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Abstract. Pruning generates sparse networks by setting parameters to
zero. In this work we improve one-shot pruning methods, applied before
training, without adding any additional storage costs while preserving
the sparse gradient computations. The main difference to pruning is that
we do not sparsify the network’s weights but learn just a few key parame-
ters and keep the other ones fixed at their random initialized value. This
mechanism is called freezing the parameters. Those frozen weights can
be stored efficiently with a single 32bit random seed number. The pa-
rameters to be frozen are determined one-shot by a single for- and back-
ward pass applied before training starts. We call the introduced method
FreezeNet. In our experiments we show that FreezeNets achieve good re-
sults, especially for extreme freezing rates. Freezing weights preserves the
gradient flow throughout the network and consequently, FreezeNets train
better and have an increased capacity compared to their pruned counter-
parts. On the classification tasks MNIST and CIFAR-10/100 we outper-
form SNIP, in this setting the best reported one-shot pruning method,
applied before training. On MNIST, FreezeNet achieves 99.2% perfor-
mance of the baseline LeNet-5-Caffe architecture, while compressing the
number of trained and stored parameters by a factor of ×157.

Keywords: Network Pruning · Random Weights · Sparse Gradients ·
Preserved Gradient Flow · Backpropagation

1 Introduction

Between 2012 and 2018, computations required for deep learning research have
been increased by estimated 300, 000 times which corresponds to doubling the
amount of computations every few months [36]. This rate outruns by far the
predicted one by Moore’s Law [18]. Thus, it is important to reduce computa-
tional costs and memory requirements for deep learning while preserving or even
improving the status quo regarding performance [36].

Model compression lowers storage costs, speeds up inference after training
by reducing the number of computations, or accelerates the training which uses
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Fig. 1. Graphical illustration of FreezeNet and comparison with a standard neural
network (NN) for a fully connected NN with neurons x1, x2, x3 and y1, y2, and corre-
sponding weights and gradient values. Best viewed in colour.

less energy. A method combining these factors is network pruning. To follow
the call for more sustainability and efficiency in deep learning we improve the
best reported pruning method applied before training, SNIP ([29] Single-shot
Network Pruning based on Connection Sensitivity), by freezing the parameters
instead of setting them to zero.

SNIP finds the most dominant weights in a neural network with a single
for- and backward pass, performed once before training starts and immediately
prunes the other, less important weights. Hence it is a one-shot pruning method,
applied before training. By one-shot pruning we mean pruning in a single step,
not iteratively. This leads to sparse gradient computations during training. But
if too many parameters are pruned, SNIP networks are not able to train well
due to a weak flow of the gradient through the network [39]. In this work we use
a SNIP related method for finding the most influential weights in a deep neural
network (DNN). We do not follow the common pruning procedure of setting
weights to zero, but keep the remaining parameters fixed as initialized which we
call freezing, schematically shown in Figure 1. A proper gradient flow through-
out the network can be ensured with help of the frozen parameters, even for a
small number of trained parameters. The frozen weights also increase the net-
work’s expressiveness, without adding any gradient computations — compared
to pruned networks. All frozen weights can be stored with a single random seed
number. We call these partly frozen DNNs FreezeNets.

1.1 Contributions of this Paper and Applications

In this work we introduce FreezeNets, which can be applied to any baseline
neural network. The key contributions of FreezeNets are:
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– Smaller trainable parameter count than one-shot pruning (SNIP), but better
results.

– Preservation of gradient flow, even for a small number of trained parameters.
– Efficient way to store frozen weights with a single random seed number.
– More efficient training than the baseline architecture since the same number

of gradients as for pruned networks has to be computed.

Theoretically and empirically, we show that a faithful gradient flow, even for a
few trainable parameters, can be preserved by using frozen weights. Whereas
pruning weights eventually leads to vanishing gradients. By applying weight
decay also on the frozen parameters, we modify FreezeNets to generate sparse
networks at the end of training. For freezing rates on which SNIP performs well,
this modified training generates networks with the same number of non-zero
weights as SNIP while reaching better performances.

Due to their sparse gradient computations, FreezeNets are perfectly suitable
for applications with a train-inference ratio biased towards training. Especially
for research, where networks are trained for a long time and often validated
exactly once, FreezeNets provide a good trade-off between reducing training re-
sources and keeping performance. Other applications for FreezeNets are networks
that have to be retrained many times due to changing data, as online learning or
transfer learning. Since FreezeNets can reduce the number of stored parameters
drastically, they are networks cheap to transfer. This could be of interest for
autonomous vehicle fleets or internet services. For a given hardware, FreezeNets
can be used to increase the size of the largest trainable network since less storage
and computations are needed for applying gradient descent.

2 Related Work

2.1 Network Pruning

Pruning methods are used to reduce the amount of parameters in a network [19,
28, 31]. At the same time, the pruned network should perform equally well, or
even better, than the reference network. Speeding up training can be achieved by
pruning the network at the beginning of training [29] or at early training steps
[12, 13]. There are several approaches to prune neural networks. One is penalizing
non-zero weights [3, 4, 20] and thus achieving sparse networks. Nowadays, a more
common way is given by using magnitude based pruning [12, 13, 17, 19], leading
to pruning early on in training [12, 13], on-the-fly during training [17] or at the
end of it [19]. These pruned networks have to be fine-tuned afterwards. For high
pruning rates, magnitude based pruning works better if this procedure is done
iteratively [12, 13], therefore leading to many train-prune(-retrain) cycles. Prun-
ing can also be achieved by using neural architecture search [10, 22] or adding
computationally cheap branches to predict sparse locations in feature maps [9].
The final pruning strategy we want to present is saliency based pruning. In
saliency based pruning, the significance of weights is measured with the Hessian
of the loss [28], or the sensitivity of the loss with respect to inclusion/exclusion
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of each weight [25]. This idea of measuring the effect of inclusion/exclusion of
weights was resumed in [29], where a differentiable approximation of this crite-
rion was introduced, the SNIP method. Since SNIP’s pruning step is applicable
with a single for- and backward pass one-shot before training, its computational
overload is negligible. The GraSP (Gradient Signal Preservation) [39] method is
also a pruning mechanism, applied one-shot before training. Contrarily to SNIP,
they keep the weights possessing the best gradient flow at initialization. For high
pruning rates, they achieve better results than SNIP but are outperformed by
SNIP for moderate ones.

Dynamic sparse training is a strategy to train pruned networks, but give the
sparse architecture a chance to change dynamically during training. Therefore,
pruning- and regrowing steps have to be done during the whole training process.
The weights to be regrown are determined by random processes [2, 30, 41], their
magnitude [40] or saliency [7, 8]. An example of the latter strategy is Sparse Mo-
mentum [7], measuring saliencies via exponentially smoothed gradients. Global
Sparse Momentum [8] uses a related idea to FreezeNet by not pruning the un-
trained weights. But the set of trainable weights can change and the untrained
weights are not updated via gradient descent, but with a momentum param-
eter based on earlier updates. Whereas FreezeNet freezes weights and uses a
fixed architecture, thus needs to gauge the best sparse network for all phases of
training.

In pruning, the untrained parameters are set to 0 which is not done for
FreezeNets, where these parameters are frozen and used to increase the descrip-
tive power of the network. This clearly separates our freezing approach from
pruning methods.

2.2 CNNs with Random Weights

The idea of fixing randomly initialized weights in Convolutional Neural Net-
works (CNNs) was researched in [24], where the authors showed that randomly
initialized convolutional filters act orientation selective. In [35] it was shown that
randomly initialized CNNs with pooling layers can act inherently frequency se-
lective. Ramanujan et al. [33] showed that in a large randomly initialized base
network ResNet50 [21] a smaller, untrained subnetwork is hidden that matches
the performance of a ResNet34 [21] trained on ImageNet [6]. Recently, Frankle
et al. [14] published an investigation of CNNs with only Batch Normalization
[23] parameters trainable. In contrast to their work, we also train biases and
chosen weight parameters and reach competitive results with FreezeNets.

A follow-up work of the Lottery Ticket Hypothesis [12] deals with the question
of why iterative magnitude based pruning works so well [42]. Among others, they
also investigate resetting pruned weights to their initial values and keeping them
fix. The unpruned parameters are reset to their initial values as well and trained
again. This train-prune-retrain cycle is continued until the target rate of fixed
parameters is reached. In their experiments they show that this procedure mostly
leads to worse results than standard iterative pruning and just outperforms it
for extremely high pruning rates.
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3 FreezeNets

General Setup Let fΘ : Rd0 → [0, 1]c be a DNN with parameters Θ ⊂ R, used
for an image classification task with c classes. We assume a train set (X,Z) with
images X = {x1, . . . , xN} ⊂ R

d0 and corresponding labels Z = {z1, . . . , zN} ⊂
{0, 1, . . . , c − 1}, a test set (X0, Z0) and a smooth loss function L to be given.
As common for DNNs, the test error is minimized by training the network with
help of the training data via stochastic gradient based (SGD) optimization [34]
while preventing the network to overfit on the training data.

We define the rate q := 1 − p as the networks freezing rate, where p is the
rate of trainable weights. A high freezing rate corresponds to few trainable pa-
rameters and therefore sparse gradients, whereas a low freezing rate corresponds
to many trainable parameters. Freezing is compared to pruning in Section 4. For
simplicity, a freezing rate q for pruning a network means exactly that q · 100%
of its weights are set to zero. In this work we split the model’s parameters into
weights W and biases B, only freeze parts of the weights W and keep all biases
trainable.

3.1 SNIP

Since pruned networks are constraint on using only parts of their weights, those
weights should be chosen as the most influential ones for the given task. Let
Θ = W ∪B 1 be the network’s parameters and m ∈ {0, 1}|W | be a mask that
shows if a weight is activated or not. Therefore, the weights that actually con-
tribute to the network’s performance are given by m ⊙W . Here ⊙ denotes the
Hadamard product [5]. The trick used in [29] is to look at the saliency score

g :=
∂L(m⊙W ;B,X,Z)

∂m

∣

∣

∣

∣

m=1

=
∂L(W ;B,X,Z)

∂W
⊙W , (1)

which calculates componentwise the influence of the loss function’s change by a
small variation of the associated weight’s activation.2 If those changes are big,
keeping the corresponding weight is likely to have a greater effect in minimizing
the loss function than keeping a weight with a small score. The gradient g can
be approximated with just a single forward and backward pass of one training
batch before the beginning of training.

3.2 Backpropagation in Neural Networks

To simplify the backpropagation formulas, we will deal with a feed-forward, fully
connected neural network. Similar equations hold for convolutional layers [21].
Let the input of the network be given by x(0) ∈ R

d0 , the weight matrices are

1By an abuse of notation, we also useW and B as the vectors containing all elements
of the set of all weights and biases, respectively.

2To obtain differentiability in equation (1), the mask is assumed to be continuous,
i.e. m ∈ R

|W |.
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Algorithm 1 FreezeNet

Require: Freezing rate q, initial parametrization Θ0 = W0 ∪ B0, corresponding net-
work fΘ0 , loss function L

1: Compute saliency score g ∈ R
|W0| for one training batch, according to equation (1)

2: Define freezing mask m ∈ R
|W0|

3: Use freezing threshold ε as the ⌊(1− q) · |W0|⌋-highest magnitude of g
4: Set mk = 0 if |gk| < ε else mk = 1
5: Start training with forward propagation as usual but backpropagate gradient

m⊙ ∂L
∂W0

for weights and ∂L
∂B0

for biases

given by W (k) ∈ R
dk×dk−1 , k ∈ {1, . . . ,K} and the forward propagation rules

are inductively defined as

– y(k) := W (k)x(k−1) + b(k) for the layers bias b(k) ∈ R
dk ,

– x(k) := Φ(k)(y
(k)) for the layers non-linearity Φ(k) : R → R, applied component-

wise.

This leads to the partial derivatives used for the backward pass, written com-
pactly in vector or matrix form:

∂L

∂y(k)
= Φ′

(k)

(

y(k)
)

⊙
∂L

∂x(k)
,

∂L

∂x(k)
=

(

W (k+1)
)T

·
∂L

∂y(k+1)
,

∂L

∂W (k)
=

∂L

∂y(k)
·
(

x(k−1)
)T

,
∂L

∂b(k)
=

∂L

∂y(k)

. (2)

Here, we define W (K+1) := id ∈ R
dK×dK and ∂L

∂y(K+1) := ∂L
∂x(K) . For sparse

weight matrices W (k+1), equations (2) can lead to small ∂L
∂x(k) and consequently

small weight gradients ∂L
∂W (k) . In the extreme case of ∂L

∂y(k) = 0 for a layer k, all

overlying layers will have ∂L
∂W (l) = 0, l ≤ k. Overcoming the gradient’s drying up

for sparse weight matrices in the backward pass motivated us to freeze weights
instead of pruning them.

3.3 FreezeNet

In Algorithm 1 the FreezeNet method is introduced. First, the saliency score g is
calculated according to equation (1). Then, the freezing threshold ε is defined as
the ⌊(1− q) · |W0|⌋-highest magnitude of g. If a saliency score is smaller than the
freezing threshold, the corresponding entry in the freezing mask m ∈ R

|W0| is set
to 0. Otherwise, the entry in m is set to 1. However, we do not delete the non-
chosen parameters as done for SNIP pruning, but leave them as initialized. This
is achieved with the masked gradient. For computational and storage capacity
reasons, it is more efficient to not calculate the partial derivative for the weights
with mask value 0, than masking the gradient after its computation.

The amount of memory needed to store a FreezeNet is the same as for stan-
dard pruning. With the help of pseudo random number generators, as provided
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Table 1. Comparison of standard training, pruning before training and a FreezeNet.

Method
# Total
Weights

# Weights
to Store

Sparse
Gradients

Sparse Tensor
Computations

Faithful
Gradient Flow

Standard D D ✗ ✗ ✓

Pruned D · (1− q) D · (1− q) ✓ ✓ ✗

FreezeNet D D · (1− q) ✓ ✗ ✓

by PyTorch [32] or TensorFlow [1], just the seed used for generating the initial
parametrization has to be stored, which is usually an integer and therefore its
memory requirement is neglectable. The used pruning/freezing mask together
with the trained weights have to be saved for both, pruning and FreezeNets.
The masks can be stored efficiently via entropy encoding [11].

In this work, we only freeze weights and keep all biases learnable, as done in
the pruning literature [12, 13, 29, 39]. Therefore, we compute the freezing rate as

q = 1− ‖m‖0

|W | , where m is the freezing mask calculated for the network’s weights

W . Here, the pseudo norm ‖·‖0 computes the number of non-zero elements in m.
Since we deal with extremely high freezing rates, q > 0.99, the bias parameters
have an effect on the percentage of all trained parameters. Thus, we define the

real freezing rate qβ = 1− ‖m‖0+|B|
|W |+|B| and label the x-axes in our plots with both

rates.
Pruned networks use masked weight tensors m⊙W in the for- and backward

pass. In theory, the number of computations needed for a pruned network can
approximately be reduced by a factor of qβ in the forward pass. The frozen
networks do not decrease the number of calculations in the forward pass. But
without the usage of specialized soft- and hardware, the number of computations
performed by a pruned network is not reduced, thus frozen and pruned networks
have the same speed in this setting.

In the backward pass, the weight tensor needed to compute ∂L
∂x(k−1) is given by

m(k) ⊙W (k) for a pruned network, according to the backpropagation equations
(2). Frozen networks compute ∂L

∂x(k−1) with a dense matrix W (k). On the other

hand, not all weight gradients are needed, as only m(k) ⊙ ∂L
∂W (k) is required for

updating the network’s unfrozen weights. Therefore, the computation time in the
backward pass is not reduced drastically by FreezeNets, although the number of
gradients to be stored. Again, the reduction in memory is approximately given
by the rate qβ . The calculation of ∂L

∂x(k−1) with a dense matrix W (k) helps to
preserve a faithful gradient throughout the whole network, even for extremely
high freezing rates, as shown in Section 4.3. The comparison of training a pruned
and a frozen network is summarized in Table 1.

4 Experiments and Discussions

In the following, we present results on the MNIST [27] and CIFAR-10/100 [26]
classification tasks achieved by FreezeNet. Freezing networks is compared with
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training sparse networks, exemplified through SNIP [29]. We further analyse how
freezing weights retains the trainability of networks with sparse gradient updates
by preserving a faithful gradient. We use three different network architectures,
the fully connected LeNet-300-100 [27] along with the CNN’s LeNet-5-Caffe [27]
and VGG16-D [37]. A more detailed description of the used network architec-
tures can be found in the Supplementary Material. Additionally, we show in the
Supplementary Material that FreezeNets based on a ResNet34 perform well on
Tiny ImageNet.

For our experiments we used PyTorch 1.4.0 [32] and a single Nvidia GeForce
1080ti GPU. In order to achieve a fair comparison regarding hard- and software
settings we recreated SNIP.3 To prevent a complete loss of information flow
we randomly flag one weight trainable per layer if all weights of this layer are
frozen or pruned for both, SNIP and FreezeNet. This adds at most 3 trainable
parameters for LeNet-300-100, 4 for LeNet-5-Caffe and 16 for VGG16-D. If not
mentioned otherwise, we use Xavier-normal initializations [16] for SNIP and
FreezeNets and apply weight decay on the trainable parameters only. Except
where indicated, the experiments were run five times with different random seeds,
resulting in different network initializations, data orders and additionally for
CIFAR experiments in different data augmentations. In our plots we show the
mean test accuracy together with one standard deviation. A split of 9/1 between
training examples and validation examples is used for early stopping in training.
All other hyperparameters applied in training are listed in the Supplementary
Material.

SGD with momentum [38] is used as optimizer, thus we provide a learning
rate search for FreezeNets in the Supplementary Material. Because λ = 0.1 works
best for almost all freezing rates, we did not include it in the main body of the
text and use λ = 0.1 with momentum 0.9 for all presented results. Altogether,
we use the same setup as SNIP in [29] for both, FreezeNets and SNIP pruned
networks.

4.1 MNIST

LeNet-300-100 A common baseline to examine pruning mechanisms on fully
connected networks is given by testing the LeNet-300-100 [27] network on the
MNIST classification task [27], left part of Figure 2. The trained baseline ar-
chitecture yields a mean test accuracy of 98.57%. If the freezing rate is lower
than 0.95, both methods perform equally well and also match the performance
of the baseline. For higher freezing rates, the advantage of using free, additional
parameters can be seen. FreezeNets also suffer from the loss of trainable weights,
but they are able to compensate it better than SNIP pruned networks do.

LeNet-5-Caffe For moderate freezing rates q ∈ [0.5, 0.95], again FreezeNet and
SNIP reach equal results and match the baseline’s performance as shown in the
Supplementary Material. In the right part of Figure 2, we show the progression of

3Based on the official implementation https://github.com/namhoonlee/snip-public.
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Fig. 2. Left: Test accuracy for SNIP, FreezeNet and the baseline LeNet-300-100. Right:
Test accuracy for SNIP and FreezeNet for a LeNet-5-Caffe baseline. The small inserted
plots are zoomed in versions for both plots.

Table 2. Comparison of FreezeNet, SNIP and the LeNet-5-Caffe baseline. Results
for different freezing rates q with corresponding real freezing rates qβ are displayed.
The network’s size is calculated without compression. Thus, all weights are stored as
32bit floats. Compress. Factor FN is the compression factor gained by FreezeNet for
the corresponding freezing rate, calculated via the ratio of the network sizes of the
baseline and the frozen network.

q qβ
Network

Size
Compress.
Factor FN

Test Acc.
SNIP

Test Acc.
FreezeNet

FreezeNet Acc.

Baseline Acc.

0 (Baseline) 1, 683.9kB 1 99.36% 1.000

0.9 0.899 170.7kB 9.9 99.24% 99.37% 1.000
0.99 0.989 19.1kB 88.2 98.80% 98.94% 0.996
0.995 0.994 10.7kB 157.4 98.02% 98.55% 0.992
0.999 0.998 3.9kB 431.8 20.57% 95.61% 0.962

SNIP and FreezeNet for more extreme freezing rates q ∈ {0.99, 0.991, . . . , 0.999}.
Until q = 0.994 SNIP and FreezeNet perform almost equally, however FreezeNet
reaches slightly better results. For higher freezing rates, SNIP’s performance
drops steeply whereas FreezeNet is able to slow this drop. As Table 2 and Fig-
ure 2 show, a FreezeNet saves parameters with respect to both, the baseline
architecture and a SNIP pruned network.

In order to overfit the training data maximally, we change the training setup
by training the networks without the usage of weight decay and early stopping.
In the left part of Figure 3, the training accuracies of FreezeNet and SNIP are
reported for the last training epoch. Unsurprisingly, too many frozen parameters
reduce the model’s capacity, as the model is not able to perfectly memorize the
training data for rates higher than q∗ = 0.992. On the other hand, FreezeNets
increase the networks capacity compared to SNIP if the same, high freezing rate
is used.
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Fig. 3. Left: Final training accuracies for FreezeNet and SNIP, both trained without
weight decay. Right: Different initializations for FreezeNets together with a Xavier-
normal initialized FreezeNet with randomly generated freezing mask. Both plots are
reported for the MNIST classification task with a LeNet-5-Caffe baseline architecture.

4.2 Testing FreezeNets for CIFAR-10/100 on VGG16-D

To test FreezeNets on bigger architectures, we use the VGG16-D architecture [37]
and the CIFAR-10/100 datasets. Now, weight decay is applied to all parameters,
including the frozen ones, denoted with FreezeNet-WD. As before, weight decay
is also used on the unfrozen parameters only, which we again call FreezeNet. We
follow the settings in [29] and exchange Dropout layers with Batch Normaliza-
tion [23] layers. Including the Batch Normalization parameters, the VGG16-D
network consists of 15.3 million parameters in total. We train all Batch Nor-
malization parameters and omit them in the freezing rate q. Additionally, we
augment the training data by random horizontal flipping and translations up
to 4 pixels. For CIFAR-100 we report results for networks initialized with a
Kaiming-uniform initialization [21]. The results are summarized in Table 3.

CIFAR-10 If more parameters are trainable, q ≤ 0.95, SNIP performs slightly
worse than the baseline but better than FreezeNet. However, using frozen weights
can achieve similar results as the baseline architecture while outperforming SNIP
if weight decay is applied to them as well, as shown with FreezeNet-WD. Apply-
ing weight decay also on the frozen parameters solely shrinks them to zero. For
all occasions where FreezeNet-WD reaches the best results, the frozen weights
can safely be pruned at the early stopping time, as they are all shrunk to zero
at this point in training. For these freezing rates, FreezeNet-WD can be consid-
ered as a pruning mechanism outperforming SNIP without adding any gradient
computations For higher freezing rates q ≥ 0.99, FreezeNet still reaches reason-
able results whereas FreezeNet-WD massively drops performance and SNIP even
results in random guessing.
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Table 3. Comparison of results for the CIFAR-10/100 tasks with a VGG16-D baseline.

CIFAR-10 CIFAR-100

Method Freezing Rate
Trained

Parameters
Mean ± Std Mean ± Std

Baseline 0 15.3mio 93.0± 0.1% 71.6± 0.6%

SNIP

0.9 1.5mio 92.9± 0.1% 53.9± 1.7%
0.95 780k 92.5± 0.1% 48.6± 6.6%
0.99 169k 10.0± 0.0% 1.0± 0.0%
0.995 92k 10.0± 0.0% 1.0± 0.0%

FreezeNet

0.9 1.5mio 92.2± 0.1% 70.7± 0.3%
0.95 780k 91.7± 0.1% 69.0± 0.2%
0.99 169k 88.6± 0.1% 59.8± 0.3%
0.995 92k 86.0± 0.1% 53.4± 0.1%

FreezeNet-WD

0.9 1.5mio 93.2± 0.2% 53.1± 1.8%
0.95 780k 92.8± 0.2% 44.5± 5.4%
0.99 169k 76.1± 1.0% 13.1± 1.8%
0.995 92k 74.6± 1.1% 11.9± 1.4%

CIFAR-100 CIFAR-100 is more complex to solve than CIFAR-10. As the right
part of Table 3 shows, SNIP is outperformed by FreezeNet for all freezing rates.
Frozen parameters seem to be even more helpful for a sophisticated task. For
CIFAR-100, more complex information flows backwards during training, com-
pared to CIFAR-10. Thus, using dense weight matrices in the backward pass
helps to provide enough information for the gradients to train successfully. Ad-
ditionally we hypothesize, that random features generated by frozen parameters
can help to improve the network’s performance, as more and often closely related
classes have to be distinguished. Using small, randomly generated differences
between data samples of different, but consimilar classes may help to separate
them.

Discussion Deleting the frozen weights reduces the network’s capacity — as
shown for the MNIST task, Figure 3 left. But for small freezing rates, the pruned
network still has enough capacity in the forward- and backward propagation. In
these cases, the pruned network has a higher generalization capability than the
FreezeNet, according to the bias-variance trade-off [15]. Continuously decreasing
the network’s capacity during training, instead of one-shot, seems to improve the
generalization capacity even more, as done with FreezeNet-WD. But for higher
freezing rates, unshrunken and frozen parameters improve the performance sig-
nificantly. For these rates, FreezeNet is still able to learn throughout the whole
training process. Whereas FreezeNet-WD reaches a point in training, where the
frozen weights are almost zero. Therefore, the gradient does not flow properly
through the network, since the pruned SNIP network has zero gradient flow for
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Fig. 4. Left: Shows the relative gradient norm for FreezeNet, SNIP and GraSP net-
works with respect to the VGG16-D baseline network on the CIFAR-10 dataset. Right:
Gradient mean and std, computed over the training data, recorded for one training run
with a VGG16-D architecture on the CIFAR-10 task for a freezing rate q = 0.99.

these rates, Figure 4 left. This change of FreezeNet-WD’s gradient’s behaviour
is shown in Figure 4 right for q = 0.99. It should be mentioned that in these
cases, FreezeNet-WD will have an early stopping time before all frozen weights
are shrunk to zero and FreezeNet-WD can not be pruned without loss in perfor-
mance.

4.3 Gradient Flow

As theoretically discussed in Section 3.2, FreezeNets help to preserve a strong
gradient, even for high freezing rates. To check this, we also pruned networks with
the GraSP criterion [39] to compare FreezeNets with pruned networks generated
to preserve the gradient flow. A detailed description of the GraSP criterion can
be found in the Supplementary Material. For this test, 10 different networks were
initialized for every freezing rate and three copies of each network were frozen
(FreezeNet) or pruned (SNIP and GraSP), respectively. The L1 norm of the
gradient, accumulated over the whole training set, is divided by the number of
trainable parameters. As reference, the mean norm of the baseline VGG16-D’s
gradient is measured as well. These gradient norms, computed for CIFAR-10,
are compared in the left part of Figure 4. For smaller freezing rates, all three
methods have bigger gradient values than the baseline, on average. For rates
q ≥ 0.95, decreasing the number of trainable parameters leads to a reduced
gradient flow for the pruned networks. Even if the pruning mask is chosen to
guarantee the highest possible gradient flow, as approximately done by GraSP.
Finally, the gradient vanishes, since the weight tensors become sparse for high
pruning rates, as already discussed in Section 3.2. FreezeNet’s gradient on the
other hand is not hindered since its weight tensors are dense. The saliency score
(1) is biased towards choosing weights with a high partial derivative. Therefore,
FreezeNet’s non-zero gradient values even become larger as the number of train-
able parameters decreases. For high freezing rates, FreezeNet’s gradient is able
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to flow through the network during the whole training process, whereas SNIP’s
gradient remains zero all the time — right part of Figure 4. The right part of Fig-
ure 4 also shows the mutation of FreezeNet-WD’s gradient flow during training.
First, FreezeNet-WD has similar gradients as FreezeNet since the frozen weights
are still big enough. The red peak indicates the point where too many frozen
weights are shrunken close to zero, leading to temporarily chaotic gradients and
resulting in zero gradient flow.

4.4 Comparison to Pruning Methods

Especially for extreme freezing rates, we see that FreezeNets perform remark-
ably better than SNIP, which often degenerates to random guessing. In Table
4, we compare our result for LeNet-5-Caffe with Sparse-Momentum [7], SNIP,
GraSP and three other pruning methods Connection-Learning [19], Dynamic-
Network-Surgery [17] and Learning-Compression [3]. Up to now, all results are
reported without any change in hyperparameters. To compare FreezeNet with
other pruning methods, we change the training setup slightly by using a split
of 19/1 for train and validation images for FreezeNet, but keep the remaining
hyperparameters fixed. We also recreated results for GraSP [39]. The training
setup and the probed hyperparameters for GraSP can be found in the Supple-
mentary Material. All other results are reported from the corresponding papers.
As shown in Table 4, the highest accuracy of 99.2% is achieved by the methods
Connection-Learning and Sparse-Momentum. With an accuracy of 99.1% our
FreezeNet algorithm performs only slightly worse, however Connection-Learning
trains 8.3% of its weights — whereas FreezeNet achieves 99.37% accuracy with
10% trained weights, see Table 2. Sparse-Momentum trains with sparse weights,
but updates the gradients of all weights during training and redistributes the
learnable weights after each epoch. Thus, their training procedure does neither
provide sparse gradient computations nor one-shot pruning and is hence more
expensive than FreezeNet. Apart from that, FreezeNet achieves similar results
to Dynamic-Network-Surgery and better results than Learning-Compression,
GraSP and SNIP, while not adding any training costs over GraSP and SNIP and
even reducing them for Dynamic-Network-Surgery and Learning-Compression.

4.5 Further Investigations

The right part of Figure 3 shows on the one hand, that FreezeNet reaches bet-
ter and more stable results than freezing networks with a randomly generated
freezing mask. This accentuates the importance of choosing the freezing mask
consciously, for FreezeNets done with the saliency score (1).

On the other hand, different variance scaling initialization schemes are com-
pared for FreezeNets in the right part of Figure 3. Those initializations help to
obtain a satisfying gradient flow at the beginning of the training [16, 21]. Results
for the Xavier-normal initialization [16], the Kaiming-uniform [21] and the pmσ-
initialization are shown. All of these initializations lead to approximately the
same results. Considering all freezing rates, the Xavier-initialization yields the
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Table 4. Comparison of different pruning methods with FreezeNet on LeNet-5-Caffe.

Method
Sparse

Gradients in
Training

Additional
Hyperpa-
rameters

Percent of
trainable
parameters

Test
Accuracy

Baseline [27] − − 100% 99.4%

SNIP [29] ✓ ✗ 1.0% 98.9%
GraSP [39] ✓ ✗ 1.0% 98.9%

Connection-Learning [19] ✗ ✗ 8.3% 99.2%
Dynamic-Network-Surgery [17] ✗ ✗ 0.9% 99.1%

Learning-Compression [3] ✗ ✓ 1.0% 98.9%
Sparse-Momentum [7] ✗ ✓ 1.0% 99.2%

FreezeNet (ours) ✓ ✗ 1.0% 99.1%

best results. The pmσ-initialization is a variance scaling initialization, using zero
mean and a variance of σ2 = 2

fanin+fanout

, layerwise. All weights are set to +σ

with probability 1
2 and −σ otherwise. Using the pmσ-initialization shows, that

even the simplest variance scaling method leads to good results for FreezeNets.

In the Supplementary Material we exhibit that FreezeNets are robust against
reinitializations of their weights after the freezing mask is computed and before
the actual training starts. The probability distribution can even be changed
between initialization and reinitialization while still leading to the same perfor-
mance.

5 Conclusions

With FreezeNet we have introduced a pruning related mechanism that is able to
reduce the number of trained parameters in a neural network significantly while
preserving a high performance. FreezeNets match state-of-the-art pruning algo-
rithms without using their sophisticated and costly training methods, as Table
4 demonstrates. We showed that frozen parameters help to overcome the vanish-
ing gradient occurring in the training of sparse neural networks by preserving a
strong gradient signal. They also enhance the expressiveness of a network with
few trainable parameters, especially for more complex tasks. With the help of
frozen weights, the number of trained parameters can be reduced compared to
the related pruning method SNIP. This saves storage space and thus reduces
transfer costs for trained networks. For smaller freezing rates, it might be bet-
ter to weaken the frozen parameters’ influence, for example by applying weight
decay to them. Advantageously, using weight decay on frozen weights contracts
them to zero, leading to sparse neural networks. But for high freezing rates,
weight decay in its basic form might not be the best regularization mechanism
to apply to FreezeNets, since only shrinking the frozen parameters robs them of
a big part of their expressiveness in the forward and backward pass.
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