
Qualitative and quantitative comparison show that L2R GAN outper-
forms previous GAN architectures with respect to details by a large
margin. A L2R-GAN-based GUI also allows users to define and generate
radar data of special emergency scenarios to test corresponding ADAS
applications such as Pedestrian Collision Warning (PCW).

1 Introduction

In the past years, environmental perception based on cameras and Light Detec-
tion and Ranging (LiDARs) has made significant progress by using deep learning
techniques. The basic idea is to design and train a deep neural network by feeding
quantities of annotated samples. The training process enables the networks to
effectively learn a hierarchical representation of pixels or points using high-level
semantic features.

In contrast to LiDARs and camera, Frequency-Modulated Continuous-Wave
(FMCW) radar operates at longer ranges and is substantially more robust to
adverse weather and lighting conditions. Besides, on account of its compact size
and reasonable price, radar is becoming the most reliable and most widely used
sensor in Advanced Driver Assistance Systems (ADAS) applications. However,
the research on deep learning for analyzing radar signals is still at a very early
stage [1,2,3,4,5,6].
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Fig. 1. A: We propose the L2R GAN for synthesizing radar spectrum images from
given LiDAR point clouds. A-1: Input LiDAR BEV image with corresponding occu-
pancy grid mask (black is unknown area, gray is free area). A-2: ground truth radar
spectrum. A-3: generated radar spectrum of L2R GAN. B: An L2R-GAN-based GUI
allows to define and generate the radar data of emergency scenarios to test correspond-
ing ADAS application such as Pedestrian Collision Warning (PCW). B-1: example of
an augmented emergency scenario for PCW in a camera and LiDAR BEV image, the
pedestrian in red box is inserted 10 meters in front of ego car. B-2: corresponding
generated radar spectrum. Please zoom in for details.

The most important reason for this apparent contradiction is that only a few
datasets provide radar data [7]. Inspired by KITTI [8] in the year 2013, most of
the 3D object detection datasets include RGB camera images and LiDAR point
clouds [9,10,11,12,13]. To the best of our knowledge, only nuScenes [14], Oxford
Radar RobotCar [15], and Astyx HiRes2019 Datasets [16] contain radar data.
Through careful analysis, we found that the radar data of the nuScenes and Astyx
HiRes2019 datasets are sparse radar points instead of raw radar spectra. On the
other hand, the Oxford Radar RobotCar supplies radar spectra, but without
any object annotation. In short, until now, there has neither been a high-quality
public dataset nor a benchmark for radar environmental perception.

Motivated by the above problems, we define automatic LiDAR-to-radar trans-
lation as the task of generating radar data from given LiDAR point clouds. It
is trained with the broad set of paired LiDAR-radar samples from the Oxford
RobotCar dataset, see Fig.1. A challenge that needs to be addressed is how the
radar and LiDAR data are represented. Image-based representations (such as Li-
DAR BEV and radar spectrum images) are valid for image-to-image translation
GAN frameworks that have a fixed relationship, but fewer details in raw data,
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e.g. intensity, and height of point clouds. Otherwise, point-wise representation
bases such as radar pins or point clouds are not well-suited for image-to-image
translation GANs.

Contributions Our specific contributions are three-fold: (1) We first propose
a conditional L2R GAN that can translate data from LiDAR to radar. We use
an occupancy grid mask for guidance and a set of local region generators to
create a more reliable link of objects between LiDAR and radar for refining
small-scale regions. (2) In experiments, we demonstrate the effectiveness of our
framework for the generation of raw, detailed radar spectra. Both qualitative and
quantitative comparison indicate that L2R GAN outperforms previous GANs
with respect to details by a large margin. (3) We show that our framework can
be used for advanced data augmentation and emergency scene generation by
editing the appearance of objects (such as pedestrian) in a real LiDAR scene
and feeding to L2R GAN, see Fig. 1.

2 Background and related work

In this section, we briefly review recent existing work on data translation with
conditional GAN (cGAN) and different representations of LiDAR and radar
sensors.

2.1 Cross-Domain data translation with conditional GAN

Cross-Domain data translation, especially image-to-image translation, involves
generating a new synthetic version of a given image with a specific modifica-
tion, such as translating a winter landscape to summer. Generally speaking,
image-to-image translation can be divided into supervised and unsupervised
translation. Some early works expected to generate an output image close to
a ground-truth image by reducing pixel-wise losses, for example, L1-loss or MSE
in pixel space [17]. From 2016 on, [18] and [19] trained a conditional GAN net-
work on paired data to translate across different image domains (like sketches
to photos). In pix2pix [19], the generator is creatively designed as a U-Net ar-
chitecture [20], while the discriminator classifies each N × N patch as real or
fake instead of the whole image. To synthesize more photo-realistic images given
an input map image, pix2pixHD uses a new multi-scale generator and discrim-
inator [21]. In [22], authors demonstrate that conditional GAN models highly
benefit from scaling up. In [23] and [24], high-resolution images are scaled using
a memory bank composed of a training image segment. Spatially-adaptive nor-
malization to transform semantic information is proposed in [25]. Very recently,
LGGAN uses a local class-specific generative network with an attention fusion
module to combine the multi-scaled features in the GAN [26].

Meanwhile, lots of research aims to train the network in an unsupervised way
using unpaired samples from different training sets [27,28,29,30]. Furthermore,
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Fig. 2. Different Representation of radar data used in the datasets. (a): raw polar
radar spectrum, Navtech CTS350-X Millimetre-Wave FMCW radar [15]; (b): the same
radar spectrum in Cartesian coordinates; (c): 3D radar point clouds, Astyx 6455 HiRes
radar [16]; (d): 2D radar pins/ clusters, Continental ARS40X radar [14].

[31,32,33] have presented a remarkable technique for training unsupervised im-
age translation models via utilizing a cycle consistency loss. In 2018, to handle
translation between multiple-domains without training for each pair of domains,
[34] propose StarGAN, which performs this task using only a single model.

2.2 Representations of radar data

FMCW radars are widely used for autonomous driving with the ability to mea-
sure range (radial distance), velocity (Doppler), azimuth and received power,
which is a function of the object’s reflectively, size, shape, and orientation relative
to the receiver, in some cases also named as radar cross section (RCS). FMCW
radars continuously transmit chirp signal and receive echo signal reflected by ob-
jects. The radar measurement process is very complicated and the resulting scan
is also susceptible to contamination by speckle noise, reflection, and artifacts[35].
According to the increasing levels of data abstraction and handcrafted feature
extraction, radar data can be divided into the following representations: raw
polar radar spectrum, radar spectrum in Cartesian coordinates, 3D radar point
clouds and 2D radar pins, see Fig. 2.

The original radar raw data is in the form of a 2D array, whose row is
formed by the target echo returned from each radar pulse. However, as technical
secrets, such data is not available to users. Radar manufacturers use digital
signal processing (DSP) algorithms such as Fast Fourier Transform (FFT) and
Multiple Signal Classification (MUSIC) to obtain spectrum (range-azimuth) data
under polar coordinate system [15,36]. Through coordinate transformation into
a Cartesian coordinate system, we can further get the BEV spectrum images
where the intensity represents the highest power reflection within a range bin.
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There are several radar researches take radar spectra as input [6,4,37]. Further
to ADAS applications, radar data are more heavily processed by DSP (such as
clustering) and extracted to sparse 3D radar clusters or 2D radar pins [14,2,1,38].

3 The pix2pix and pix2pixHD baseline implementations

We propose a conditional GAN framework for generating a high-resolution radar
spectrum from the 3D LiDAR point cloud which is based on the architectural
ideas of pix2pix [19] and pix2pixHD [21] architectural. An illustration of the over-
all framework is shown in Fig. 3. In this section, as a baseline, we use the above
approaches to translate the LiDAR BEV image to a radar spectrum Cartesian
image, which can be formulated as a problem of image-to-image domain trans-
lation.

3.1 Architecture of pix2pix and pix2pixHD

The pix2pix method is a conditional GAN framework for paired image-to-image
translation with an additional L1 loss. It consists of a U-Net [20] generator G

and a patch-based fully convolutional network discriminator D. The conditional
adversarial loss with an input x and ground truth y is formulated as

LcGAN (G,D) = Ex,y [logD(x, y)] + Ex [log(1−D(G(x))] . (1)

Moreover, training aims to find the saddle point of the objective function

argmin
G

max
D

LcGAN (G,D) + λLpix(G), (2)

with a pixel-wise reconstruction loss Lpix. A typical choice here is the L1-norm.
The recently proposed pix2pixHD model is based on pix2pix, but has shown

better results for high-resolution images synthesis. A multi-scale generator and
different discriminators for multiple scales are leveraged to generate high-resolution
images with details and realistic textures. The objective function is extended
with the matching loss of the multiple layers’ features.

We choose the same range (80×80 meter) for both LiDAR and radar images.
The reason is that the LiDAR point clouds in the far range are very sparse and
few measurements are available at distances above 40m. The radar spectrum
Cartesian image and BEV LiDAR image have the same representation as an
image with a resolution of N ×N = 400× 400 pixels, where N is the cardinality
of the set of bins in the discretized range, and each pixel represents an area of
0.2× 0.2 meter.

3.2 Drawbacks of the baseline approaches

It turns out that if we directly apply one of [19] or [21], the generated radar spec-
trum is quite unsatisfactory, see Fig.4. After careful analysis, we can identify four
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Fig. 3. Overview of L2R GAN network. The L2R GAN consists of four parts: a global
generator, a set of local region generators, a ROI extraction network and discriminator
network. The local region generator uses a U-Net framework to synthesis radar data
in small-scaled ROIs , which is showed in red box. The global generator GGlobal con-
catenates the feature maps of occupancy grid mask and LiDAR BEV images. It also
consists of four subcomponents: an occupancy grid mask encoder network G(EO), a
BEV image encoder network G(EB), a concatenation block G(C), and a fusion decoder
network G(D). See text below for details.

main reasons for this. First, due to the difference in sensor characteristics, there
is no strict pixel-wise correspondence between the LiDAR BEV and Cartesian
radar spectrum image. In particular cases, some objects can only be detected by
either LiDAR or radar.

Second, ”Black regions”, such as free space and unknown regions, usually
occupy most of the image area, see the radar spectrum images in Fig.2. This
highly imbalanced data adds to the difficulty, which makes the GAN tend to
generate more ”black regions” than what would be realistic. In contrast, smaller-
scaled regions (vehicles and pedestrians) can not be effectively learned by a global
image-level generation, and such regions are much more critical for ADAS.

Third, since pix2pix and pix2pixHD are mainly designed for Semantic-map-
guided or edge-map-guided scene generation, whose performance heavily relies
on the boundaries of segments. In our case, a LiDAR BEV image alone is not able
to provide boundary-like features. Furthermore, neither instance-level semantic
label map nor instance maps is available.

Finally, different from a one-to-many mapping problem e.g. image synthesis
from semantic label maps, LiDAR to radar translation is a one-to-one mapping
problem. The framework should learn how to generate more realistic results
instead of more diverse.
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4 Our L2R-GAN framework

To solve the problems of the baseline approach analyzed in the previous section,
we take a series of measures to increase the performance and overall quality and
details of the results.

4.1 Occupancy-grid-mask guidance for the global generator

As discussed in the last section, ”black regions”, such as free space and unknown
area, usually occupy most of the BEV LiDAR image area. Due to the imbalance
in data distribution, the generator tends to synthesize more ”black regions”.
Thus, to generate a more realistic radar spectrum, the corresponding region’s
real representation and more environment information are needed.

Inspired by [39] and [40], we assume that an occupancy grid mask of the BEV
image allows the generator to better understand environmental information. The
mask divides ”black regions” into two classes, namely free region and unknown
region. Although both regions seem similar in the BEV LiDAR image, there are
obviously more radar reflections in unknown space than free space, see Fig.4.
The reason behind this phenomenon is the different working principle, with
phenomena such as multipath propagation, refraction, and scattering, which
lets radar see part of the objects which are occluded and can not be detected by
LiDAR.

To retain the basic structure of the traffic scene, we design an occupancy-
grid-mask-guided global generator GGlobal. The occupancy mask is generated
via ray casting through the scene, which is implemented using Bresenham’s line
rendering algorithm [41]. For details, please see the additional material. The
generator GGlobal follows an architecture in the spirit of U-Net [20] and consists
of four components. The occupancy grid mask encoder network G(EO) learns the
features of the occupancy grid mask M . The BEV image encoder network G(EB)

is designed to encode the input BEV image IBEV . A concatenation block G(C)

relays the feature maps of G(EB) and G(EO) to the backbone framework. Finally,
the fusion decoder network G(D) generates a coarse image of resolution 400×400.
The complete layout is visualized in Fig. 3.

4.2 Local region generator and discriminator

To produce a truly realistic radar spectrum, a model must be able to synthesize
the data of objects which occupy a smaller region, such as vehicles and pedestri-
ans. However, most of the existing cGANs use only a global generator to capture
features and texture from a large receptive field. Inspired by the idea of a coarse-
to-fine generator to enhance local details [21], we separate the generator into the
two sub-components GGlobal and GLocal. However, different from [21], our local
generator consists of several independent local region generators, whose input is
a small region of interest (ROI) instead of a whole image.

To extract ROIs from LiDAR point clouds effectively, we utilize the feature
encoder network from PointPillars [42] as an extraction network. This network
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is designed to convert a point cloud into a sparse pseudo-image. In our case, the
feature encoder network receives the point cloud in a volume of L ×W ×H =
80× 80× 5m as input and generates a pseudo-image at resolution w × h× c =
400× 400× 8 as output, where c is the number of channels of the pseudo-image.
We then add a 2D region proposal network (RPN) to detect ROIs in the pseudo-
image. The output of whole extraction network consists of serevel ROIs, each has
size of 30× 30× 3, see Fig. 3. Notably, the Oxford Radar RobotCar dataset has
no object annotation. Thus, the extraction network is trained on the nuScenes
dataset, whose LiDAR sensor is the same as Oxford Radar RobotCar’s.

The local region generator then processes the data on small scale ROIs ex-
tracted by the extraction net. The input of each local generation is a segment
Li ∈ R

30×30×3, which is a part of BEV image that contains the segment. To con-
trol the training process and results of the local region generators, a global dis-
criminator such as in pix2pix or multi-scale discriminator such as in pix2pixHD
is insufficient. Thus, we define corresponding local region discriminators, whose
input is a small-scale radar spectrum instead of a large receptive field.

For the global generator, we integrate local generator and discriminator net-
works which are based on the U-Net architecture, see Fig. 3. In summary, the
global generator network aims to learn the large scale features of each scenario to
generate globally consistent images, while the local region generator is focusing
on small ROIs to enhance and refine the details in the radar spectrum. Finally,
we use a fusion structure to combine the outputs of local and global generator
to provide more scene details while retaining global structure. In particular, our
L2R GAN is therefore capable of effectively producing high-quality radar data
of each road user.

4.3 Objective functions

Different from other conditional GANs, the main purpose of L2R GAN is to
generate a unique and as real as possible radar spectrum – no variety, but more
fidelity. So the objective of L2R GAN is not only to focus on how to fool the
discriminator (GAN loss), but also to reduce the difference to the corresponding
ground truth. We have tried several metrics for this pixel-wise loss, such as L1,
L2, and MSE, which we analyze in the next section.

The final objective for the global and local generators and discriminators is
an expanded version of Eq. (1),

argmin
G

max
D

LcGAN (G,D) + λLLpix(G) + µLP (G,D). (3)

Here, LP is a perceptual loss function known from other cGANs [21], which
measures the distribution of high-level features between transformed images and
ground-truth images from a discriminator. The parameters λ and µ control the
weight of pixel-wise and perceptual loss, respectively, and are different for the
local and global losses. In experiments, it will turn out that the local perceptual
loss does not improve results, so µlocal = 0 for optimal results. We first train
both generators separately, then jointly fine-tune them, see below for details.
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Fig. 4. Comparison on the Oxford robot car dataset [40]. (A) is in put LiDAR BEV
image, (B) is corresponding ground truth radar image. Our method (H) generates
more realistic than pix2pix (B) and pix2pixHD (C). In comparison with other baseline
(E),(F), and (G), Our method (H) is closer to ground truth(B). Please zoom in for
details.

5 Experimental results

In this section, we describe the set of experiments to evaluate our method and to
demonstrate the extension of its capabilities. We then show the effectiveness of
our method as a radar translator and conduct a qualitative as well as quantitative
comparison against baseline methods. Due to the particularity and uniqueness
of the task, we first explain the evaluation methods and metrics in Sect. 5.1.
We then validate the structure of L2R GAN with a set of ablation studies to
in Sect. 5.2. Finally, we show applications of our method in radar data aug-
mentation from a novel LiDAR point clouds, and performing emergency scene
generation in Sect. 6.

5.1 Baseline comparisons

Implementation details. We train the entire architecture by optimizing the
objectives in Eq. (3). However, in our model, the generators GGlobal and Glocal

have a considerably different number of parameters. While GGlobal is trying to
learn large scale features, Glocal aims at refining the details in small scale regions.
To mitigate this issue, we employ an adaptive training strategy. In order to adapt
the training process at each iteration, if either discriminator’s accuracy is higher
than 75%, we skip its training. To avoid overfitting, we use dropout layers, which
are applied to the global generator at training time. We also set different learning
rates for the global discriminator, the local discriminator, the global generator,
and the local generators, which are 10−5, 0.0025, 10−5, and 0.0025, respectively.
We use ADAM with β = 0.5 for the optimization.
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Table 1. qualitative experiments
Oxford nuScenes

Ours >Pix2pix 96.5% 90.5%

Ours >Pix2pix HD 80.5% 85.0%

Ours >GT 24.0% no GT

Table 2. quantitative experiments
PSNR(dB) SSIM

Pix2pix 7.722 0.031

Pix2pix HD 23.383 0.372

Ours 29.367 0.660

Fig. 5. Table 1 shows the results of blind randomized A/B tests on Amazon MTurk.
Each entry is calculated from 200 tests made by at least 5 workers. The results indicate
the percentage of comparisons in which the radar spectrum synthesized by our method
are considered more realistic than the corresponding synthesized one by Pix2pix or
the Pix2pixHD. Opportunity is 50%. To be noticed, for nuScenes dataset, there is no
ground truth radar images. Table 2 indicates L2R GAN has less image distortion than
pix2pix and pix2pixHD.

Training, validation and test datasets. We use the recently released Oxford
Radar RobotCar Dataset [15], which consists of 280 kilometers of urban driving
data under different traffic, weather and lighting conditions. The test vehicle is
equipped with 2 LiDAR and 1 radar with the following specifications:

– Navtech CTS350-X Millimetre-Wave FMCW radar, 4 Hz, 400 measurements
per rotation, 4.38 cm range resolution, 1.8◦ beamwidth, 163 m range.

– Velodyne HDL-32E 3D LIDAR, 360◦ HFoV, 41.3◦ VFoV, 32 channels, 20
Hz, 100 m range, 2 cm range resolution.

The dataset consists of several approximately 9 km trajectories in the Oxford
city map. Similar to the strategy used in prior work, we manually divide the
trajectories of the dataset into training, validation, and test set according to
a 70 : 15 : 15 split. So in following experiments, we use 8500 paired sample as
training set, 1200 as validation and test set. Note that the LiDAR scans from each
sensor are gathered at 20Hz, whereas radar streams are collected at 4Hz. Due to
this temporal difference in synchronization and the dynamic environment, the
translation from LiDAR to radar suffers from misalignment. We correct for this
misalignment by down-sampling and interpolating the point cloud in the BEV
images. In the same fashion, each radar scan is related to the closest LiDAR
data in time.

For advanced data augmentation, we also use the nuScenes dataset [14] to
validate the generalization ability of L2R GAN. Notably, it has no similar radar
ground truth images.

Evaluation metrics. Evaluating the quality of synthesized radar data is an
open problem and more difficult than other synthesized image. In particular,
there is no common metric yet to evaluate generated radar data. To highlight
the qualities of L2R GAN, we focus attention on how to generate radar data
as close as possible to the ground truth. For the quantitative evaluation, we
use Peak Signal to Noise Ratio (PSNR, in the range (0, 100]) and structural
similarity (SSIM, in the range (0, 1]) to measure image distortion and derive the
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Fig. 6. Example radar results on the Oxford robot car dataset. Please zoom in for
details.

similarity between two images [43]. The larger SSIM and PSNR, the less the
image distortion.

Meanwhile, as a qualitative experiment, we also investigate a human subjec-
tive study. The evaluation metric is based on large batches of blind randomized
A/B tests deployed on the Amazon Mechanical Turk platform (Amazon MTurk).
To learn the characteristic of a radar spectrum, the workers were asked to first
read an introduction to radar signals and browse 100 randomly selected radar
spectra from the Oxford radar dataset for 10 minutes. After this, we assume that
the workers have a general understanding of the characteristics and distribution
of real radar data. They subsequently will be presented two images at a time, one
is ground truth, the other is synthesized from the corresponding LiDAR point
clouds. The workers are asked to find the real one in 8 seconds, as adopted in
prior work [21].

Baseline comparisons. Fig. 4 and Fig. 5 report the results of baseline com-
parisons. Both qualitative and quantitative experiments give evidence that radar
images synthesized by our approach are more accurate than the ones synthesized
by Pix2pix or the Pix2pix HD. In Table 1, each entry in the table reports the
percentage of comparisons in which a radar spectrum image synthesized by our
approach was considered more realistic in Amazon MTurk than a corresponding
one synthesized by Pix2pix or the Pix2pix HD. Fig. 6 shows more examples on
the Oxford robot car dataset.

5.2 Ablation Analysis

Analysis of the framework structure. We evaluate the proposed L2R GAN
in four variants S1, S2, S3, S4 as follows: (a) S1 employs only the global generator
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Method
PSNR(dB) SSIM

min max mean min max mean

S1: GGlobal 23.006 24.206 23.635 0.360 0.406 0.381
S2: S1+GLocal 28.430 29.253 28.426 0.576 0.598 0.588

S3: S1+ occupancy grid 23.911 25.079 24.434 0.417 0.473 0.450
S4: S3+GLocal (/w L1) 29.076 29.697 29.367 0.647 0.671 0.660

S4 /w L2 28.261 29.040 28.781 0.643 0.674 0.662

S4 /w LMSE 29.053 29.423 29.219 0.637 0.665 0.656
S4 /w L1 + LP−local 27.601 28.211 27.912 0.543 0.598 0.572
S4 /w L2 + LP−local 26.970 27.498 27.201 0.550 0.592 0.570

S4 /w LMSE + LP−local 27.054 27.431 27.284 0.550 0.601 0.574

Fig. 7. Ablation study to evaluate different components of our framework. The upper
half shows the result of different framework structure, while the lower left is analysis
of loss functions. The baseline of comparison is S4 (/w L1), whose loss function is
LcGAN + L1 + LP−Global.

without occupancy grid mask, (b) S2 combines the global generator without
occupancy grid mask and the local region generators to produce the final results,
where the local results are produced by using a point pillar based extraction
network, (c) S3 uses the proposed occupancy-grid-mask-guided global generator,
(d) S4 is our full model. See Fig. 7 for the evaluation result.

Analysis of the loss functions. Here, we show how the loss function influences
the synthesis performance. For a fair comparison, we retain the same network
framework and data setting as S4 and utilize a combination of different losses,
see Fig. 7 for results.

Interestingly, the perceptual loss does not improve the quality of local region
generators, but tends to make the training process unstable and result in collapse.
We speculate that the perceptual loss may not be suitable for a small receptive
field, which has few common high-level features. The experiments also show that
the L1 loss can learn image details more effectively than L2 and MSE.

6 Application: data augmentation for ADAS

A big problem in ADAS is how to collect data for an emergency scenario to test
a corresponding ADAS application. For example, to test Pedestrian Collision
Warning (PCW), on the one hand, a sufficient number of experiments is neces-
sary before the application is released. On the other hand, it is too dangerous
to implement such a collision test under real road conditions. For this reason,
researchers artificially insert real LiDAR objects into a real LiDAR scene to pro-
duce a fake dangerous traffic scenario [44]. The occluded points in the original
LiDAR scene can be calculated and removed by mathematical methods, such
as applying a cube map [44] or raycasting [39]. However, it is quite difficult to
augment radar data in similar way. Due to refraction and scattering, the inter-
section of radar beams and inserted objects is much more complicated than for
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Fig. 8. Example radar data of augmented emergency scenario on the nuScenes dataset.
In nuScenes dataset, there is no radar spectrum ground truth. A is augmented emer-
gency scenario for Pedestrian Collision Warning (PCW): A-1 inserts a pedestrian 10
meters in front of ego car, A-2 inserts a pedestrian 2 meter east and 10 meters forward
of ego car. B is augmented emergency scenario for Obstacle Avoidance (OA): B-1 in-
serts a traffic cone 10 meters in front of ego car, B-2 inserts a tire 2 meter east and 10
meters forward of ego car. Here camera images just help the reader understand. Please
zoom in for details.
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LiDAR. In the worst case, the radar wave returning from a target object can get
reflected on those surfaces and result in so-called ”ghost” targets that do not
actually exist.

Given these observations, we propose to generate radar data of a danger-
ous traffic scenario by manually editing the appearance of individual objects in
LiDAR data as above, then feeding the data into our L2R GAN. A GUI al-
lows users to design their own augmented emergency scenario. To implement
this idea, we collect several 3D semantically labeled objects from the nuScenes
dataset (such as pedestrians, lost cargo and traffic cones) to create an object
database for the user to choose from. The user can also manually select which
LiDAR scenes to use as background, and where to insert a ”dangerous object”
of a specific class. For example, the user can add 3D points of a pedestrian 10
meters in front of the vehicle into an existing urban scenario to simulate a emer-
gency scenario. Our L2R GAN will then automatically produce a corresponding
radar spectrum. This kind of simulation data is urgently required for ADAS
development and validation, which can be hardly obtained through test drive.
Fig.8 shows four of these augmented scenarios.

7 Conclusion

In summary, we propose a new method for LiDAR-to-radar translation. Based
on the pix2pix and pix2pixHD methods, our L2R GAN generates a radar spec-
trum image through an occupancy-grid-mask-guided global generator, a set of
local region generators, a ROI extration network and discriminator networks.
Results on synthetic and real radar data show promising qualitative and quanti-
tative results which surpass the previous baseline. A L2R-GAN-based GUI also
allows users to define and generate special radar data of emergency scenarios
to test corresponding ADAS applications, such as pedestrian collision warning
and obstacle avoidance. Our research will serve as a reference for future testing
and development of various radar ADAS applications. Future investigations will
focus on validating the accuracy of augmented radar data by doing experiments
in the field.
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